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Abstract

Circus is a formal language that combines the Z and CSP notations. It takes advantage of the
strengths of each of these languages: from Z, it brings the possibility of specifying systems with
complex state requirements; from CSP, it brings the support for modelling communication and
concurrency. The result is a notation suitable to model state-rich reactive systems. Many other
combinations of a state-based formalism with a process algebra have been proposed. However,
the distinguishing feature of Circus is that it includes a refinement calculus, to allow a concrete
specification to be developed from an abstract Circus specification.

Recently, a strategy for transforming from a concrete Circus specification to a Java program has
been proposed. It consists in translation rules that, applied to each Circus construct in a concrete
specification, result in a Java program that implements the Circus program. As a consequence,
a method for developing Java code from an abstract Circus specification is now available. This
method consists of firstly applying refinement laws to transform an abstract specification into a
concrete one, and then applying the translation strategy to Java. The resulting Java program uses
the JCSP library, a Java implementation of the CSP model for concurrency and communication.

The main contribution of our work is an implementation of the translation strategy. The
resulting tool is called JCircus. The benefit of using JCircus is that it saves time, human effort
and prevents errors that are typical of the activity of manually writing code. Once a concrete
specification is defined, a Java implementation can be obtained within minutes.

Another important contribution of our work was the revision and correction of the origi-
nal translation strategy. Moreover, we have also tackled the verification of part of the transla-
tion strategy: the multi-synchronisation protocol. The JCSP library does not implement multi-
synchronisation, which was achieved with a centralised solution that uses only simple synchroni-
sations. We used Circus to model a special type of multi-synchronisation and the protocol that
we used to implement it in Java. Then we used the Circus refinement calculus to prove that the
models are related by refinement. A complete formalisation of the translation strategy requires
work on relating the semantics of Circus and Java that is outside the scope of this thesis, but we
have presented a viable approach for further validation.
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Chapter 1

Introduction

Circus [43] is a formal language that combines the Z [44] and CSP [36] notations. Z is a state-based
formal language. In this paradigm, a system is seen as a collection of variables that defines the
state of the system, and operations are relations that take the system from one state to another
state or retrieve information from the state. The semantics of Z is based on the set theory. Other
state-based languages include the B-method, Object-Z (an object-oriented extension of Z) and
Abstract State Machines.

CSP belongs to another paradigm, that of process algebras, which has a different view of a
system. Here, systems are regarded as processes; it permits specifying the order in which the
operations will be carried out. CSP also allows to express concurrency and provides a mechanism
through which these processes can interact. The mechanisms are the channels. Messages can be
passed through them from one process to another one. Process algebras, however, are poor at
describing data requirements. In CSP, this can be achieved by defining parameters for processes,
however, this solution is limited. CCS [28] is another example of a process algebra.

With the aim of taking the best of both worlds and providing languages suitable to describe
complex systems with both data and behavioural requirements, many combinations of a state-
based formalism with a process algebra have been proposed [14, 9, 24]. There are combinations of
Z with CCS [19], Z with CSP, and Object-Z [10] with CSP; also, combinations of B [5] and action
systems, B and CSP. When proposing a combination of formalisms, one concern is how to unify
the semantics of the languages.

CSP-OZ [14] is a combination of Object-Z and CSP. Each Object-Z class contains the decla-
ration of the interface (channels) and an optional CSP process, which defines the behaviour of
the object. Each data operation of the Z object is mapped to events in the CSP process. This
formalism gives a failure-divergence semantics to Object-Z classes.

The combination of CSP and B-machines defined in [37] gives a CSP semantics for B machines.
Therefore, CSP operators can also be applied to B machines. A particular architecture is defined,
in which each B-machine interacts with only one CSP process, called its controller. Like CSP-OZ,
it also associates data operations in the B machine to events in the CSP part.

The tool csp2B [9] provides a means of combining CSP-like descriptions with standard B
specifications. The aim of the tool is to convert CSP-like specifications into standard machine-
readable B specifications, so that they may be animated and appropriate proof obligations may
be generated. The translation is justified in terms of an operational semantics.

The fundamental difference between Circus and these formalisms is that, in Circus, the Z and
CSP constructs are freely mixed within the specification. This is because Circus is a language for
refinement. It is a unified language of specification and programming. Since programs do not
separate the treatment of data and concurrency, in Circus, there is no separation between the Z
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CHAPTER 1. INTRODUCTION 2

and CSP components of a specification or program.
This makes more difficult the reuse of tools for Z and CSP to analyse Circus specifications.

Tools for Circus have to be built from scratch. Also, the semantics of Z and CSP are redefined in
a new model. Despite all this, Circus is still easy to learn by people that are familiar with both Z
and CSP, because the conventions used in these languages have been preserved.

The semantics of a formal language gives a non-ambiguous interpretation for each syntactic
construct of that language. It is basically a function that maps the syntactic constructs into a
mathematical model that describes what the construct represents. The semantics of Circus is
based on the Unifying Theories of Programming (UTP) [22], a formalism that proposes a unifying
model for several computational paradigms. In this formalism, both state and communication
aspects of concurrent systems are captured by observational variables.

Another feature of Circus is that it includes a refinement calculus. For that, also included in
Circus are the specification constructs usually found in refinement calculi and Dijkstra’s language
of guarded commands. It also includes a strategy based on rules to translate Circus programs to
Java code [31]. The other combinations, even though they include a theory of refinement, do not
allow refinement to code in a calculational fashion like that of Circus.

In this work, we implement the translation strategy. We present adaptations and extensions
to it, and provide additional functionality. A verification of part of the translation strategy has
also been carried out.

1.1 Motivation

Circus is a new language and it has attracted the interest of industry: it is currently being considered
by QinetiQ for verification of control systems [11]. The Circus research group is working on
techniques, tools and extensions of the theory. Such contributions include: the formal definition
of the Circus type system and implementation of a type checker for Circus [45]; a model checker
for Circus [18], in the style of FDR [15]; the mechanisation of the denotational semantics of Circus
in ProofPower-Z [30], which will serve as a basis for a theorem prover for Circus; extensions of
the language, with the inclusion of features for specifying time [38], mobility [39] and object
orientation [13].

In [29], a technique for the formal development from an abstract Circus specification to an
executable Java program is presented. Refinement laws are defined to allow derivation of con-
crete Circus programs from abstract ones; and a translation strategy is proposed to reach a Java
implementation from a concrete Circus program. This technique has been used successfully for
refinement and implementation in Java of an industrial scale system [32].

The generated Java program uses JCSP [40], a Java library that implements some CSP prim-
itives. JCSP was conceived with the intention of making concurrent programming in Java easier
and less error prone. Java provides a built-in concurrency model based on threads and monitors.
This model is hard to apply safely and scales badly with complexity. On the other hand, CSP is
easy to understand, intuitive, and its underlying theory makes possible the reasoning about desired
properties of concurrent systems, for example, absence of deadlock and livelock. As Circus is an
extension of CSP, it is appropriate to make use of this library to implement Circus specifications
as well.

One evidence of the difficulties with Java multi-threading is the number of works available
in the literature warning about these difficulties. The problem becomes harder because parallel
programs, as opposed to sequential programs, have a non-deterministic execution: each time the
program runs, the commands may be scheduled in a different way. This means that, in case
a problem appears during one particular execution, repeating the execution to investigate the
problem may be useless, because the order of execution of the commands might not be the same
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this time, and the problem may not arise. So, debugging a parallel program is a non-trivial task.
However, concurrency is such a natural concept: it just describes how the real world works.

The implementation of a simple idea should not cause so many complications, and there seems to
be something wrong. The implementation of the theory of CSP in Java is an attempt to rescue
this simplicity. Other libraries have been implemented with this motivation. They include CTJ
and Jack [17]. These libraries, and JCSP, share the common philosophy that concurrency should
be simplified in order to encourage its widespread use.

CTJ is a library that has been developed in the University of Twente. It has strong similarities
with JCSP: a common core in the base algorithms for CSP primitives. Actually, teams that
developed each library interacted with each other and the result is that some ideas originally
introduced in JCSP were later taken up by CTJ, and vice versa. However, a motivation behind
the development of CTJ was to create a Java package for creating real-time and embedded software
using the CSP model. JCSP does not share this concern, and the main differences between the
two libraries lie on the implementations of such features.

The Jack library came after JCSP and CTJ. Its objective was to implement features that are
not present in those two libraries: a solution to the backtrack problem and multi-synchronization.
The backtrack problem consists of how to implement an input channel that receives a value which
is subject to a constraint. If the constraint is not satisfied, the communication is not successful,
and its effects must be cancelled. A protocol has to be implemented to deal with this situation,
to be able to restore the state of the system previous to the communication in the case of an
unsuccessful communication.

The translation strategy that is the basis to our work used the JCSP library. Jack is the
result of an MSc project work, and it is not being maintained anymore. JCSP is extensively
documented and it has the concern with formal verification: the formal proof of some of the
implementation features, namely, the channel implementation and the alternation, has recently
been carried out [41]. Since the support for real-time features is not a concern to us, but the
development of safety-critical systems is, JCSP is an obvious choice.

The soundness of the refinement rules proposed in [29] is proved. The UTP semantics of Circus
was redefined with a deep-embedding of Circus in Z, and the theorem prover ProofPower-Z was
used to mechanise this semantics an prove the rules. However, the translation strategy that links
concrete Circus with Java is not formally proved. This is a very complex task, which involves the
semantics of both Java and Circus. The adequacy of the strategy is evidenced by the successful
implementation of the industrial case study and the fairly direct correspondence between the
Circus constructs and JCSP.

The main motivation behind our work is to contribute with the development of tools for Circus.
In software engineering, tools are of fundamental importance to make the development process
more reliable and efficient. Computer-aided software engineering (CASE) tools offers support to
different phases of the software development: from system analysis and design, through tools for
project management, compilers, test, and so on. In the field of formal methods, specifically, the
use of tools is of particular importance in performing tasks that are impossible for humans due
to the amount of data to analyse (for example, model checking) or to automatise repetitive tasks
with manipulation of extensive formulas (for example, refinement calculus and theorem proving).

Because of that, we can say that tool support is a key factor in the success of a formal language.
A formal language can be expressive and provide useful techniques to efficiently solve a determined
problem, but if it does not provide tool support, it is doubted that the language will encounter
many adepts among the scientific and industrial community. The success of the CSP language,
for example, is greatly due to FDR - a model checker for CSP, which has achieved widespread use
in academy and industry.

In the original work on the translation strategy from Circus to Java, the industrial case study
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was carried out by hand; the classes were manually coded. The application of these rules, although
simple, is time consuming, because each line of Circus programs usually yields several lines of Java
code. When developing large systems, we easily reach a very large program. Besides that, the
process is error-prone; it is easy to get the variable names incorrect during copy-paste operations,
for instance. Automation of the strategy is an advance towards the solution of both these problems.

1.2 Objectives

In this work, we implement the translation strategy from Circus to Java; the resulting tool is called
JCircus. It receives as input a concrete Circus specification written in LATEX markup, automat-
ically applies a series of translation rules, and generates a Java project, which implements the
specification.

JCircus should be user-friendly, with simple and intuitive operation that does not require much
expertise from the user. The tool should also be complete, in the sense that it implements the
whole translation strategy, and sound, so that we can rely on the results it produces. We also aim
at a good design that facilitates code maintenance and future extensions of the tool that will be
needed due to the inevitable evolution of Circus. All these aspects were concerns when developing
this work.

To achieve these results we used a structured approach for its development, with the following
phases: requirement analysis, design, implementation and testing. The work is documented using
UML and JCircus is implemented in Java.

As already said, the programs that JCircus generates use JCSP; this library, however, does not
completely implement CSP. One feature that is not provided by JCSP is multi-way synchronisa-
tion. In JCSP, all communications are point-to-point. In order to fill this gap, the translation
strategy proposes a protocol to implement multi-synchronisation by means of a controller process
that manages the requests for synchronisation. We are also concerned with the correctness of im-
plementation; in this work, we also verify this protocol: we propose a Circus model for it and use the
Circus refinement calculus to demonstrate that it really implements a multi-way synchronisation.

The automation of the translation strategy is feasible because it defines rules that are specific
to each kind of Circus construct. Therefore, each step in the transformation is non-ambiguous.
The translation is basically an operation of transformation between a representation of a program,
in Circus, to another representation, in Java. It is different from a refinement process, for example,
where each step gives a range of possibilities for transformation, and user expertise is required for
reasoning.

We expect that JCircus can be useful for the industrial and academic community that uses
Circus in formal development. It provides rapid prototyping for validation of a Circus specification,
and automatic implementation once the specification has been validated.

The long-term goal of the Circus project is to gather all the tools currently under development
into an integrated environment for Circus, which will provide support for all the development
phases. Figure 1.1 describes how these parts can be integrated in the development process. The
contribution of the work described in this thesis is the implementation of the translator to Java.

1.3 Overview

In the next chapter we introduce the background necessary to understand the work described in
this thesis: the Circus language and the JCSP library. In Chapter 3 we present the translation
strategy implemented by JCircus with the modifications to the original strategy that we considered
necessary for the automation.
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abstract Circusmodel checking

concrete Circus

Java + JCSP

bytecodes

refinement tool

formal compiler

theorem proving

JCircus

Figure 1.1: Development phases

Chapter 4 describes the tool. Some limitations of JCSP prevent that the strategy can be
applied to any format of input specifications. The programs that are subject to translation must
comply to a number of requirements, some of them can be achieved by the application of simple
refinement rules. In this chapter, we start with an account of such requirements. Then, we describe
the architecture of JCircus and discuss some design and implementation issues, including the CZT
framework which was used in our implementation. We also consider an example of how the tool
can be used, and finally, we present the test strategy that was adopted.

During the implementation of the strategy, we discovered some errors in the definitions of
some translation rules. These problems are reported in Chapter 5. Alternative implementations
to some rules are also presented in this chapter.

Chapter 6 covers the verification of the multi-synchronisation protocol. We propose a Circus
model for a specific type of multi-synchronisation, and prove that this model and the model for
the implementation are related by refinement. Finally, in Chapter 7 we draw conclusions and
consider some related work and future work.

The appendices contain complementary material. Appendix A contains the complete set of
rules of the translation strategy, and Appendix B presents the Circus refinement laws used in the
verification of the multi-synchronisation protocol.



Chapter 2

Background

This chapter gives a brief introduction to the Circus language [43] and the JCSP library [40]. In
section 2.1, we present the Circus syntax and explain some of its main constructs. In section 2.2,
we present part of the JCSP library that is relevant to the translation strategy.

2.1 Circus

Circus is a combination of the well-established notations Z [33] and CSP [21]; it incorporates the
schema calculus of Z and the process operators of CSP. It also provides a refinement calculus,
extended from the Z Refinement Calculus, which allows a executable program to be derived from
an abstract specification in a stepwise fashion.

Like a Z specification, a Circus program is formed by a sequence of paragraphs. These para-
graphs can be either a Z paragraph, a channel definition, a channel set definition, or a process
declaration. Figures 2.1 and 2.2 presents the current Circus syntax. The original syntax was firstly
published in [43].

We will use a small example of a program that calculates the greatest common divisor (GCD)
between two natural numbers to explain some of the main constructs of Circus.

Channels are the interface between the system and the external environment. They can be
declared as in CSP: the keyword channel, the name of the channel, and the type of the values
it communicates. In our example, the channels in and out communicate natural numbers; the
former receives the numbers, in sequence, and the latter outputs their GCD.

channel in, out : N

The type expression can be any Z expression describing sets; the type system of Circus follows the
type system of Z, with its notion of maximal type [44].

As in CSP, we can also declare untyped channels by omitting the type expression; in such
cases, the channel is only a synchronisation event and does not communicate values. Circus adds
the concept of generic channel [43] (similar to that of generic schemas of Z); and we can also use
a schema without a predicative part to declare groups of channels. Channels are always declared
in global scope, that is, in the level of Circus paragraphs.

A process declaration declares its name and gives a process specification. The most basic form
of process specification defines the state of the process, a sequence of process paragraphs, and a
nameless main action which describes the behaviour of the process; all these are delimited by the
keywords begin and end. A process paragraph can be a Z paragraph, an action definition, or a
name set definition.

6
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Program ::= CircusPara∗

CircusPara ::= Para | channel CDecl | chanset N == CSExpr | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Expr | [N+] N+ : Expr | Schema-Exp

CSExpr ::= {|N∗|} | N | CSExpr ∪ CSExpr | CSExpr ∩ CSExpr | CSExpr \ CSExpr | Appl

ProcDecl ::= process N =̂ ProcDef | process N[N+] =̂ ProcDef

ProcDef ::= ParamProc | Proc

ParamProc ::= Decl • Proc | Decl¯ Proc | µ N • ParamProc

Proc ::= begin PPara∗ state Para PPara∗ • Action end
| Comm → Proc | Pred & Proc | Proc \ CSExpr | Proc[N+ := N+]
| Proc ; Proc | Proc 2 Proc | Proc u Proc | Proc |[ CSExpr ‖ CSExpr ]| Proc
| Proc |[ CSExpr ]| Proc | Proc ||| Proc | N | N(Expr+) | (Decl • Proc)(Expr+)
| (µ N • Decl • Proc)(Expr+) | NbExpr+c | (Decl¯ Proc)bExpr+c
| (µ N • Decl¯ Proc)bExpr+c | N[Expr+] | N[Expr+](Expr+) | N[Expr+]bExpr+c
| µ N • Proc | o

9 Decl • Proc | 2 Decl • Proc | u Decl • Proc
| ‖ Decl • |[CSExpr ]| Proc | |[ CSExpr ]| Decl • Proc | ||| Decl • Proc | (Proc)

Figure 2.1: Circus syntax

In our example (Figure 2.3), the process GCDEuclides has its internal state described by the
schema GCDState. It contains two natural numbers, a and b. These values are initialised with
the numbers for which we want to calculate the GCD.

The definitions that follow describe actions. InitState and UpdateState are both Z schemas.
The first initialises the state components. It declares two input variables x? and y?; the declaration
GCDState ′ introduces the dashed versions of the state components, that is, a ′ and b′, which
represent their final values. Circus adopts the same conventions of Z for the decoration of input,
output, and state variables. The predicative part states that the final values of a and b are equal
to the values of x? and y?, respectively. The schema UpdateState updates the values of the state
components in each iteration of the calculus of the GCD.

The action GCD is a recursive action that implements the Euclidean algorithm for the calculus
of the greatest common divisor between two natural numbers. This algorithm is based on the fact
that gcd(a, b) = gcd(b, a mod b). The recursive case, when b 6= 0, calls the schema UpdateState,
and then makes the recursive call. The base case is chosen when the GCD is found (the GCD
between a and zero is a): it is output through channel out . As in CSP, the basic action Skip does
not communicate any value nor changes any state; it just terminates immediately.

The main action describes the behaviour of the process. It is defined as a sequential composition
of two actions. The first receives two inputs through channel in and initialises the state with these
values; the second is a call to action GCD , which as previously discussed, calculates and outputs
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PPara ::= Para | nameset N == NSExpr | N =̂ ActionDef

NSExpr ::= {N∗} | N | NSExpr ∪ NSExpr | NSExpr ∩ NSExpr | NSExpr \ NSExpr | Appl

ActionDef ::= ParamAction | Action

ParamAction ::= Decl • Action | µ N • ParamAction

Action ::= CSPAction | Schema-Exp | ParCommand | (Action)

CSPAction ::= Skip | Stop | Chaos
| Comm → Action | Pred & Action | Action \ CSExpr | Action[N+ := N+]
| Action ; Action | Action 2 Action | Action u Action
| Action |[NSExpresion | CSExpr‖CSExpr | NSExpr ]| Action
| Action |[CSExpr‖CSExpr ]| Action | Action |[CSExpr ]| Action
| Action |[NSExpresion | CSExpr | NSExpr ]| Action
| Action ‖[NSExpr | NSExpr]‖ Action | Action ||| Action
| N | N(Expr+) | (ParamAction)(Expr+) | µ N • Action
| o

9 Decl • Action | 2 Decl • Action | u Decl • Action
| ‖ Decl • |[NSExpr | CSExpr ]| Action | ‖ Decl • |[CSExpr ]| Action
| |[ CSExpr ]| Decl • |[NSExpr ]| Action | |[ CSExpr ]| Decl • Action
| ||| Decl • ‖[NSExpr]‖Action | ||| Decl • Action

Comm ::= N CParam∗ | N [Expr+] CParam+

CParam ::= ?N | ?N : Pred | !Expr | .Expr

ParCommand ::= Command | (ParDecl • Command)

ParDecl ::= ParQualifier Decl | ParQualifier Decl; ParDecl

ParQualifier ::= val | res | valres
Command ::= N+ : [Pred, Pred] | N+ := Expr+ | if GuardActions fi

| var Decl • Action | (ParDecl • Command)(Expr+) | {Pred} | [Pred]

GuardActions ::= Pred → Action | Pred → Action 2 GuardActions

Figure 2.2: Circus syntax
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process GCDEuclides =̂ begin

state GCDState =̂ [a, b : N]
InitState =̂ [GCDState ′; x?, y? : N | a ′ = x? ∧ b′ = y?]
UpdateState =̂ [GCDState; GCDState ′ | a ′ = b ∧ b′ = a mod b]
GCD =̂

µX • if b = 0 → out !a → Skip
[] b 6= 0 → UpdateState; X
fi

• (in?x → in?y → InitState); GCD
end

Figure 2.3: Euclidean algorithm for GCD in Circus

the GCD of the given numbers.

The input variables x and y from the communication on channel in are not the same variables as
the ones declared in InitState; those are implicitly declared at the moment of the communication,
with the same type as the channel’s type. Their scope is the action that follows the prefixing.
In Circus, the value passed to an input variable in a schema is the value of the variable in scope
with the same name, without taking decoration into account. Therefore, the values taken by the
schema input variables x? and y? are the values taken by the prefixing input variables x and y .

A process definition like that of GCDEuclides is the most basic kind of process definition: it
uses Z and CSP constructs to define the state and the behaviour of the process. It is also possible
to define processes in terms of others previously defined, using the CSP operators for sequence,
external choice, internal choice, parallelism and interleaving, among others.

In Figure 2.4, process SumOrGCD is a parallel composition of the process GCDEuclides previ-
ously discussed and GCDClient . They communicate via channels in and out , and these channels
are hidden, which means that the environment cannot see communications through them.

The process GCDClient behaves recursively. In each iteration, it reads values x and y from
a channel read , and passes them to the parametrised action ChooseOper , which offers a choice
between the operation of sum or the greatest common divisor. The external choice operator is as
in CSP: it offers the environment a choice between two or more actions. If the GCD operation is
chosen, it interacts with process GCDEuclides through channels in and out , and then outputs on
write the result obtained. Otherwise, it outputs on write the summation of the two values.

Other Circus operators for processes include: interleaving (|||), which is a special type of paral-
lelism, in which there is no interaction between the parallel processes; internal choice (u), which
describe a non-deterministic choice between two processes; indexing (¯), which renames the chan-
nels that a process uses according to a set of variables. As in CSP, Circus defines iterated versions
for the following operators: sequential composition, external choice, internal choice, parallelism
and interleaving. The iterated operators are used with parametrised processes to define several
instances of a process. For example, ||| i : T • P(i) is the process defined by interleaving each of
the process P(v) formed by instantiating P with a value v of T . A complete description of Circus
and its semantics can be found in [29].
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channel gcd , sum
channel read ,write : N

process SumOrGCD =̂ (GCDEuclides |[ {| in, out |} ]|GCDClient) \ {| in, out |}
process GCDClient =̂ begin

ReadValue =̂ read?x → read?y → ChooseOper(x , y)
ChooseOper =̂ x , y : N •

gcd → in!x → in!y → out?r → write!r → Skip
2

sum → write!(x + y) → Skip
• µX • ReadValue; X

end

Figure 2.4: Parallelism between GCDEuclides and GCDClient

2.2 JCSP

Java Communicating Sequential Processes (JCSP) [40] is a Java class library that provides a
base range of CSP primitives and a rich set of extensions. The main motivation behind JCSP
is to simplify the programming of concurrent systems. Instead of dealing directly with the Java
primitives for concurrency, one can use the JCSP library to directly implement a CSP specification
in Java, after it has been verified for desirable properties using the techniques and tools available
for CSP.

In JCSP, a process is a class that implements the interface CSProcess. In Java, an interface
is a class that defines methods, but does not implement them. Rather, the class implementing
the interface must implement the methods it defines. The interface CSProcess defines only the
method public void run(), which encodes the behaviour of the process.

JCSP also defines interfaces for channels: ChannelInput is the interface for input channels
and defines the method read; ChannelOutput is the interface for output channels and defines
the method write; Channel extends both ChannelInput and ChannelOutput and is used for
channels which are not specified as input or output channels. The implementations for channels
are the classes One2OneChannel, One2AnyChannel, Any2OneChannel and Any2AnyChannel. The
appropriate implementation to be used when creating a channel depends on whether there are one
or more possible readers and writers for the channel.

Synchronisation in JCSP is not in exact correspondence with the original concept in CSP.
Despite being possible to have more than one process that reads or writes on a channel, only one
pair reader/writer can synchronise at each time. Thus, multi-synchronisation, that is, three or
more processes synchronising on one event, which is allowed in CSP, is not directly supported by
JCSP. The translation strategy implements a protocol for multi-synchronisation, which will be
explained in the next chapter.

The class Alternative implements the external choice operator. Its constructor takes an
array of guards, which are the channels that may be selected. The implementation of the al-
ternation requires that only input channels that have at most one reader can participate on it.
The abstract class AltingChannelInput defines channels that can be used in alternation: it ex-
tends only the interface ChannelInput, and the implementations provided within the framework
are One2OneChannel and Any2OneChannel. Figure 2.5, which was adapted from [6], presents an
overview of the JCSP classes for channels. The diagram is in UML notation (version 1.3): italic
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<< interface >>

ChannelInput

<< interface >>

ChannelOutput

<< interface >>

ChannelAltingChannelInput

AltingChannel

One2OneChannel

Any2OneChannel

One2AnyChannel

Any2AnyChannel

Alternative 0..1

*

Figure 2.5: JCSP Channel architecture

names represent abstract classes and interfaces; interfaces are represented with and stereotype;
an arrow with triangular arrowhead represents the inheritance relationship; a dashed arrow with
triangular arrowhead means that the class implements the interface to which it points. For details
on the UML notation, see [8].

Here is an example of the use of class Alternative:

AltingChannelInput l = new Any2OneChannel();
AltingChannelInput r = new Any2OneChannel();
AltingChannelInput[] chs = new AltingChannelInput[] {l, r};
Alternative alt = new Alternative(chs);
chs[alt.select()].read();

The alting channels l and r are instantiated as Any2OneChannels. The array of AltingChannelInputs
is declared and passed to the constructor of class Alternative. The method select() waits for
one or more channels to become available, makes an arbitrary choice between them, and returns
the index of the selected channel. The index is used here to access the channel in the array. Since
it is an output channel, the method read is called to make the synchronisation happen.

Parallel and interleaved processes are implemented using the class Parallel, which implements
CSProcess. The constructor takes an array of CSProcesses, which are the processes that will
compose the parallelism. The method run executes all processes in parallel and terminates when all
processes terminate. There is no difference between the way in which interleaving and parallelism
are implemented because, differently from CSP, it is not possible to choose the channels on which
the processes synchronise; in JCSP, they synchronise on all channels that they have in common.
Therefore, if the intersection of the alphabets is not empty, we have a parallelism; otherwise, we
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have actually an interleaving.
The CSP constructors Skip and Stop are implemented by the classes Skip and Stop, re-

spectively. JCSP includes many other facilities beyond those available in CSP, such as imple-
mentations for barrier synchronisation, timers and process managers, among others. We use
the ProcessManager class in our implementation of multi-synchronisation, which is explained in
Section 3.6. There are also plug-and-play components, to emphasize code reuse, and a package
providing extensions for all java.awt components. These, however, are not used in the translation
strategy, and are not going to be presented here. For details, see [40].

2.3 Final considerations

In this chapter, we have briefly introduced the Circus language, the JCSP library, with the illustra-
tive example of a program that implements the Euclidean algorithm for the calculus of the GCD.
Due to space restrictions we have not presented all features of the Circus language and the JCSP
library; rather only those essential for the understanding of the basics of the translation strategy,
presented in next chapter. More details about Circus and JCSP can be found in [43, 40].
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Translation strategy

The first requirement of the translation strategy is that we must have as a starting point a con-
crete Circus specification. In a concrete Circus specification, schemas and specification statements
must not be used to define actions. Also, guards must be conditions; they must not involve
quantifiers. Thus, the specification of the process GCDEuclides as stated in the previous chapter
must be refined prior to the application of the translation strategy. The refinement in this case
is straightforward; basically it consists of the application of a law that refines a schema definition
to a (parametrised) action with an assignment in its body (a reference to this refinement law can
be found in [29]). Figure 3.1 shows the resulting specification.

The strategy also requires that the specification conform to some requirements; not any Circus
program is possible to be translated. The requirements are presented and discussed in Chapter 4.
Our example is in a suitable format for translation.

The translation strategy considers that some environments are available throughout the trans-
lation. In the following definitions, N is the type of names (process, channel, and variable names)
and Expr is the type of expressions. The environments VisChanEnv : seq N and HidChanEnv : seq N
record the names of the visible and hidden channel of a process. The hidden channels are those
that are concealed from the environment with the use of the hiding operator, as channels in and
out in process SumOrGCD (Figure 2.4). The channels which are not hidden are visible. A channel
can be hidden in one process and visible in another process, and that is why it is necessary to keep
these environments separate for each process definition. For instance, process GCDEuclides1 uses
two channels, in and out and they are visible; process GCDClient uses six channels, in, out , read ,
write, sum and gcd , and they are all visible; process SumOrGCD uses all the above channels, but
in and out are hidden, and the others are visible.

The environment SyncCommEnv : N 7→ SC maps each channel name used in a process to a
value of type SC : S , if it is a synchronisation channel, or C , if it is a communication channel.
A communication channel is a channel that defines an input (?) or output (!) field, as channels
in and out of our example. A synchronisation channel is a channel that is either untyped, as
channels sum and gcd , or contains only fields that are not defined as input or output.

The environment ChanTypeEnv : N 7→ (seq Expr × seq Expr) maps each channel in the program
to its Circus type. The first sequence is the generic names and the second sequence is the type
expressions for each channel field. If the channel is not generic, the first sequence is empty. If
the channel is untyped, that is, it does not define any field, the second sequence contains only the
special type Sync.

The environments LocalVarEnv : seq(N × Expr) and StateCompEnv : seq(N × Expr) map a
local variable, or a state component, to its Circus type. They are used in the translation of parallel
and recursive actions. The environment TypesEnv : seq Expr is a list of all Circus types used in

13
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process GCDEuclides1 =̂ begin

state GCDState =̂ [a, b : N]
InitState =̂ x , y : N • a, b := x , y
UpdateState =̂ a, b := b, a mod b
GCD =̂ µX • if b = 0 → out !a → Skip

[] b 6= 0 → UpdateState; X
fi

• in?x → in?y → InitState(x , y); GCD
end

Figure 3.1: Concrete Circus program for calculation of the GCD.

the Circus program being translated.
The environment ReadWriteEnv : N 7→ (N 7→ ChanUse) records how a channel is used within

the sub-processes of a process. It is used to decide which processes read and which processes write
on a channel. It maps a channel name to a function which associates a process name to a value
of type ChanUse ::= I | O . For instance, in our GCD example, the environment ReadWriteEnv
for process SumOrGCD records the following:

{(in 7→ {(GCDEuclides1 7→ I ), (GCDClient 7→ O)}),
(out 7→ {(GCDEuclides1 7→ O), (GCDClient 7→ I )})}

Process SumOrGCD is a parallelism of processes GCDEuclides1 and GCDClient . The channel
in is an input channel in process GCDEuclides1 and output channel in process GCDClient . For
process out , it is the other way around.

The environment MultiSyncEnv : N 7→ (N ½ N) records information for the multi-synchronisa-
tion protocol. It records an identification number for each process that takes part in a multi-
synchronisation. This environment will be better explained in Section 3.6.

The strategy also defines some auxiliary functions to be used in the definition of the rules.
The function JType maps a Circus type expression into the name of the Java class that represents
that type. The function JExp translates expressions. As an example of the use of these auxiliary
functions, we have that JType(Z) = CircusNumber and JExp(x > y) = x.greaterThan(y). The
class CircusNumber is an auxiliary class that we have implemented to represent the Circus built-in
type A (pronounced “arithmos”), which represents number types. We are considering a simplified
type system, which includes only free types and number types.

The output of the translation is Java code composed of several classes allocated in four pack-
ages. For each program, a project name proj is required. The package proj contains the classes
with the method main to be executed; proj.axiomaticDefinitions contains the class with the
translation of the axiomatic definitions declared in global scope, that is, in the level of Circus
paragraphs; package proj.processes contains the classes that result from the translation of each
process declaration; and package proj.typing contains the classes that implement types.

3.1 Process declarations

Each process declaration is translated into a Java class that implements the JCSP interface
jcsp.lang.CSProcess. The Java class has the same name as the process, and imports the nec-
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essary packages: the Java utility package, the basic JCSP package, and some project packages.

Rule A.1 Normal process declaration

|[process P =̂ ProcDef ProcDecls ]|ProcDecl proj =
package proj.processes;
import java.util.*;
import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.typing.*;
public class P implements CSProcess { |[ProcDef ]|ProcDef P }

|[ProcDecls ]|ProcDecls proj

Using Rule A.1, we translate the process GCDEuclides1. The translation is shown below and we
omit package and import declarations shown in the rule.

public class GCDEuclides_1 implements CSProcess {

|[ begin state GCDState =̂ ... • in?x → in?y → . . . end ]|ProcDef GCDEuclides1
}

The next step is to translate the process definition. We use the rule below for non-parametrised
process definitions.

Rule A.3 Non-parametrised process definition

|[Proc ]|ProcDef P =
ChannelDecl VisChanEnv ChanTypeEnv SyncCommEnv
ChannelDecl HidChanEnv ChanTypeEnv SyncCommEnv
public P((VisibleCArgs VisChanEnv ChanTypeEnv

SyncCommEnv)){
MultiAssign (ChannelDecl VisChanEnv ChanTypeEnv

SyncCommEnv)
(VisibleCArgs VisChanEnv ChanTypeEnv

SyncCommEnv)
HiddenCCreation HidChanEnv ChanTypeEnv

SyncCommEnv TypesEnv MultiSyncEnv ReadWriteEnv P
}

public void run(){ ProcessCall Proc HidChanEnv MultiSyncEnv }

This rule uses the auxiliary function ChannelDecl to declare as private attributes the visible and
hidden channels that the process uses. It takes the environments ChanTypeEnv and SyncCommEnv
to decide if they will be declared as simple channels or as an array of channels. An array of channels
is used for some special types of channels. This will be explained in Section 3.7.

Visible channels are taken by the constructor as parameters; the function VisibleCArgs declares
the parameters and MultiAssign initialises them. Hidden channels are instantiated within the
constructor (function HiddenCCreation). The definition of these auxiliary functions can be found
in Appendix A (Rule A.3). Table 3.1 shows how each channel is used in the processes defined in
our GCD example.

In the translation strategy, we do not use the channel implementations provided by JCSP
directly. Instead, we define a class GeneralChannel, which encapsulates an Any2OneChannel,
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Process Channels used Visible channels Hidden channels
GCDEuclides1 in, out in, out None
GCDClient All All None
SumOrGCD All read , write, gcd , sum in, out

Table 3.1: Use of channels

an array of Any2OneChannel that is used for the multi-synchronisation protocol, and some other
information. The class GeneralChannel, which also defines methods read and write, will be
explained in detail in the Section 3.6. The creation of this class was one of our modifications to
the original translation strategy.

In our example, the process GCDEuclides1 uses two channels, in and out , and they are visible.
We proceed with the translation, which is shown below.

public class GCDEuclides_1 implements CSProcess {

private GeneralChannel in;
private GeneralChannel out;

public GCDEuclides_1(GeneralChannel in, GeneralChannel out) {
this.in = in;
this.out = out;

}

public void run () { |[begin state GCDState =̂ . . . • . . . end ]|Proc }
}

The method run implements the process body translated by |[ ]|Proc . This function translates
a basic process into a call to the method run of an instance of an anonymous inner class that
implements CSProcess. An anonymous inner class in Java is a nameless class defined inside
another class. It is defined using the constructor of a superclass or an interface. The use of this
Java feature is justified to allow compositional translation so that we do not have to name a
process to translate it. The rule for basic processes is as follows.

Rule A.6 Basic process

|[begin PPars1 state PSt PPars2 • Main ]|Proc =
(new CSProcess(){

(StateDecl PSt) |[PPars1 PPars2]|PPars

public void run() { |[Main ]|Action }
}).run();

The inner class declares the state components as private attributes. The function |[ ]|PPars

translates the process paragraphs, which can be axiomatic definitions, parametrised or non-
parametrised action definitions. Because the process paragraphs can only be referenced within
the basic process where they are defined, they are all translated into private methods.
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The body of the method run is the translation of the main action. In our example, after the
application of Rule A.6, we get the following class:

public class GCDEuclides_1 implements CSProcess {

private GeneralChannel in;
private GeneralChannel out;

public GCDEuclides_1(GeneralChannel in, GeneralChannel out) {
this.in = in;
this.out = out;

}

public void run () {
(new CSProcess() {

private CircusNumber a;
private CircusNumber b;

|[ InitState =̂ x , y : N • a := x ; b := y UpdateState =̂ ... ]|PPars

public void run(){ |[ in?x → in?y → InitState(x , y); GCD ]|Action }
}).run();

}
}

The translation of axiomatic definitions is explained in the next section. Parametrised and non-
parametrised actions are translated with Rule A.26 and Rule A.25, respectively.

Rule A.26 Parametrised action definition

|[N =̂ (Decl • Action) PParags]|PParags =
private void N(ParamsArgs Decl){ |[Action ]|Action }

|[PParags]|PParags

Rule A.25 Non-parametrised action definition

|[N =̂ Action PParags]|PParags =
private void N(){ |[Action ]|Action }

|[PParags]|PParags

Parameters are declared as arguments of the method (function ParamsArgs), and the body of the
method is the translation of the action, which may be a CSP action or a command.

3.2 Actions

There are several rules for actions, and we will present here the ones we need to continue the
translation of our example. Single assignments are directly translated into Java assignments. The
function JExp, as explained before, translates expressions.
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Rule A.51 Single assignment

|[x := e]|Action = x = (JExp e);

Multiple assignments need auxiliary variables in the case where one of the assigned variables also
appear in one of the right-hand side expressions. First, the auxiliary variables are declared with
the same type as the original value, and they are assigned the translation of the expression. Then
they are assigned to the original variables. The function FV gives the set of free variables of the
expression that it takes as argument.

Rule A.52 Multiple assignment

|[x1, . . . , xn := e1, . . . , en]|Action =
if ({x1, . . . , xn} ∩ (FV (e1) ∪ . . . ∪ FV (en)) = ∅) then

x_1=(JExp e1); . . . ; x_n=(JExp en);
else

(JType (CType x1)) aux_x_1 = (JExp e1);
. . . ;
(JType (CType xn)) aux_x_n = (JExp en);
x_1=aux_x_1;
. . . ;
x_n=aux_x_n;

Using Rule A.26 (Parametrised action definition), Rule A.25 (Non-parametrised action definition),
Rule A.51 (Single assignment) and Rule A.52 (Multiple assignment), the translation of actions
InitState and UpdateState yields:

private void InitState(CircusNumber x, CircusNumber y){
a = x;
b = y;

}

private void UpdateState(){
CircusNumber aux_a = b;
CircusNumber aux_b = a.mod(b);
a = aux_a;
b = aux_b;

}

A recursive action is translated using an inner class that implements the body of the recursion, and
a call to the method run of the inner class. The inner class declares copies of the local variables
(DeclLocalVars), and their values are given to the constructor as arguments (LocalVarsArg). The
method run of this inner class executes the body of the recursion and the function RenameVars
substitutes the names of local variables by the names of their copies. At the point where the
recursive call occurs, it instantiates a new object of this class and executes it. The function
RunRecursion, at the end, instantiates a recursive process, invokes its method run, and collects
the values of the auxiliary variables.
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Rule A.43 Recursive action

|[µX • Action(X )]|Action =
class I_index implements CSProcess {

DeclLocalVars LocalVarEnv index L
public I_index(LocalVarsArg LocalVarEnv) {

InitLocalVars LocalVarEnv index L
}

public void run() {
RenameVars

|[Action((RunRecursion index 〈〉))]|Action

(SetFirst LocalVarEnv) index L
}

};
RunRecursion index 〈〉

An index is used in the name of the inner class in order to avoid name clashes in the case, for
example, where there are nested recursions or recursions in sequence. For example, the action
A =̂ (µ X • B(X )); (µ X • C (X )) defines two recursions in sequence; an inner class I_0 is
declared for the first recursion, and another inner class I_1 is declared for the second one.

Next, we exemplify the rule for recursive process with the translation for action GCD in our
example. Here, there are no local variables to copy in the inner class.

private void GCD() {

class I_0 implements CSProcess {

public I_0() {}
public void run() {

RenameVars |[ (if ...fi)(RunRecursion index 〈〉)]|Action

(SetFirst LocalVarEnv) index L
}

}
I_0 i_0_0 = new I_0();
i_0_0.run();

}

Circus if-commands are translated into Java if-then-else statements. A Circus if-command executes
any of the guards that is true. In our implementation, this non-determinism is removed: the first
guard that is true is chosen. If none of the guards is true, the action has an undefined behaviour,
which we implement as an infinite loop.
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Rule A.53 If-command

|[ if g1 → A1 2 . . . 2 gn → An fi ]|Action =
if((JExp g1)){

|[A1]|Action

} else if ( . . . ) {
. . .

} else if((JExp gn)){
|[An]|Action

} else { while(true){} }

The rules for communications use the methods read and write of class GeneralChannel. As the
scope of an input variable in Circus is the action that follows the communication, we translate
an input communication by introducing a variable block to declare the input variable. A cast
converts the object transmitted in the channel into the appropriate type.

Rule A.32 Prefixing action – input

|[c?x → Action]|Action = { commType x = (commType)c.read(); |[Action ]|Action }

where commType = JType(last (snd (ChanTypeEnv c)))

Rule A.33 Prefixing action – output

|[c!e → Action]|Action = c.write(JExp e); |[Action]|Action

Action invocations are translated into method calls. Sequential compositions are translated into
Java sequential compositions. The basic action Skip uses the JCSP class with the same name.

Rule A.44 Action call

|[N ]|Action = N();

Rule A.46 Parametrised call

|[N (e1, . . . , en)]|Action = N((JExp e1), . . . ,(JExp en));

Rule A.38 Sequential composition

|[Action1; Action2]|Action = |[Action1 ]|Action ; |[Action2]|Action

Rule A.28 Skip

|[Skip]|Action = (new Skip()).run();
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Using Rule A.53 (If-command), Rule A.33 (Prefixing action – output), Rule A.44 (Action call),
Rule A.38 (Sequential composition) and Rule A.28 (Skip), we can complete the translation of
action GCD :

private void GCD() {
class I_0 implements CSProcess {

public I_0() {}
public void run() {

if ((b.getValue() == (new CircusNumber(0)).getValue())){
out.write(a);
(new Skip()).run();

} else if (b.getValue() != (new CircusNumber(0)).getValue()){
UpdateState();
I_0 i_0_0 = new I_0();
i_0_0.run();

} else{
while(true){}

};
}

}
I_0 i_0_0 = new I_0();
i_0_0.run();

}

In the body of the method run is the translation of the if-command. It first checks the value of
variable b; if it is zero, it outputs the value of the GCD and terminates; otherwise, it calls the
method UpdateState and makes the recursive call (a new instantiation and execution of the inner
class).

Figure 3.2 shows the complete code that results from the translation of process GCDEuclides1.
Lines 39-43 show the translation of the main action of process GCDEuclides1. This translation
applies Rule A.32 (Prefixing action input) twice, and then, Rule A.38 (Sequential composition),
Rule A.46 (Parametrised action call) and Rule A.44 (Action call), in this order.

The strategy defines rules for Stop, Chaos, external and internal choice of actions, action
parallelism, guarded actions and more. Some of these will be discussed in Chapter 5.
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public class GCDEuclides_1 implements CSProcess { (1)
private GeneralChannel in, out; (2)
public GCDEuclides_1(GeneralChannel in, GeneralChannel out) { (3)
this.in = in; this.out = out; (4)

} (5)
public void run () { (6)
(new CSProcess() { (7)

private CircusNumber a, b; (8)
private void InitState(CircusNumber x, CircusNumber y) { (9)

a = x; b = y; (10)
} (11)
private void UpdateState() { (12)

CircusNumber aux_a = b; (13)
CircusNumber aux_b = a.mod(b); (14)
a = aux_a; b = aux_b; (15)

} (16)
private void GCD() { (17)

class I_0 implements CSProcess { (18)
public I_0() {} (19)
public void run() { (20)

if ((b.getValue() == (21)
(new CircusNumber(0)).getValue())) { (22)

out.write(a); (23)
(new Skip()).run(); (24)

} else if (b.getValue() != (25)
(new CircusNumber(0)).getValue()) { (26)

UpdateState(); (27)
I_0 i_0_0 = new I_0(); (28)
i_0_0.run(); (29)

} else { (30)
while(true){} (31)

}; (32)
} (33)

} (34)
I_0 i_0_0 = new I_0(); (35)
i_0_0.run(); (36)

} (37)
public void run() { (38)

{ CircusNumber x = (CircusNumber) in.read(); (39)
{ CircusNumber y = (CircusNumber) in.read(); (40)

InitState(x, y); (41)
GCD(); (42)

} } (43)
} (44)

}).run(); (45)
} (46)

} (47)

Figure 3.2: Translation of process GCDEuclides1
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3.3 Compound processes

The rules for compound processes define the function |[ ]|Proc , which returns a Java command that
invokes the execution of the method run of objects of the class CSProcess. We have already seen
one example of a rule that defines the result of this function for a basic process (Rule A.6). The
rules for compound processes are mostly similar to the corresponding ones for compound actions.
Figure 3.3 shows the result of the translation of the process SumOrGCD (without package and
import declarations). This translation applies Rule A.1 (Normal process declaration), Rule A.3
(Non-parametrised process definition), Rule A.15 (Hiding) and Rule A.18 (Process parallelism),
in this order.

In SumOrGCD , channels in and out are hidden, so they are initialised in the constructor. The
object chInfo_in is an object of class ChannelInfo that is taken as argument by the constructor
of GeneralChannel. Its motivation will be explained in subsequent sections and chapters. For the
moment, let us only say that the constructor of GeneralChannel takes a new Any2OneChannel,
the ChannelInfo and the name of the process where it is being initialised.

The parallelism is translated with the class Parallel of JCSP, which takes an array of
CSProcesses. In our example, they are the translation of the calls to GCDEuclides1 and GCDClient .

The rule for translation of a process call is similar to the one for an action call. However, the
rule for process call needs to pass as parameters the channels that the process requires. In our
implementation, we construct new GeneralChannels from the current one, changing one attribute
which is the name of the process.

All the rules for compound processes are in Appendix A (Rules A.16 to A.22). Some of them
will be further discussed in Chapter 5.

3.4 Free types and axiomatic definitions

Z allows the user to define types used within a program with the constructs for given type and
free types. Given types define the name of a type between brackets; for example, [NAME ] defines
a basic type called NAME , but does not determine any element of this type. Free types, on the
other hand, declare, at the same time, the type and its elements. For instance, the definition
PrimaryColours ::= blue | red | yellow , declares a type called PrimaryColours and its three
elements; a variable of type PrimaryColours can only hold one of those three values that the
definition introduces.

Given types are not considered in our translation strategy, because they do not define compo-
nents. Therefore, a specification to be translated must not define given types. Free types yield
Java classes that represent types. They generate a part of the package proj.typing. All class
types extends from an abstract class Type. This class contains: an integer attribute value, which
stores the number that represents an element within the type; and public integer constants for
each type in the system. The constants for types, and the attributes for values are used in the
translation of generic channels and channels with multiple fields. These are translated as an array
of GeneralChannels, and the integer values are used as indexes of the array. The translation is
explained in Section 3.7.

Axiomatic definitions are Z paragraphs that define constants. They contain a declarative
part that introduces one or more constants, and a predicative part that defines an invariant, a
constraint on the declared constants. For instance, the following axiomatic definition

a, b : N

a > b
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public class SumOrGCD implements CSProcess {
private GeneralChannel gcd, read, sum, write, in, out;
public SumOrGCD(GeneralChannel gcd, GeneralChannel read,

GeneralChannel sum, GeneralChannel write) {
// Visible channels
this.gcd = gcd;
this.read = read;
this.sum = sum;
this.write = write;

// Hidden channels
ChannelInfo chInfo_in = new ChannelInfo();
chInfo_in.put("GCDClient", new Integer(0));
chInfo_in.put("GCDEuclides_1", new Integer(1));
this.in = new GeneralChannel(new Any2OneChannel(), chInfo_in, "SumOrGCD");

ChannelInfo chInfo_out = new ChannelInfo();
chInfo_out.put("GCDClient", new Integer(0));
chInfo_out.put("GCDEuclides_1", new Integer(1));
this.out = new GeneralChannel(new Any2OneChannel(), chInfo_out, "SumOrGCD");

}
public void run(){

new Parallel(new CSProcess[] {
new GCDClient(new GeneralChannel(gcd, "GCDClient"),

new GeneralChannel(in, "GCDClient"),
new GeneralChannel(out, "GCDClient"),
new GeneralChannel(read, "GCDClient"),
new GeneralChannel(sum, "GCDClient"),
new GeneralChannel(write, "GCDClient")

),
new GCD(new GeneralChannel(in, "GCDEuclides_1"),

new GeneralChannel(out, "GCDEuclides_1")
)

}).run();
}

}

Figure 3.3: Translation of SumOrGCD

declares two constants a and b, of natural type, and states that a is always greater than b. This
is the only constraint, and their values are not defined.

In Circus, axiomatic definitions can occur in global scope or as a process paragraph. In any case,
we restrict the formats of axiomatic definitions dealt by the translation strategy to those that define
only one constant, and define its value in an equality in the predicate part. The axiomatic defini-
tions in global scope are translated as public static methods in class AxiomaticDefinitions
in package proj.axiomaticDefinitions, so any part of the program has access to them. The
modifier static for attributes in Java states that the attribute is a class attribute, instead of an
instance attribute. This means that it can be accessed directly from the name of the class, and
it is not necessary to instantiate a class to have access to it. Rule A.57 defines the translation of
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global axiomatic definitions.

Rule A.57 Global axiomatic definition

|[v : T | v = e1 AxDefs]|AxDefs =
public static (JType T ) v() { return (JExp e1); }

|[AxDefs]|AxDefs

Axiomatic definitions in the level of process paragraphs are not visible outside the basic process;
therefore, they are translated as a private method in the process class. The translation rule is
similar to the previous one. The only difference is that the methods are declared as private
instead of public static.

3.5 Circus programs

The function |[ ]|Program summarises the translation strategy. It receives a whole Circus program
and the project name, and creates: the classes for types; the class AxiomaticDefinitions; and
the classes for each of the process declarations.

Rule A.58 Circus program

|[FreeTypes AxDefs ChanDecls ProcDecls ]|Program proj =
DeclareTypeClass (FreeTypes AxDefs ChanDecls ProcDecls) proj
|[FreeTypes ]|FreeTypes proj
DeclareAxDefClass proj AxDefs
|[ProcDecls ]|ProcDecls proj

The function DeclareTypeClass creates the class Type, a superclass for all the types in the
specification. The function |[ ]|FreeTypes creates the classes for the free types. The function
DeclareAxDefClass creates the class for the global axiomatic definitions. And finally, |[ ]|ProcDecls ,
as previously discussed, translates each process declaration.

To compile the project, some additional components are required (for example, the class
RandomGenerator, used in the translation of the internal choice operation). These components
are added as a utility library to the generated project. This utility library is called JCircusUtil .

In the next sections we explain the implementation of the multi-synchronisation protocol and
the translation of specific types of channels.

3.6 Multi-synchronisation

Multi-synchronisation is implemented using a centralised solution. Suppose we have a set of
processes P1, . . . ,Pn , which synchronise on a channel c. The multi-synchronisation is managed
by another process, the controller, which handles the requests for multi-synchronisation made by
each process Pi . The controller communicates with the processes via simple synchronisations.

There are two main components in the multi-synchronisation protocol. The controller is an
instance of the class MultiSyncControl which implements CSProcess. There must be one con-
troller for each channel involved in multi-synchronisation. This process runs in parallel with the
other processes in the network. Each time a process Pi wants to engage in a multi-synchronisation,
it must instantiate and execute an object of the class MultiSyncClient.
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In Figure 3.4 (taken from [29]), we illustrate an architecture using these components where two
channels (c1 and c2) and four processes (P0, P1, P2 and P3) are involved in multi-synchronisation.
We have one instance of MultiSyncControl for each channel, and each process instantiates its
own MultiSyncClient. The controllers use arrays of channels from (from c1 or from c2) to
communicate with each of their clients. They are represented by double lines at either side of the
picture. The clients share the channels to (to c1 or to c2) to communicate with their controller.
The channels to are not multi-synchronised, since the controllers communicate with one client at
a time.

The three top-most clients synchronise on c1, controlled by the right controller, and the three
bottom clients synchronise on c2, controlled by the left controller. Each of the clients has a
different identification regarding each of the controllers. For instance, P1 is identified as client 0
on the left, and as client 1 on the right. If a value is being passed on the channel, there must be
one writer only, and this has to be the client with identification number zero.

MultiSyncControl2

1 MultiSyncClient2 2

MultiSyncClient0 0

0 MultiSyncClient1 1

2 MultiSyncClient3

from_c2[0]
MultiSyncControl1

to_c1

from_c2[1]

from_c2[2]

from_c1[0]

from_c1[1]

from_c1[2]
to_c2

Figure 3.4: Multi-synchronisation components

The environment MultiSyncEnv : N 7→ (N 7½ N), mentioned before, returns a function for
every name of channel involved in a multi-synchronisation. This function maps the name of every
process involved in the multi-synchronisation into its identification number regarding that multi-
synchronisation. In our example, the function returned for the channel c1 is {P0 7→ 0,P1 7→ 1,P2 7→ 2};
the function for channel c2 is {P1 7→ 0,P2 7→ 1,P3 7→ 2}.

Every channel is instantiated within the process that hides it; otherwise, it is received and
initialised in the constructor. The controller for a channel c is initialised in the same class where
c is initialised. The constructor of class MultiSyncControl takes the array of channels from and
the channel to. The number of clients, which determines the size of the array from, is retrieved
from the environment; it is the cardinality of the function for the channel: #(MultiSyncEnv c).
In our example, it is 3 for both c1 and c2.

Any2OneChannel[] from_c_1 = Any2OneChannel.create(3);
Any2OneChannel to_c_1 = new Any2OneChannel();
MultiSyncControl c_1 = new MultiSyncControl(from_c_1, to_c_1);

The instantiation of the clients requires more information. An array of objects sync is initialised
with: the channel from that the controller uses to communicate with this client; the channel to
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that the client uses to communicate with the controller; and the identification of the process in this
multi-synchronisation. In our example, in the translation of process P0, we create the following
synchronisation object for channel c1.

Object[] sync = new Object[]{from_c[0], to_c, 0};

The multi-synchronisation object is added to a Vector

Vector seqOfSync = new Vector();
seqOfSync.addElement(sync);

and this vector is passed as argument to the constructor of the client.

MultiSyncClient client =
new MultiSyncClient(seqOfSync, seqOfNotSync, v);

client.run();

The object seqOfNotSync is a Vector of Any2OneChannel and it is used when the multi-synchronisa-
tion takes part in an external choice. The implementation supports choice between multi-synchroni-
sations and simple synchronisations. In this case, there will be one client for the whole exter-
nal choice: the synchronisation objects for the multi-synchronised channels are added to vector
seqOfSync and the channels that are not multi-synchronised are added to vector seqOfNotSync.
When a multi-synchronisation does not occur in an external choice, the constructor receives an
empty vector in place of seqOfSync.

The last argument v is the value communicated through the channel. In the case where the
channel does not take part in an external choice, if this client is the writer, this is the value that
will be communicated to the readers once the synchronisation happens. If this process is not the
writer, then this argument is null. In the case of an external choice, this element is always null; as
explained before, output communications cannot take part in external choices. It is possible to
retrieve the value passed in the multi-synchronisation with the method getValueTrans.

The initialisation and execution of the client should occur in the moment where the process
wants to engage in the multi-synchronisation, that is, when a process wants to read or write on
a channel. In our implementation, the instantiation of the client is encapsulated in the methods
read and write of GeneralChannel. In the case where the multi-synchronisation happens as part
of an external choice, then there is an explicit instantiation of the client.

The controller is implemented using an infinite loop; after completing a cycle for a multi-
synchronisation, it goes back to the beginning, and waits for the next request. As a parallelism
only terminates when all the parallel process terminates, if we had a simple parallelism between
the process and the controller, then we would never reach termination. To solve this problem,
the implementation makes use of two other components: the ProcessManagerMultiSync and the
ControllersManager. These two processes run in parallel, and a channel endManager is used by
the ProcessManagerMultiSync to signal to the ControllersManager that the process body has
terminated. Then the ControllersManager stops the execution of every controller it is responsible
for. The ControllersManager makes use of the class ProcessManager from the JCSP library to
achieve this implementation.

This behaviour is captured by the function ProcessCall . It takes a process definition and checks
if it takes part in a multi-synchronisation (that is, (ranHidChanEnv ∩ domMultiSyncEnv) 6= ∅.
If it does not, a simple translation of the process is enough; otherwise, it is necessary to call the
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rules for translation of the components discussed above.

ProcessCall : ProcDef 7→ seq N 7→ (N 7→ (N 7→ N)) 7→ JCode
ProcessCall Proc ι ω =

if (ran ι ∩ domω) 6= ∅ then
let (ran ι ∩ dom ω) = {c1, ..., cn} in

Any2OneChannel endManager = new Any2OneChannel();
InitChanInfoMS (fst ω) P
|[ProcessManagerMultiSync(Proc) ||
 ControllersManager




MultiSyncControl(from c1, to c1)
|| ...
|| MultiSyncControl(from cn , to cn)





]|Proc

else |[Proc]|Proc

This function is used in the translation rules for parametrised and non-parametrised process
definitions.

The class GeneralChannel

The class GeneralChannel was conceived to generalise and simplify the translation rules. In
the original translation strategy, a channel that took part only in simple synchronisations was
translated as a simple Any2OneChannel. Multi-synchronised channels, as explained before, are
implemented with a pair of channels to and from, for communication with the controller. Several
rules for declaration, instantiation and use of channels had different versions for the multi and
simple synchronised cases.

In our strategy we decided to unify these rules: we define a class GeneralChannel that can
represent both a multi-synchronised and a simple synchronised channel. It encapsulates the data
and algorithms necessary for both cases. The set up is done in the constructor. The use of this
class also makes simpler to determine if a synchronization channel will be used as a reader or a
writer.

The class GeneralChannel defines constants SIMPLE and MULTI that determine if the chan-
nel is used in simple or multi-synchronisation, and READ and WRITE , that states if it is for
reading or writing. Besides, it defines the following attributes:

• private Any2OneChannel[] from. The array from of the multi-synchronisation strategy.
It is used only if the channel is multi-synchronised.

• private Any2OneChannel to. The channel to of the multi-synchronisation strategy. It is
used as a regular channel in the simple synchronised case.

• private String procName. The name of the process that uses this instance of the channel.

• private ChanInfo chanInfo. A table that maps the name of the each process that uses
the channel to an integer. In the simple synchronised case, the integer is zero if the channel
is a writer, and 1 if it is a reader. In the multi-synchronised case, this is the identification
of the process regarding the multi-synchronisation, that is, it represents the environment
MultiSyncEnv .

• private int rw. This attribute determines if this instance is a reader or a writer.

• private int sm. This attribute determines if this channel is simple or multi-synchronised.
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The class constructor takes the array from, the single channel to, the chanInfo and the name
of the process. If the array is not null, then the channel is multi-synchronised and the attribute
sm is set up with the constant MULTI; otherwise, it is assigned the value SIMPLE. It takes from the
table chanInfo if the instance is a reader or a writer; recall that in the multi-synchronised case,
the writer always has identification zero.

/**
* Constructor for multi-synchronisation.
*/

public GeneralChannel (Any2OneChannel to, Any2OneChannel[] from,
ChanInfo chanInfo, String procName) {

...
}

/**
* Constructor for single-synchronisation.
*/

public GeneralChannel (Any2OneChannel[] from,
ChanInfo chanInfo, String procName) {

...
}

The class also defines a constructor that builds a GeneralChannel from another one, changing
only the procName attribute. This constructor is used in a call to a process so the status of
reader or writer of the new instance can be changed accordingly. The new instance preserves the
references to channels to and from.

/**
* Constructs a channel from another one, changing only the
* process id.
*/

public GeneralChannel (GeneralChannel gc, String newProcName) {
gc.getTo(), gc.getFrom(), gc.getChanInfo(), newProcName);

}

Figure 3.5 shows the code for reading from a GeneralChannel. It tests the attribute ms to
check if the channel is simple synchronised. If it is, it just calls the read method from channel
to; otherwise, it executes the code for the multi-synchronised case. The code for write follows
the same idea.

Figure 3.6 shows the method synchronise, which is called by synchronisation channels. It calls
either read or write, depending on if this instance is a reader or a writer. The classes described
in this section, namely, the class GeneralChannel and the classes for the multi-synchronisation
protocol, are part of the utility library, JCircusUtil , which is provided with JCircus [16].

3.7 Generic channels and synchronisation on product val-
ues

Circus permits the declaration of channels that communicate or synchronise on tuples of values, in
the same style as CSP. These types of channels are declared using the cartesian product operator.
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public Object read() {
Object r;
if (this.ms == SINGLESYNC) {

r = this.toController.read();
} else {

Vector seqOfSync = new Vector();
Object[] sync = new Object[] {

this.fromControler[this.procIdMS],
this.toController,
new Integer(this.procIdMS),
new Integer(GeneralChannel.WRITER_ID)};

seqOfSync.addElement(sync);
MultiSyncClient client = new MultiSyncClient(

seqOfSync, new Vector(), null);
client.run();
r = client.getValueTrans();

}
return r;

}

Figure 3.5: Implementation of method read

Let us take as an example the following channel.

channel c : Colour × Colour × Colour

Channel c communicates tuples with three components, each of a free type Colour ; we say that
c contains three fields. Some examples of possible uses of this channel are: c.blue.red .green,
c.red .blue?x and c.red?x !green.

In our strategy, for simplification, we consider that such types of channels can contain at most
one communication (? or !) field, and it must be the last one. Therefore, the communications
c.blue.red .green and c.red .blue?x are valid, whereas c.red?x !green is not. They are translated as
arrays of GeneralChannels where each synchronisation field .exp, that is, each field that is not a
communication field, is implemented as an additional dimension. Each value within the field type
is represented by a position in this dimension.

Arrays are also used to translate generic channels. A generic channel communicates or syn-
chronises on a value whose type is only determined at the moment of the use of the channel. For
instance, the following declaration is taken from the case study of a Fire Control System in [32]:

channel [T ]switchLamp : T × OnOff

This channel is used to switch lamps on or off. The channel fields are the identifier of the lamp and
a value of type OnOff ::= On | Off . A lamp can be of two types: area lamps, that are switched
on when a fire is in an area, or fault lamps, used to indicate the occurrence of a problem in the
system. To switch on the lamp that indicates that a fire has been detected in area 0, one must
execute the communication [AreaId ]switchLamp.A0.On, where A0 is an element of the free type
AreaId that is used to instantiate the generic type.

Each generic type also adds a dimension to the array of channels. So, the above example
is translated as switchLamp[Type.AreaId][AreaId.A0][OnOff.On].synchronise(). The first
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public Object synchronise(Object x) {
Object r = null;
if (this.rw == GeneralChannel.READ)

r = this.read();
else

this.write(x);
return r;

}

Figure 3.6: Implementation of method synchronise

dimension is the instantiation of the generic type, and the second and third dimensions determines
the synchronisation values. The indexes of the arrays are determined by constants defined in the
Type class, and in the classes for each free type. From this strategy for implementation arises
the restriction that only finite types can be used for fields and instantiation of generic channels;
infinite types, such as A, would lead to infinite arrays.

Another requirement is that a channel cannot be used as a communication channel and as a syn-
chronisation channel in the same process. For instance, the following uses of channel switchLamp
are not permitted within the same process:

[AreaId ]switchLamp.A0.On → . . . (a)

[AreaId ]switchLamp.A0!On → . . . (b)

The first use would generate an array with three dimensions, whereas the second would generate an
array with two dimensions, because the last field is a communication, and not a synchronisation.
The environment SyncCommEnv records, for each process, if a channel is used for communication
or only for synchronisation.

3.8 Final considerations

The translation strategy introduced in this chapter is different from the original one, presented
in [29]. The original translation strategy is presented in a didactic way: first, it presents rules for
translation of programs that do not deal with multi-synchronisation and generic channels; then,
the strategy is extended to handle these features, with the definition of new versions of rules for
declaration and use of channels.

In the original strategy, a simple synchronised channel was implemented by the JCSP class
Any2OneChannel. The implementation of multi-synchronised channels did not follow the principle
of cohesion. Instead of being modeled as a single class, a multi-synchronised channel was rep-
resented with a pair of objects: an array of Any2OneChannels, and one Any2OneChannel. This
brought problems to define arrays of channels in the implementation of the kinds of channels de-
scribed in Section 3.7. Because of that, the original strategy did not support the implementation
of generic multi-synchronised channels or multi-synchronised channels on product values.

In our new proposal for the strategy, we came up with the class GeneralChannel, which
can represent a simple or multi-synchronised channel. This design brought some advantages:
it was possible to unify the different versions of the rules for channels; the treatment of multi-
synchronisation was simplified, because the complexities of the protocol are encapsulated in the
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methods of GeneralChannel; and it was possible to implement multi-synchronised channels of the
kind described in Section 3.7, because arrays of channels are now arrays of GeneralChannels.

The translation strategy as presented in this thesis is the one implemented by JCircus; it is
part of the documentation of the tool. The complete strategy can be found in Appendix A. In
Chapter 5, we present a detailed comparison between the new translation strategy presented here,
and the original strategy described in [29]. In the next chapter, we present JCircus.



Chapter 4

JCircus

This chapter describes JCircus, the translator to Java that we implemented. JCircus receives as
input a Circus specification written in LATEX. It parses and typechecks the specification; if no
errors are found, then it applies the translation strategy described in the last chapter, generating
a Java program that implements the specification.

The Circus parser [7] and the Circus typechecker [45] were contributions from colleagues from
the Circus group. The main contribution of the work described in this thesis is the module that
performs the translation to Java. JCircus was implemented using the CZT [1] framework, and
runs under Microsoft Windows.

The project was documented in the Unified Modeling Language (UML), version 1.3 [8]. In
Section 4.1, we present a report on the requirement analysis – the requirements of the tool,
illustrated with Use Case Diagrams, and the requirements on input specifications. Section 4.2
discusses design and implementation issues. Section 4.3 shows how to use JCircus, with an example
of translation. Section 4.4 presents the test strategy that we followed to test JCircus.

4.1 Requirements

JCircus is a tool with simple functionality: its goal is to generate a Java program that imple-
ments a Circus specification. Basically, interaction with the user is required only for entering the
input specification and the parameters for the translation. Error messages are also shown, when
necessary.

Not any Circus program is possible to be translated. The programs must comply to a number
of pre-requisites that are justified by the restrictions on the JCSP library, and on the solutions
found to implement some features like multi-synchronisation, for instance.

In what follows, we specify the interaction with the user and list and comment on the restric-
tions on input programs.

4.1.1 Requirements of the tool

JCircus should provide a friendly interface with the user. We present the operation of the tool in
the use case in Figure 4.1. The use case diagram is a figure that represents the functionalities of the
system. In the diagram, actors are represented by stick figures and the use cases are represented
by ovals. In our system, the actor is the user, who can ask to translate a Circus program.

A Circus specification can contain several process definitions. The user is required to determine
for which of these he or she wants a main class to be defined. For the chosen processes, the system

33
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User

Translate

Use case diagram

Use Case: Translate
1. The user enters the path of input specification, the project name and the output directory.
2. The system checks if the input specification is well-formed, well-typed and meets the requirements.
3. If there is some problem, the system gives an error message explaining the problem.
4. If not, the system asks for which process definitions the user wants to create a main class.
5. For each process entered by the user, the system checks if it requires parameters. If it does, the user
is asked to enter their values.
6. The system parses and typechecks the values entered. If some problem is found, an error message is
given.
7. If no problem is found, the program is translated and the files are created in the output directory.

Figure 4.1: Use case diagram and description

creates a class called Main_<Proc> (where <Proc> is the process name), and a simple graphical
interface, which will be used to run the program that results from the translation. The graphical
interface is not formalised by the translation rules and was an additional functionality that we
implemented; it will be presented in Section 4.3.

A process definition can introduce a non-parametrised process, like the ones in the GCD
example, or a process that takes parameters. If a parametrised process is chosen as a main
process (Rule A.3), the user needs to determine the actual values that he or she wants to pass to
the parameters. These will be passed in the constructor of the class that implements the process,
which is called in the class Main_<Proc>. Like the input specification, the parameters are also
entered as a LATEX string.

The output of the translation is Java code composed of several files and allocated in pack-
ages; these will form a Java project. The user must determine a name for the project <proj>,
and the output directory where it is to be created <dir>. If not already existent, a folder
<dir>\<proj>\src\<proj> will be created; and inside this folder, the project folders
axiomaticDefinitions, gui, processes and typing will be created and they will contain the
source code for the project.

The requirements of the translator are captured by the laws of the translation strategy, which
were discussed in the previous chapter. They are all presented in Appendix A.

To run the project, the user needs to have a Java compiler and a Java Virtual Machine installed
in the computer. The system generates a batch (.bat) file for each process definition that have a
main class. The batch file compiles the project and executes the main class using JDK (version
1.3 and above) [2]. Alternatively, the user can use a IDE for Java like Eclipse or Netbeans,
to create a project importing the source files. To compile and run the project, some auxiliary
classes are necessary, for instance, the class GeneralChannel and the classes for implementation
of the multi-synchronisation protocol; they are all grouped in the file CircusUtil.jar1 , and are

1The Java Archive (.jar) is a file format that makes it possible to bundle multiple files into a single archive file.
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Use case diagram

User

Run using JDK

Use Case: Run class Main_<Proc>

1. Execute the .bat file run_Main_<Proc>.bat located in <dir>\<proj>\src, passing as argument the
path of JCircusUtil.jar.

Figure 4.2: Use case diagram

provided with JCircus [16]. Figure 4.2 depicts the use case diagram for running a process using
the JDK platform.

4.1.2 Requirements on input specifications

Only concrete Circus programs can be translated. As said before, a concrete Circus program is
a program that does not use schemas and specification statements in action definitions, and all
guards are conditions. An abstract specification must be refined prior to the application of the
translation strategy. Other restrictions are syntactic and can be enforced by a pre-processing of
the input; they are listed below.

• The only types supported are free types and A.
The type A is a given type defined in the prelude section of Z and represents a general
number type. Naturals and integers have type A in the Z/Circus type system. Free types
are types defined by the writer of the specification and is also a basic type in the Z/Circus
type system.

A restricted set of operators can be used to build compound types, for example, types that
represent sets of sets, cartesian products and schemas. The representation of such kinds of
types is not trivial and for that, we have decided to handle only the basic types. A more
detailed discussion about the implementation of types is presented in Chapter 5.

• Z paragraphs are axiomatic definitions of the form v : T | v = e, free types, or schemas of
the form [x11, . . . , x1n : T1; . . . ; xn1, . . . , xnn : Tn | inv ] used only to define the state of a
basic process.
The translation of such constructs has been commented in Chapter 2. The predicate part
inv in the schema is ignored since it has already been considered in the refinement process.

• A variable name cannot be redeclared in a nested variable block.
Variable blocks in Circus are translated as variable blocks in Java. Differently from Circus,
Java does not allow redeclaration of variables in inner scopes. Thus, the translation of
Circus programs with redeclaration of variables would result in a Java program that does
not compile. Other scope rules, for instance, for method parameters and state elements are
compatible between Circus and the Java translation.
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• Hiding of channels appears only as the last operator applied to a process in a process defini-
tion.
This requirement is justified by the way in which hidden channels are instantiated. Hid-
den channels are initialised in the constructor of the process in which they are hidden.
This means that they are visible in any sub-process or action inside this process definition.
Therefore, if a channel were hidden in a sub-process or action the implementation would be
inaccurate, because it would not be actually hidden from the other actions and processes.

• Only prefixing actions, guarded or not, can be branches of an external choice.
The Circus external choice operator is implemented with the Alternative class of JCSP.
Its constructor takes the list of channels that take part in the choice. In order to make easy
the identification of the initial channels of a choice, we restrict the format of actions in an
external choice to be only prefixing actions, guarded or not.

• The communication in the prefixing action in an external choice cannot be an output com-
munication.
This restriction follows a limitation of JCSP. All channels that take part in the Alternative
must be an instance of the abstract class AltingChannelInput, which is an input channel.

• The synchronisation sets in any parallel composition are the intersection of the sets of chan-
nels used by the parallel actions or processes. Interleaved actions or processes must not have
any channel in common.
The JCSP parallel construct does not allow the definition of a synchronisation channel
set; processes will synchronise on all channels that are common to the parallel processes or
actions. For this reason, the intersection of the alphabets determines this set: if it is not
empty, we have a parallelism; otherwise, we have actually an interleaving.

• Only free types can be used to define types of synchronisation fields in channels and to
instantiate generic channels.
This requirement arises from the implementation of these types of channels, which uses
arrays of GeneralChannels. The use of the infinite type A would result in infinite arrays.

• Only free types are used as the indexing set of iterated operators.
The reason is similar to the one for the previous requirement. The use of the infinite type
A would lead to an infinite indexed set.

• A multi-synchronisation must not define more than one writer.
The multi-synchronisation protocol requires that each process have an identification number
regarding each of the multi-synchronisations on which it takes part and the writer must be
the process with identification zero.

• Multi-synchronisations on a channel must always involve the same processes.
As explained in the previous chapter, there is one controller for each multi-synchronised
channel. The array of channels from is used for communication between the controller and
the processes that want to engage in multi-synchronisation. This array is set up in the
constructor of the controller, and cannot be modified afterwards. Therefore, the controller
always interacts with the same process.

• Communications that contains multiple fields can contain only one input or output field, and
it must appear in the last position.
This is for simplicity of implementation. As discussed in the previous section, these types of
channels are implemented using arrays. The values of the synchronisation fields are positions
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in the array. The last field is the value actually communicated, if it is an input or output
field.

Some of these requirements are not serious restrictions because they can be achieved with refac-
toring. This is the case of the requirements about the redeclaration of variables and the hiding
operator. Variables can be renamed, and new processes can be defined to substitute a process
with hidden channels in a compound process.

Other requirements impose restrictions on syntactic constructs that are more often and cannot
be easily avoided. The support for more types in the specification, the flexibility in formats of
actions that participate in external choices, and the possibility of defining the synchronisation sets
in a parallelism are some examples of features that we would like to implement. Investigations on
how this could be done are interesting pieces of future work.

4.2 Design and implementation

JCircus was implemented in Java, and was constructed using the CZT framework [1, 25], which is
an open-source Java framework for the ISO Standard Z [33] and its extensions. The framework
provides, among other things, a Java library for abstract syntax trees, basic tools like parsers, type
checkers and printers, and an interchange format, base on XML, for representing specifications.
We have chosen CZT to use as a basis for our tool because of the quality of its design and the
resources that it offers, which facilitate code reuse and maintenance.

In Section 4.2.1, we describe the object representation for a Circus specification within the
framework. This is the heart of the system, since all operations carried out in the specification
(namely, parsing, typechecking and translation) involve the manipulation of this representation.
Section 4.2.2 presents an overview of the JCircus’ architecture, with the modules that compose
the software. In Section 4.2.3, it is shown how the environments from the translation strategy
are implemented in JCircus. The last section gives more details about the translator module of
JCircus.

4.2.1 The Circus AST

AST is an acronym for Abstract Syntactic Tree; this is an object representation of a parsed
Circus specification. The CZT framework defines interfaces and default implementations for the
elements of an AST; it has recently been extended to include classes and interfaces for a Circus
AST. For instance, a Circus action definition is represented by the interface ActionPara; the
default implementation provided within the framework is ActionParaImpl, which defines two
attributes: the name of the action (DeclName) and the Circus action (CircusAction).

Figure 4.3 shows part of the inheritance hierarchy of the Circus AST. All nodes extend a
common interface TermA - a node to which a list of annotations can be added. An annotation can
be any kind of Java object, and it contains relevant information about that node. Typical examples
of annotations are LocAnn, which registers the line and column where the construct appears in the
source file; and TypeAnn, added by the type checker to all expressions of a well-typed specification.

The inheritance hierarchy of the Java interfaces have some correspondence with the structure
of the Circus syntax. For instance, the Para interface represents a paragraph of any kind. The
interfaces AxPara, ProcessPara and ActionPara extend Para; they represent axiomatic defini-
tions, processes declarations and action definitions, respectively, which are all paragraphs. The
leafs are concrete classes that can be instantiated, while the inner nodes are abstract classes.

The use of an AST allows easy access to syntactical constructs from within the Java program.
The attributes can be accessed using the getter methods defined in the interfaces. It is also
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PrefixingAction

GuardedAction
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ActionD
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SeqAction

ParAction

BasicAction

SkipAction

StopAction

ChaosAction
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ParallelAction

AlphaParAction

ParamAction

ActionIte

Figure 4.3: Circus AST inheritance hierarchy

possible to access the tree in a systematic way using the implementation of the CZT visitor design
pattern [25], which is a variant of the visitor design pattern proposed by Gamma et al [20].

The CZT visitor design pattern

The visitor design pattern [20] is a design solution that provides a way to separate an algorithm
from an object structure. The result of this separation is the ability to add new operations to
existing object structures without modifying those structures.

In the standard version of this pattern [20], this is accomplished with a double dispatching
mechanism. An interface, the Visitor, defines visit methods for each class of object that is
to be visited. The classes, in turn, must provide an accept(Visitor v) method, which calls
back the correct visit method for its class. The disadvantage of this approach is that it makes
it difficult to extend the set of classes to be visited (in our case, the AST classes), because each
new class requires the definition of a new method in the Visitor interface, which in turn requires
modification in all its implementations. Another disadvantage is that all visitors are required to
implement a method for each class, even the ones that are irrelevant for the operation that the
visitor performs.

The CZT visitor design pattern [25] is a combination of two variations of the standard visitor
pattern: the acyclic visitor pattern [26] and the default visitor pattern [23], and incorporates
their advantages. The acyclic visitor pattern allows that new AST classes can be added without
changing the existing visitor classes, which means that a visiting operation does not have to be
defined to all AST classes. The default visitor design pattern takes advantage of the inheritance
relationships to make possible the implementation of default behaviour for nodes that have a
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common superclass. We will show how these characteristics facilitate the implementation of the
two visitors implemented in our tool.

4.2.2 JCircus architecture

JCircus is composed of three main modules. The first is a parser, which receives a LATEX file
containing the specification, parses it, and creates the AST that represents the specification. The
AST is given as input to the type checker, which performs type inference, checks for type errors,
and annotates the AST nodes for expressions with their types. Figure 4.4 shows the modules of
JCircus. The Circus parser [7] and Circus type checker [45] are contributions of colleagues in the
Circus group, and the Circus AST is part of the CZT project. The Translator module is the main
contribution of this thesis. The JCircusGui component is also new to this thesis, but will not be
detailed here, as it is just a graphical interface for the tool.

<< component >>

Circus AST

<< component >>

Circus Parser

<< component >>

Circus Type Checker

<< component >>

JCircusGUI

<< component >>

Translator

Translator2Java

EnvLoadingVisitor TranslatorVisitor

Environment

JCircus

JCircus

Figure 4.4: JCircus architecture

The annotated syntax tree is input to the translator module. The translator module executes
the translation in two phases: the first is a pre-processing of the AST tree, and the second is the
generation of Java code. After that, it creates the source files for the project.

In the pre-processing phase, JCircus loads environments containing information about channels
and types, and the AST is annotated with relevant information to be used in the second phase of
the translation. The environments correspond to the environments introduced in Chapter 2, but
some adaptations were necessary on the way the data is represented. These adaptations will be
explained in the next section.

In the second phase, the translation rules are applied to generate the Java code. This phase
of the translation uses the information on environments and the annotations on the AST. Both
operations (pre-processing and translation) are implemented using the CZT visitor design pattern.
In the following sections, we explain details of these operations.
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Class Diagram − Environments

Environment

ProcChanEnv

ChannelEnv

ScopeStack

ProcChanUseEnv

ChanInfoEnv

ChanUseEnv ChanSyncEnv

NameTypeEnv

ChanUse ChanSync

NameType

TypeList

Figure 4.5: Class diagram for environments

4.2.3 Environments

In our implementation of the translation strategy, not all the environments defined in the speci-
fication of the strategy needed to have an explicit corresponding component in the design. The
environment ChanTypeEnv , which maps channel names to their Circus type was not necessary,
because the type checker annotates the AST nodes for expressions and channels with their types.
Therefore, to find out the type of a channel, we can simply get the annotation in the node.
Figure 4.5 presents a class diagram for the environment-related classes.

The environments VisChanEnv and HidChanEnv , which hold a sequence of visible and hid-
den channels of a process, are implemented by instances of the class ChanUseEnv. The environ-
ment SyncCommEnv , which maps each channel name into S or C , is implemented by the class
ChannelSyncEnv. It maps the channel name to an enumerated type ChanSync, which can assume
the values S or C. An element is added to this environment in the visit of a communication; an
auxiliary function is called to find out the type of the channel regarding synchronisation. For
example, the instance of the environment ChannelSyncEnv the process GCDEuclides1, contains
the following mapping: in 7→ C , out 7→ C , because both are communication channels, that is, they
contain an input or output field.

Information about how channels are used within the sub-processes of a compound process is
registered in ChanInfoEnv. In the strategy, this class corresponds to environments ReadWriteEnv
and MultiSyncEnv ; both are used to initialise the component ChanInfo (see the definition of
functions InitChanInfoMS and InitChanInfoSS in Rule A.3). The environment ChanInfoEnv
maps a channel name into an instance of ProcChanUseEnv, which, in turn, maps a process name
into an object of type ChanUse (Input, Output or Undefined).
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When a channel is multi-synchronised, the ChanUse of the channel in each parallel process is
used to determine its multi-synchronisation identification number. The following example shows
how this is done.

process A =̂ begin • ch!1 → Skip end

process B =̂ begin • ch?x → Skip end

process C =̂ begin • ch?x → Skip end

process ParABC =̂ (A |[ {| ch |} ]| B |[ {| ch |} ]| C ) \ {| ch |}

The environment ProcChanUseEnv for channel ch and process ParABC contains this mapping:

{A 7→ Output ,B 7→ Input ,C 7→ Input}

As explained in Chapter 3, the process ParABC is translated into a Java class ParABC. The channel
ch, which is hidden, is instantiated within the constructor of this class (see Rule A.3, function
HiddenCCreation). The instantiation of the channel, requires an object of type ChanInfo, which is
a mapping of a process name into an integer (see Section 3.6). In the multi-synchronised case, this
is the multi-synchronisation identification number. The generation of code for the instantiation
of ChanInfo uses the environment ProcChanUseEnv to determine the mapping in ChanInfo. For
process ParABC , this mapping is used to determine which process will be the writer; in this case,
it is process A, as it is the only that is mapped to Output . If there are two processes mapped to
Output , the tool gives an error message, since this breaks the requirement that there must be at
most one writer per parallelism.

The environments ChanUseEnv (hidden and visible), ChanSyncEnv and ChanInfoEnv are de-
fined for each process. They are grouped in the class ProcChanEnv. An environment for channel
information in each process (ChannelEnv) maps a process name to an instance of ProcChanEnv.
For instance, in our GCD example, the channel environment ChannelEnv contains three entries,
one for each process (GCDEuclides1, GCDClient and SumOrGCD); each of these map the name
of the process to an object of type ProcChanEnv, which contains the correspondent environments
ChanUseEnv (hidden and visible), ChanSyncEnv and ChanInfoEnv, defined for each process.

The TypesEnv environment lists all types that are used within the Circus program being trans-
lated. This information is used to define constants for each type in the generated class Type.
This environment is implemented as an instance of TypeList, which contains a list of the names
of all free types and the number type. In our GCD example, there is not any free type defini-
tion; so, the type environment contains only one reference to the built-in type arithmos. In our
implementation, types are represented by the class CircusType.

The environments StateCompEnv and LocalVarEnv , used in the translations of recursive and
parallel actions, are implemented by class NameTypeEnv, which maps a name to its classification.
This environment is loaded during the pre-processing phase and is added as annotation to all
nodes that represent parallel or recursive actions. It contains all the variables that are in scope
at the moment of the the recursive or parallel action is used. During the translation phase, the
annotation is retrieved, and the information in it is used to declare the copies of the variables.
The NameType information permits to distinguish state components from local variables.

All the classes for environments are encapsulated in a class Environment. The visitors have
access to an instance of this class and from it they have access to all the environments discussed
above. The classes ScopeStack and NameTypeEnv are used in the pre-processing phase only; they
are explained in the next section.
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4.2.4 The translator module

The translator is the main component of JCircus; it is the module that actually implements the
translation strategy. As mentioned before, the first phase of the translation is a pre-processing of
the specification, and the second is the generation of Java code. Details of these operations are
given in the next sections.

Pre-processing of the specification

The pre-processing is implemented by the class EnvLoadingVisitor. The starting point of this
visitor operation is a Spec node, from which all nodes of the AST can be accessed.

The pre-processing is responsible for loading the environments described in the last section,
and annotating the AST with NameType information. The NameType annotation classifies a refer-
ence expression (an identifier used as an expression). There are seven reference types which are
summarised in Table 4.1. This information is fundamental to the translator because a Circus name
can be translated into different forms of Java constructs. We exemplify this with the following
assignment command:

x := a

This Circus assignment is translated into a Java assignment (Rule A.51). The function JExp
translates a reference expression according to the reference type (see the definition of the function
in Appendix A). The variable x could be a state component, a local variable or a process or
action parameter; in any case, it is translated into a Java variable or attribute. The name a,
however, can also be a constant, defined in an axiomatic definition or in a free type. In this case,
it is translated into a method or constructor call. Thus, the translation of this assignment could
be one of these four possibilities:x = a, if a is a parameter, state component or local variable;
x = a(), if a is an axiomatic definition local to the basic process where the action is defined;
x = AxiomaticDefinitions.a(), if a is a constant defined in a global axiomatic definition; or
x = new FT(FT.a), if a is an element of a free type FT .

This information is not provided by the parser nor the type checker; In any case, the syntactic
category of a is the same, and the type annotation cannot be used to differentiate between variables
and constants that have the same type. To get this information, we would have to know all the
scopes of declaration of variables. However, when the type checker finishes its task, only the global
environment is available.

To collect this information we need to identify the scopes in a similar way that the type checker
does to find out the types of names previously declared. We define an environment represented
by class NameTypeEnv, which associates a name to its NameType. The environment contains one
instance of this class, which represents the current scope. Another class, ScopeStack, is a stack
of NameTypeEnv which represents the scopes that are overridden when a new declaration occurs:
when declaration statement is found, the current environment is pushed into the stack; when its
scope finishes, the environment on top of the stack is retrieved.

The environment contains one instance of NameType, which represents the current scope; and
one instance of ScopeStack. While traversing the AST, it is possible to know where the declaration
occurs - if as a process parameter, action parameter and so on - because we know in which kind
of AST node we are. The name is inserted in the environment with its correspondent NameType.
When a reference is found, the NameType is retrieved from the current environment and used to
annotated the AST node for the reference. When the pre-processing finishes, all references have
been annotated with their NameTypes and this information can be accessed in the subsequent
phase, the generation of Java code.
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Name Type Example of declaration Translation of x := a
Free type element FT ::= a | b | c x = new FT(FT.a)
Global constant a : N | a := 1 x = new AxiomaticDefinitions.a()

(declared in global scope)
Local constant a : N | a := 1 x = this.a()

(declared in a local scope)
Process parameter P =̂ a : N • begin . . . x = a
Action parameter A =̂ a : N • . . . x = a
State component S == [a : N • . . .] x = a
Local variable var a : N • . . . x = a

Table 4.1: Translation of reference expressions

The implementation of this visitor provides evidence of the advantage that the CZT visitor
brings from the default visitor design pattern: the possibility of allowing default implementations
for classes that extend from a common superclass. The EnvLoadingVisitor is mainly concerned
with collecting information about channels, types, and references. Binary actions, for instance, are
mostly visited in the same way: each action is visited and then their environments are combined
to form the environment for the binary action. This implementation is provided in the visiting
method for Action2, which is called for all binary actions that do not provide an specific imple-
mentation. This minimises code duplication: if the standard visitor were being used instead, we
would have to define identical visiting methods for all subclasses of Action2.

Generation of Java code

The translation is basically the application of each translation rule in Appendix A to each node
of the abstract syntax tree. This is accomplished by the visitor TranslatorVisitor. This visitor
is called for each process definition and free type definition; for each of them the visit method
returns the Java code resulting from the translation.

We used the Velocity engine [4] for generation of the Java code. It permits that part of the
Java code to be generated is written in a separate file (a template), instead of directly in the
visitor methods. This facilitates code maintenance.

The implementation TranslatorVisitor shows the advantages that the CZT visitor incorpo-
rates from the acyclic visitor design pattern. The TranslatorVisitor deals only with syntactic
constructs below the level of process declarations in the syntax; the nodes that represent ax-
iomatic definitions and channel sets, for instance, need not to be visited, because they are not
translated into Java code. The standard visitor design pattern would require the definition of
visiting methods for all these constructs.

4.3 Using JCircus

In this section we will show an example of use of JCircus, for the GCD program introduced in
Chapter 2. The initial screen of JCircus is shown in Figure 4.6. In this screen, the user enters the
parameters for the translation, as explained in Section 4.1.1: the path of the input specification,
the project name, and the project path. The screen shows where the project folders will be created;
it is always inside a folder src in the project path.

After entering the parameters, the user can press the button Translate. If any of the parameter
fields is empty, the tool gives an error message; otherwise, it parses, type checks, and translates
the input specification. The text area Log shows error and success messages.
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Figure 4.6: JCircus graphical interface

Our specification in file GCD.tex contains three process definitions. After parsing and type-
checking the input file, JCircus identifies the process definitions, and shows a window (Figure 4.7)
where we can select one or more processes for which we want a class main to be created. We
can choose, for example, the processes GCDEuclides1 and SumOrGCD . If any of these processes
were parametrised, JCircus would ask the user to enter the parameters; as this is not the case, it
proceeds and generates the source files successfully.

Figure 4.7: Window to choose the main processes

Besides the project packages defined in Section 4.1.1, JCircus also creates a package <proj>.gui
(where <proj> is the project name). This package contains the source files for a graphical interface
that is created to run with each process chosen to have a main class. For each of these processes,
JCircus creates the main class, a graphical interface that represents the environment, and a .bat
file. For instance, for process GCDEuclides1, JCircus creates files Main_GCDEuclides_1.java,
Gui_GCDEuclides_1.java and Run_GCDEuclides_1.bat. The .bat file can be used to compile
and run the program using JDK (version 1.3 and above) [2].

The graphical interface for process GCDEuclides1, in file Gui_GCDEuclides_1.java, defines
the class Gui_GCDEuclides_1. This class represents the environment that interacts with the
process, and is also an implementation of the interface CSProcess. It is also a Java Swing frame



CHAPTER 4. JCIRCUS 45

that runs in parallel with the process in the main class; it contains components that represent
the events that the environment executes. The interface of a process with the environment is
composed by only the channels that it uses and are not hidden. In the graphical interface, these
are represented as buttons. The internal state, hidden channels and internal operations cannot be
seen by the environment.

Figure 4.8 shows the graphical interface that is generated for process GCDEuclides1. The
process GCDEuclides1 uses only two channels: the input channel in and the output channel out ,
and both communicate natural numbers. The communication fields are the text fields next to the
buttons, where we can type values for the input channels or visualise the parameters of the output
channels.

Figure 4.8: GUI for process GCDEuclides1

The class main for a process also instantiates any channel that it uses and is not hidden, in the
same way that it is done for hidden channels in the constructor of a class. Figure 4.9 shows the code
for the main class of process GCDEuclides1. It contains only one method main, which instantiates
channels in and out and instantiates a parallelism between the process GCDEuclides1 and the
graphical interface. Both processes, GCDEuclides1 and the graphical interface, use channels in
and out. Process GCDEuclides1 reads from channel in, so it is mapped to 1 in ChanInfo; the
GUI writes on channel in, so it is mapped to zero. For channel out, it is the other way around.

When we run the class Main_GCDEuclides_1, the screen presented in Figure 4.8 is shown.
The program waits for a synchronisation on channel in, as this is the first action that the process
determines. As this is an input channel, we must type in the first text field the parameter, which
is the first of the pair of numbers for which we want to calculate the GCD. After entering the
parameter, we press the button in; this act represents the synchronisation on channel in, with
communication of the value that has been entered in the text field. The generated program does
not perform parsing or type checking. It relies that the values entered by the user are well-formed
and well-typed. If this is not the case, an error will occur. Further work include an integration of
the generated program with a parser and typechecker for expressions.

Once the first number has been entered, the program waits for the second synchronisation on
channel in, that communicates the second number. After that, the program calculates the GCD
and waits for synchronisation on channel out . When we press the button out, the GCD appears
in the text field next to it.

Figure 4.10 shows the graphical interface for the process SumOrGCD . Interaction occurs in
the same way as described above. This process uses channels in and out , but they are hidden from
the environment, and for this reason, they do not appear in the graphical interface. Channels sum
and gcd are only synchronisation channels. As they do not communicate values, they do not have
a text field associated.

When using the interface generated automatically by JCircus, the user must be careful to only
press a button if the program is waiting for synchronisation on the respective channel; otherwise,
the program deadlocks. It would be interesting to have some mechanism that would enable or
disable the buttons, to prevent the user from unintentionally pressing the wrong button. This
would also help the user to visualise the flow of execution of the program. We can use an approach
similar to that of the component ActiveButtonControl of the JCSP library. This class is part
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public class Main_GCDEuclides_1 {

public static void main(String args[]) {

Any2OneChannel to_in = new Any2OneChannel();
ChanInfo chanInfo_in = new ChanInfo();
chanInfo_in.put("GUI", new Integer(0));
chanInfo_in.put("GCDEuclides_1", new Integer(1));
GeneralChannel in = new GeneralChannel(to_in, chanInfo_in,

"GCDEuclides_1");

Any2OneChannel to_out = new Any2OneChannel();
ChanInfo chanInfo_out = new ChanInfo();
chanInfo_out.put("GCDEuclides_1", new Integer(0));
chanInfo_out.put("GUI", new Integer(1));
GeneralChannel out = new GeneralChannel(to_out, chanInfo_out,

"GCDEuclides_1");

new Parallel(new CSProcess[] {
new GCDEuclides_1(in, out),
new Gui_GCDEuclides_1(

new GeneralChannel(in, "GUI"),
new GeneralChannel(out, "GUI"))

}).run();
}

}

Figure 4.9: Code for class Main GCD

of the jcsp.awt package, which provides CSP extensions for all java.awt components. It is a
user-programmable finite state machine for controlling an array of buttons, which can be used to
enable or disable buttons. This simple extension of JCircus is left as future work.

In this version of the tool, we have decided that only the channels that do not take part in any
communication within the process interact with the GUI. For instance, channels in and out in our
example SumOrGCD would not appear in the GUI, even if they were not hidden, because they are
involved in a synchronisation in the parallelism of processes GCDEuclides1 and GCDClient . We
have decided to do so to avoid the possibility of multi-synchronisation involving the GUI. We plan
to generalise the approach to allow multi-synchronisation involving the GUI. The extension should
be straightforward since the complexities involving multi-synchronisation are all concentrated in
the GeneralChannel class.

The generation of the class main as described here and the graphical interface was an additional
functionality provided by JCircus and is not formalised by the translation rules. These classes make
the execution of the program generated with a simple interface immediately available. They are
appropriate for the rapid prototyping of Circus programs. The classes that capture the behaviour
of each of the processes, however, can be used in other contexts, where, for example, an interface
that is more specific to the application is implemented.
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Figure 4.10: GUI for process SumOrGCD

4.4 Test strategy

The objective of our project was to construct a tool that implements the translation strategy and
can translate Circus programs that comply with a list of pre-requisites. The development of our
test strategy followed a structured approach so that we could end up with a system in which we
have confidence.

JUnit [3] was used to carry out unit and regression testing. JUnit is a framework for automation
of the execution of test cases in systems developed in Java. It allows developers to save time and
effort in the process of testing.

In this section we describe the types of tests that were carried out, which aspects of the system
they were aiming to test, the techniques used, and the problems that such tests managed to
identify.

Unit testing

The objective of unit testing is to test the correctness of the implementation of a particular module
of source code. We used unit testing to test the classes for environments and utility methods.
JUnit was used to write assertions that compared the returned result of a function with the
expected result for a number of test cases.

Function testing

We used function testing to test the correctness of the implementation of the translation rules.
After the implementation of each rule, a simple Circus program was designed to test the application
of that rule. Then, more elaborated test cases, involving the application of many rules were
designed to produce more complex scenarios and test the validity of the rule on those scenarios.
These tests revealed the errors in the rules for compound processes and action parallelism explained
in the next chapter.

Integration testing

The parser is a very basic and important component of the system. It transforms the textual
input file into an object representation of the program’s syntax tree. The integration of a parser
to the translator showed up differences between the representation that the translator expected
and the one that the parser provided. The investigation of these differences revealed problems in
the design of the AST framework that motivated a migration to the CZT framework.



CHAPTER 4. JCIRCUS 48

Regression testing

JUnit was used to perform repeated tests after changes in the system, such as the migration to
the CZT framework, bugfixes in the parser, and small redesigns. The execution of regression
testing was important to make sure that those changes would not have an impact on the test cases
for which the tool was already working correctly. JUnit provides a test runner with a graphical
interface that helps to visualize which test cases were successful and which were not.

Acceptance testing

Members of the Circus group were asked to test JCircus and make comments on the usability and
the usefulness of the tool. The suggestions motivated the implementation of a functionality in the
tool that would generate a graphical interface for the translated programs, in order to provide a
simple visualisation for the behaviour of those programs, and a way of interaction with the user.

4.5 Final considerations

In this section, we described JCircus, the tool we have implemented to automatise the translation
strategy. We have provided a documentation of the development phases: requirement analysis,
design and implementation and tests. We have also demonstrate how JCircus can be used.

JCircus uses the CZT framework. This choice was motivated by the quality of the project.
The CZT framework is being used in other Circus projects. One is the type checker that JCircus
already uses. The other is a model checker for Circus. The fact that the tools being implemented
in the Circus group use the same framework is a great benefit, as will allow future integration.

Future work on JCircus includes the possibility of integration with the theorem proving module
of the model checker. One of the extensions we plan for JCircus is the support for more types,
beyond free types and the number type A that are currently supported. This requires support for
more elaborated types of construct, for instance, set comprehension. The theorem prover would be
able to determine the elements of a set comprehension; this information would be used to provide
a Java representation for a set comprehension within the program generated by JCircus.

Members of the Circus team have contributed to extend the CZT java-core library for Circus.
We have not extended the CZT parser yet, but this is in our plans; currently we are using another
parser, but it constructs an AST tree that uses the CZT AST classes.

JCircus is available at [16]. The weppage also The binary distribution provides a short docu-
mentation on how to use the tool. A more complete documentation for users, with details on the
translation laws, requirements on the input specification discussed in this thesis and the LATEX
format for the input file, is planned.



Chapter 5

Evaluation of the original
translation strategy

The implementation of JCircus raised several questions related to the translation strategy and its
formalisation. In this chapter, we explain the problems we found in the original strategy and how
we solved them. Our work increased our confidence that the translation strategy preserves the
correctness of Circus programs. We also consider alternatives to the implementation of some rules.

5.1 Errors in the original strategy

During the implementation of our tool, we found problems in the translation strategy related to
the treatment of types, the parallelism of actions, and compound processes. In what follows, we
discuss each of the issues raised.

5.1.1 Translation of Circus types

Types in Z are special kinds of sets. We can define types using basic types and a restricted set
of constructors to build compound types. The ISO Standard Z defines the only basic type that
the language pre-defines: the given type A, which provides values for specifying number systems;
the name N, for example, is defined as having type PA. All other basic types are defined by the
user or introduced with the mathematical toolkit, which is a library of mathematical definitions
that the ISO Standard Z provides. Basic types can be composed to form complex types using the
operators for powerset, cartesian product and schema construction. Circus adopts the type system
of Z. Therefore, we can refer to Circus types and Z types indistinguishably.

The original translation strategy [29] defined an abstract class Type which is a superclass
for all types defined within the system. It translates free type definitions and special forms of
abbreviations as Java classes that represent types (that is, extend from Type).

This is the first difference between the original strategy and our implementation: the notion
of “type”. Abbreviations do not define types in Z; they define expressions. They are, as the name
suggests, a simplified way of referring to an expression. Of course, they can be used to define sets,
which are expressions; the original translation strategy regards some special kinds of sets, defined
using abbreviation, as types.

Not all sets define types in Z, however. In spite of the fact that we can use any expression
that represent a set in the declaration of a variable, the actual type of that variable is defined by
the notion of maximal type. Therefore, if we define a : {1, 2, 3} and b : {4, 5}, both variables have

49
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the same type A. In Circus, we could, for example, assign a to b and vice-versa; this could lead
to other types of inconsistencies, but would be correct with respect to typing. Mapping the same
Circus type into different Java classes could result in code that, despite being correctly typed,
would not compile. Because of this, we decided to take the approach of having a 1-1 mapping
between Circus types and the Java classes that represent them.

Moreover, the original strategy presents another problem regarding the architecture that results
from the translation of such sets that represent types. One requirement of the original strategy is
that abbreviations could be defined in terms of at most one other set, and this set had to be a free
type or another abbreviation. They could have the form TNameexp == TName∪{Vn+1, . . . ,Vm}
or TNameexp == TName \ {Vn+1, . . . ,Vm}. This requirement implies that all abbreviations are
extensions or restrictions of some free type. The free types would introduce a set of elements; and
the abbreviations would be defined in terms of a free type or another abbreviation, by expanding
or restricting its set.

The architecture for Java classes that represented types was based on the notion of exten-
sion/restriction of such sets. If a set A extended a set B (that is, all elements of B were in A),
this would be translated as a Java class A that is a superclass of a class B (B extends A). For
this reason, two different sets could not extend the same set, because this would lead to multiple
inheritance, which is not allowed in Java.

To translate a free type definition or an abbreviation, we needed to check if it was extended
by a previously defined set or not. If this is not the case, it would extend the class Type and
we would declare a static constant for each of the elements in the free type or abbreviation,
and constants MIN_<Type> and MAX_<Type> for the minimum and maximal values of the type;
otherwise, it would extend the class of its expanding set, and redefine the constants for maximum
and minimum values.

The original translation strategy [29] takes this specification as an example:

T1 ::= A | B | C
T2 == T1 ∪ {D ,E}

The translation of these two types creates two classes: the class T_2, which represents the type
T2, extends the class Type; and the class T_1, which represents the type T1, extends the class
T_2. The class diagram can be seen in Figure 5.1(a).

If, instead, we had T2 restricting T1, as in the following specification:

T1 ::= A | B | C
T2 == T1 \ {C}

then the inheritance relation would be inverted, as we see in Figure 5.1(b).
There is a problem in the first example, however: it will not pass in the typechecker. The

names D and E have not been declared; but even if they had been declared, they would not have
the same type as the elements of T1. Therefore, the expression T1 ∪ {D ,E} is wrongly typed.

We could make that specification correct if we included D and E in the definition of the free
type T1:

T1 ::= A | B | C | D | E
T2 == T1 ∪ {D ,E}

Now, it is correctly typed. But what is the point in defining a new set T1 like this? It represents
exactly the same set as T1. We could use the union set operator to define a set in terms of another
one that has been restricted, as in the following example:

T1 ::= A | B | C | D | E
T2 == T1 \ {C ,D ,E}
T3 == T2 ∪ {D ,E}
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Type

T_2

−public static final int A = 0:int

−public static final int B = 1:int

−public static final int C = 2:int

−public static final int D = 3:int

−public static final int E = 4:int

−public static final MIN_T_2 = 0:int

−public static final MAX_T_2 = 4:int

T_1

−−public static final MIN_T_1 = 0:int

−−public static final MAX_T_1 = 2:int

(a)

Type

T_1

−public static final int A = 0:int

−public static final int B = 1:int

−public static final int C = 2:int

−public static final MIN_T_1 = 0:int

−public static final MAX_T_1 = 2:int

T_2

−public static final MIN_T_2 = 0:int

−public static final MAX_T_2 = 1:int

(b)

Figure 5.1: Architecture for types

This would lead to a situation where the class for T2 would have to extend both from T1 and
T3 (because, T2 restricts T1 and T3 expands T2; see Figure 5.2). But one of the requirements
was that different sets should not extend the same set. We see then that defining a set with an
abbreviation using the set union operator in a way that is permitted by the original translation
strategy actually invalidates the translation because leads to a situation that is not permitted.

In our strategy we adopted a simplified way to represent types. Types are only introduced
with free types, and they are translated into classes that extend the abstract class Type. The
other possible type is CircusNumber which represents the number sets N and Z, and also extends
Type.

We understand, however, that it would be interesting to differentiate, in some way, the sets
used to define the types of variables. Consider the following example:

channel c : N

process P1 =̂ begin
• c!(−1) → Skip

end

process P2 =̂ begin
• c?x → Skip

end

process P3 =̂ P1 |[ c ]| P2

Here we declare a channel c that communicates natural numbers. Process P1 writes a negative
value on c, and process P2 reads a value from channel c. Process P3 is a parallel composition of
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Type

T_1 T_3

T_2

Figure 5.2: Architecture for types

P1 and P2, in which the value would be transmitted from P1 and P2. This example is correctly
typed, but the execution of P3 will result in deadlock, because we are trying to transmit a value
that is not in the set of values that c can communicate.

Implementing this is not an easy task, because the set used to declare c could be defined in
terms of, for example, a set comprehension as {x : N | x > 5 ∧ x < 10}, and in fact, the predicate
could be arbitrarily complex, which would require a theorem prover to determine the elements
of the set. We could restrict the forms of expressions that define sets in a way that would make
it easy to determine the elements of the set, and record this information together with the type
information, for each variable and channel. In this case, we could implement the correct behaviour
for some simple cases, like the example mentioned. This is an interesting piece of future work.

5.1.2 Action parallelism

The translation of action parallelism, recursion, and iterated actions requires an environment for
local variables, LocalEnv , which maps a variable name to its type. The local variables for an
action are all the variables that are in scope when it is defined, including process parameters,
action parameters, variables introduced in a variable block, but not state components.

Action parallelism/interleaving is a bit different from process parallelism/interleaving. The
former requires the definition of the set of variables which each parallel action can modify. Parallel
actions cannot modify the same variable, which means that these sets must be disjoint; we will
call them partitions. Besides that, parallel actions deal with copies of the local variables, so that
one action that writes on a variable does not interfere on the other action if it reads the same
variable. At the end of the parallelism, the variables are updated with the final values of their
respective copies from the actions where they appear in the partition.
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Consider the following example:

process P =̂ begin
state S =̂ [x , y , z : N]
Init =̂ x , y , z := 0, 0, 0
A =̂ (y := 2) ||[y | x ]|| (x := y + 5; z := 10)
• Init ; A

end

This is a basic process, with a state schema that defines state components x , y and z , an ini-
tialisation action Init , and an action A defined using an interleaving. The main action performs
the initialisation first, and then the interleaving. The local environment for the interleaving is
composed by x , y and z . At the moment the interleaving is executed they all have value zero, and
their values are assigned to copies of the variables for each of the parallel actions. Therefore, at
the end of parallelism, x will always have value 5, even if the assignment to y occurs first, because
it is dealing with the copy of y , which is different from the one that the left action is updating.

At the end of the interleaving, y will be assigned the value of its copy from the left action,
therefore, 2; x will be assigned the value of the copy from the right action, therefore, 5; and z
will be assigned no value at all, because it is not in any of the sets. So, the assignment z := 10 is
useless and does not produce any effect; z has value zero at the end.

The implementation of parallel actions reflects this semantics. The translation of action A in
our example is shown in Figure 5.3. It declares and instantiates two inner classes that implement
CSProcess, one for the left action (lines 2-10), and the other for the right action (lines 11-21).
These classes declare and initialise attributes which represent the copies of the local variables
(lines 3-5 and 13-15). The method run of each class contains the implementations of the actions
(lines 7-9 and 17-20), which only deal with the copies of the variables. The objects are given as
parameters to a Parallel object, which is run (line 26). After the parallelism terminates to run,
the values of the copies are retrieved from the respective sets (lines 27 and 28).

The rule used in the original translation strategy for handling parallel or interleaved actions is
presented below; it contains some mistakes.

Rule Action parallelism/interleaving (original)
|[A1 |[ns1 | cs | ns2 ]|A2]|Action =

class LName implements CSProcess {
(IAuxVars (ns1 \ (dom λ)) ind L) (DeclLcVars λ ind L)
public LName((LcVarsArg λ)) { ILcVars λ ind L }

public void run() { RenVars |[A1 ]|Action (ns1 ∪ (dom λ)) ind L } }
CSProcess l_ind = new LName(JList (ListFirst λ));
\\class RName declaration, process r_ind instantiation
CSProcess[] procs_ind = new CSProcess[]{ l_ind,r_ind };
(new Parallel(procs_ind)).run();
(MergeVars LName ns1 ind L) (MergeVars RName ns2 ind R)

where LName = ParLBranch_ind and RName = ParRBranch_ind

Only state components that take part in the partition set are being declared in the inner class and
renamed in the translation of the action. The other state components are being directly accessed
in the class, which means that if the action is writing on these variables, they are not writing
on a copy, and therefore, are permanently assigning on the variable. In the example above, this
means that variable z would hold value 10 after the parallelism terminates to run. The solution



CHAPTER 5. EVALUATION OF THE ORIGINAL TRANSLATION STRATEGY 54

private void A(){ (1)
class ParallelLeftBranch_0 implements CSProcess{ (2)

public CircusNumber aux_left_y_0 = y; (3)
public CircusNumber aux_left_z_0 = z; (4)
public CircusNumber aux_left_x_0 = x; (5)
public ParallelLeftBranch_0 (){} (6)
public void run(){ (7)

aux_left_y_0 = new CircusNumber(2); (8)
} (9)

} (10)
CSProcess left_0 = new ParallelLeftBranch_0 (); (11)
class ParallelRightBranch_0 implements CSProcess{ (12)

public CircusNumber aux_right_y_0 = y; (13)
public CircusNumber aux_right_z_0 = z; (14)
public CircusNumber aux_right_x_0 = x; (15)
public ParallelRightBranch_0 (){} (16)
public void run(){ (17)

aux_right_x_0 = aux_right_y_0.add(new CircusNumber(5)); (18)
aux_right_z_0 = new CircusNumber(10); (19)

} (20)
} (21)
CSProcess right_0 = new ParallelRightBranch_0 (); (22)
CSProcess[] processes_0 = new CSProcess[]{ (23)

left_0, right_0 (24)
}; (25)
(new Parallel(processes_0)).run(); (26)
y = ((ParallelLeftBranch_0)processes_0[0]).aux_left_y_0; (27)
x = ((ParallelRightBranch_0)processes_0[1]).aux_right_x_0; (28)

} (29)

Figure 5.3: Implementation of action A
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is to make copies of all local variables and also state components, and also rename them in the
translation of the body of the method run.

The other problem is that just renaming the variables in the code that results from the trans-
lation of A1 and A2 is not enough, because these actions can contain a call to another action. In
this case, the action which is called does not deal with the copies of the variables, but with the
original ones, because it does not receive the copies as parameter.

The solution requires that the action calls made inside an action parallelism are translated into
an instantiation and call to the method run of an inner class. The inner class defines as attributes
the state components and process parameters of the basic process in which the parallelism is
defined, which are defined in a new environment BasicProcEnv . The method run of the inner
class contains the translation of the action, and it deals with the copies of the variables, and not
the original ones.

The corrected rule for parallelism (Rule A.41) and interleaving (Rule A.42) are presented in
the Appendix A.

5.1.3 Compound processes

The translation strategy translates a basic process (that is, a process defined between the keywords
begin and end) as a call to the method run of an anonymous implementation of CSProcess (see
Rule A.6). This translation is very appropriate because a basic process, as a Java class, is an
entity that encapsulates data and behaviour. The correspondence is perfect:

• state components are translated as class attributes (data);

• action definitions are translated as private methods (behaviour). The methods are private
because an action cannot be called from outside the basic process where it is defined;

• the main action is translated as the body of the method run (main behaviour). In the JCSP,
a process is an instance of a class implementing the CSProcess interface and its behaviour
is defined by the run method.

A basic process is an element of the syntactic category Process as defined in the Circus gram-
mar (see Figure 2.2). In order to have a consistent strategy, all constructs of the same Circus
syntactic category must be translated to a construct of the same Java syntactic category: process
declarations (ProcDecl) are translated as Java classes, in which the process name N is the name
of the class; process definitions (ProcDef) are translated as the code for attribute, constructor
and method run definitions for the process declaration in which they occur; action definitions
(ActionDef) are translated as private methods, as explained before; and actions (Action) are trans-
lated as sequential Java code.

So, in order to be consistent with the translation of basic process discussed before, all construc-
tors in the Circus syntactic category Process must be translated as a call to the method run of an
instance of a class implementing the CSProcess interface. The original translation strategy did
not reflect this in some rules for compound processes, namely, the rules for sequential composition
of processes, implicit parametrised process invocation and internal choice of processes. These were
translated as sequential Java code, as we will see.

The rule for implicit parametrised process invocation declares an inner class (DeclareProcessClass)
and instantiates it, passing as parameters to the constructor the actual parameters and the vari-
ables in the local environment.
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Rule Implicit parametrised process call (original)

|[(Decl • Proc)(e1, . . . , en)]|Proc =
DeclareProcessClass Decl Proc index
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();

The rule for sequential composition of process is simply translated as Java sequential composition
code. In a sequential composition of processes, each process has its own underlying state.

Rule Sequential composition (original)

|[Proc1; . . . ;Procn ]|Proc = |[Proc1 ]|Proc ; . . . |[Procn]|Proc

The rule for internal choice uses class RandomGenerator to create a pseudo-random number, which
will be checked in a switch statement to decide which action will be executed.

Rule Internal choice (original)

|[Proc1 u . . . u Procn]|Proc =
int choosen = RandomGenerator.generateNumber(1,n);
switch(choosen) {

case 1:

{ |[Proc1 ]|Proc }
break;

. . .
case n:

{ |[Procn ]|Proc }
break;

}

The problems with these rules were revealed when they were applied in combination with the rule
for process parallelism. The translation of a parallelism uses the class Parallel and instantiates
an array containing the parallel processes.

Rule Process parallelism (original)

|[Proc1 |[CSExp ]| Proc2]|Proc =
(new CSProcess(){

public void run() {
new Parallel (

new CSProcess[] { |[Proc1 ]|Proc , |[Proc2 ]|Proc }
).run ();

}
}).run();

The function |[ ]|Proc is being called inside an instantiation of an array of elements of type
CSProcess. Therefore, what we expect to receive as the result of this function is an expression
for an instance of a CSProcess, and not sequential Java code. The translation of this example

process P =̂ (A; B) |[ ch ]| C
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would result in a Java class called P with the following code as the body of its method run:

(new CSProcess() { (1)
public void run() { (2)

new Parallel( (3)
new CSProcess[] { (4)

(new A( ... )).run(); (new B( ... )).run();, (5)
(new C( ... )).run(); (6)

} (7)
).run(); (8)

} (9)
}).run(); (10)

This code does not compile because sequential Java code appears where an instance of CSProcess
is expected (lines 5 and 6).

Part of the solution was to encapsulate the sequential code into an anonymous instantiation
of a CSProcess. The rule for sequential composition, for example, becomes:

Rule A.16 Sequential composition

|[Proc1; Procn ]|Proc =
(new CSProcess(){

public void run() {

|[Proc1 ]|Proc ; |[Procn ]|Proc }
}).run();

The other rules are modified in a similar way, see Appendix A. Now, all constructs of the Circus
syntactic category Proc are translated to the same sort of Java code.

However, there is also a problem in the rule for parallelism. As mentioned above, the call to
the function |[ ]|Proc in the rule for parallelism should return Java code for an instantiation of a
CSProcess, and not the call to the method run of an instance of CSProcess. Therefore, we should
enclose the call to the function |[ ]|Proc in an instantiation of an inner class.

Rule Process parallelism (new version)

|[Proc1 |[CSExp ]| Proc2]|Proc =
(new CSProcess(){

public void run() {
new Parallel (

new CSProcess[] {

new CSProcess() { public void run() { |[Proc1 ]|Proc } },

new CSProcess() { public void run() { |[Proc2 ]|Proc } }
}

).run();
}

}).run();

The rules for sequential composition, internal choice and implicit parametrised invocation were
wrong because the code they returned was not encapsulated inside a (new CSProcess() { ... }
).run();. The rules for process invocation and parametrised process invocation were not wrong,
but they defined an unnecessary instantiation of a CSProcess.
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Rule Process call (original)

|[N ]|Proc =
(new CSProcess(){

public void run() {
(new N(ExtractChans VisChanEnv)).run();

}
}).run();

Rule Parametrised call (original)

|[N (e1, . . . , en) ]|Proc =
(new CSProcess(){

public void run() {
(new N((JExp e1), . . . ,(JExp en),

(ExtractChans VisChanEnv))).run();
}

}).run();

In the translations above, an anonymous instantiation of a CSProcess defines, in the method run,
an instantiation of an object of class N, which is itself a CSProcess. Therefore, the anonymous
call is unnecessary; it does nothing than just creating one more thread in the system. In the
rule for parallelism, we can find the same situation, because class Parallel is also a subclass
of CSProcess. The rules above, and the one for parallelism can then be simplified to avoid the
anonymous call.

Rule A.7 Process call

|[N ]|Proc = (new N(ExtractChans VisChanEnv)).run();

Rule A.8 Parametrised call

|[N (e1, . . . , en) ]|Proc = (new N((JExp e1), . . . ,(JExp en),
(ExtractChans VisChanEnv))).run();

Rule A.18 Process parallelism

|[Proc1 |[CSExp ]| Proc2]|Proc =
new Parallel (

new CSProcess[] {

new CSProcess() { public void run() { |[Proc1 ]|Proc } },

new CSProcess() { public void run() { |[Proc2 ]|Proc } }
}

).run ();

As mentioned in Section 4.1.2, a parallelism does not take into account the channels defined in
the operator; rather, the parallel processes or action synchronise of all channels that they have in
common. Therefore, the synchronisation set CSExp is not taken into account in the Rule A.18.

The modification in the above rules provide both simplification of the code generated and also
an optimisation, because there is no creation of an unnecessary process.
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5.2 Alternatives for implementation

In this section we discuss rules that we have implemented differently from the original proposal.
Some rules for multi-synchronisation were modified to cover more general cases.

5.2.1 Multi-synchronisation

In the original translation strategy, the code generated for a program involving multi-synchronisation
is completely different from the code generated if only simple synchronisation were used. For in-
stance, multi-synchronisation uses channels to and array from to carry out the communication,
whereas simple synchronisation requires only one Any2OneChannel; the read and write methods
used in the case of simple synchronisation were substituted by instantiation of clients.

The code for a basic process, however, is contained inside a class, which is a CSProcess that
implements the basic process. At the time we are translating a basic process we do not know
whether the channels that it uses take part in a multi-synchronisation or not. Consider the
following example:

channel ch : N

process A =̂ begin • ch?x → Skip end

The translation of process A is a Java class with the same name. This class has a channel ch as
attribute, and its method run contains an input communication on ch.

If channel ch took part in a multi-synchronisation, however, the declaration of channel ch
should have been replaced by private Any2OneChannel[] from_ch and private Any2OneChannel
to_ch, and the code for communication should also have been changed accordingly.

However, to determine whether ch is used in a multi-synchronisation or not requires inspecting
the uses of A. In process ParABC defined below, ch is multi-synchronised, whereas in process
ParAB , it is not.

process B =̂ begin • ch!1 → Skip end

process C =̂ begin • ch?x → Skip end

process ParAB =̂ A |[ {| ch |} ]| B
process ParABC =̂ A |[ {| ch |} ]| B |[ {| ch |} ]| C

Therefore, we can see that it is the processes that use A that have the information necessary to
know if the channels that A uses are multi-synchronised or not.

In our implementation, we define a class GeneralChannel (introduced in Chapter 3), which
is used instead of Any2OneChannel. It encapsulates the data and algorithms for the multi-
synchronised and simple-synchronised cases. The translation rules for channel communications
just need to call the methods read or write from GeneralChannel. These methods execute the
code for simple or multi-synchronised case, according to the values of the attribute that are set up
in the constructor. They are set up by the compound process that instantiates its sub-processes,
and have the knowledge of how their channels should be used.

5.2.2 Synchronisation channels

A similar problem occurs when we have to define if a synchronisation channel will be used as a
reader or a writer by a particular process. The following example shows three processes A, B and
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C that uses a channel ch and are combined in parallel two by two in the compound processes
ParAB , ParAC and ParBC .

process A =̂ begin • ch → Skip end

process B =̂ begin • ch → Skip end

process C =̂ begin • ch → Skip end

process ParAB =̂ A |[ {| ch |} ]| B
process ParAC =̂ A |[ {| ch |} ]| C
process ParBC =̂ B |[ {| ch |} ]| C

Channel c is not used for input or output. How to determine which process calls method read()
on ch and which calls write(null), in each parallelism? The original translation strategy defined
an environment ChanUseEnv (available for each process) that mapped a channel name to its use
(Input , Output or AltInput). If a synchronisation channel were classified as Input for a particular
process, the process should call read(); otherwise, it should call write(null). However, the
strategy did not make clear how this classification should be made; it just assumed that the
classification was provided.

In this example, we see that this classification should not be statically determined, because in
this case, one of the parallelisms would contain two readers, or two writers. Our solution was to
define another type, Undefined , to classify synchronisation channels. The class GeneralChannel
also defines the method synchronise, which is used by synchronisation channels instead of read
and write. The method synchronise calls read or write, according to the information in
ChanInfo, which determines if this instance should be used as a reader or as a writer. The
decision of whether the process will be the reader or the writer in a parallelism is left to the
instantiation, when ChanInfo is initialised.

5.2.3 Recursion and iterated operations for actions

The translation of recursive actions and iterated actions uses inner classes. As with action par-
allelism, it is also necessary to use the information in the local environment make copies of the
local variables. The motivation to have copies of local variables here is not the same as in the
translation of the parallelism; it is just because some kinds of variables cannot be seen inside the
inner class.

The original translation strategy determines that, for each local variable, there should be an
attribute in the inner class which would be initialised with the original value, in the constructor,
and then retrieved after the action terminates. However, state components and process parameters
can be seen inside the inner class because they are translated as attributes of classes. In our
implementation, instead of declaring copies of these variables we just access them directly in the
inner class. The new rules that we actually use are presented in Appendix A (Rules A.43, A.49
and A.50).

5.2.4 External choice

The original strategy presented an alternative implementation for the external choice operation,
when the actions were guarded and the guards were mutually exclusive. This can be refined to an
if-then-else statement, and, consequently, has a simple implementation.

We chose not to implement this rule because it is not trivial. The problem of determining if
predicates are mutually exclusive is a task for a theorem prover. The rule is still implemented



CHAPTER 5. EVALUATION OF THE ORIGINAL TRANSLATION STRATEGY 61

correctly with the standard rule for external choice, because only one guard will be enabled, and
therefore, only one action could be selected. If the user wants a more efficient implementation,
they can use a simple refinement rule to transform the external choice into Circus guarded actions.
This is in accordance with the spirit of the translation strategy, which should be applied to a
refined Circus program.

5.3 Final considerations

In this chapter we have discussed some errors found in the original translation strategy, and the
solutions that we have proposed. We have also considered alternative implementations for some
rules.

One interesting point that arose from our work is the difference between the implementation of
types in the original translation strategy, and in our new proposal. In the original strategy, types
were regarded as sets, and variables defined using different sets yielded variables from different
Java types. Our approach is closer to the concept of type in Circus: only the maximal types are
regarded as types. For now, only free types and numbers are considered, but we intend to keep
with this philosophy when we extend the strategy to deal with complex types.

We have also found out that the implementation of action parallelism did not correspond to
the semantics of Circus. Action parallelism deals with copies of the values. After the parallelism
terminates, the original values are updated with the copies from each parallel action, according
to their partition sets. When a parallel action contains a call to another action, this must be
implemented with an inner class whose attributes are the copies of the variables. This is a more
complex and less intuitive implementation, than the original proposal, which uses a call to a
method; however, it was necessary in order to have a correct implementation.

The main modification to the original translation strategy was the use of GeneralChannel to
represent a channel, instead of Any2OneChannel. It permitted the unification of rules for simple
and multi-synchronisation cases, and an easy way to determine if a channel that is not defined as
input nor output is to be used as a reader or a writer in each process where it takes part.



Chapter 6

Verification of the
multi-synchronisation protocol

In the last chapter, we revealed some errors that were found in the original translation strategy.
A complete proof of soundness for the translation strategy requires a formal semantics for Java,
and a mapping from the Circus semantics. With that, we could prove that the semantics of every
Circus program is in correspondence with the semantics of the Java program obtained with the
translation. This, however, is by no means a simple task. Here, we propose a smaller step to bridge
the gap between Circus and Java: to model the JCSP constructs and the Java programs in Circus
itself, and use the Circus refinement calculus to prove that the translation rules are refinement
laws. We illustrate this approach by considering the algorithm for multi-synchronisation.

We present a Circus model of multi-synchronisation in a channel that takes part in an external
choice. Afterwards, we present a Circus model for the implementation of the multi-synchronisation
protocol, which is based on the Java source code generated by our translation strategy. We then
prove, using the refinement calculus of Circus and the strategy presented in [42], that the multi-
synchronisation is refined by our model of the implementation.

The translation strategy and JCircus can handle more general forms of multi-synchronisation
than that we consider here. Clients may take part in more than one multi-synchronisation, in more
than one simple synchronisation, and values may be carried through multi-synchronised channels.
However, the actual rule for translation of multi-synchronisation is just a generalisation of the one
we verify here. We believe that its verification could be carried out using a similar approach.

6.1 Multi-synchronisation in Circus

We model a multi-synchronisation as an iterated parallelism of n processes that synchronise on a
channel m. The processes are indexed by elements of the set I , which range from zero to n − 1.
The constants n and I are introduced in axiomatic definitions.

n : N
I == 0 . . (n − 1)

The multi-synchronised channel m is declared as an untyped channel, as it carries no value.

channel m

62
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The model also uses channels that represent individual events. These are declared as having type
I , because they carry the index of the process that is performing the event.

channel q , interrupt : I

The multi-synchronisation is defined in the process Network Spec, which follows.

process Network Spec =̂




‖ i : I • |[{m}]|
(µX •

m → q .i → X
2

interrupt .i → X
)



\ {| m |}

The network is the parallel combination of a collection of processes, indexed by variable i , which
range from zero to n−1. The i -th process is recursive, and continuously offers the choice between
the multi-synchronised event m, and the individual event interrupt .i . The multi-synchronisation
is followed by the event q .i , which represents an individual transaction that every process executes
after the multi-synchronisation. The multi-synchronised channel m is hidden from the environ-
ment, which means that we know the identities of all of its participants: no other process outside
the network will ever synchronise on it.

The external behaviour of this network can be informally described as follows: the events
interrupt .i (for all i in I ) will be continuously performed, in any order, allowing repetition; but
once an event q .i occurs (for any i in I ), the events q .i for all other processes have to be executed
only once before any event interrupt .i is executed again.

6.2 A Circus model for the multi-synchronisation protocol

As already mentioned, the model for the multi-synchronisation protocol is based on the Java source
code generated by the translation. The code was written using JCSP; the classes MultiSyncClient
and MultiSyncControl are implementations of the interface CSProcess and their methods run
make use of the JCSP classes for parallelism and alternative. There is a quite direct correspondence
between our model and the actual implementation.

Figure 6.1 shows the Circus model for the protocol. The architecture was explained in Chap-
ter 3, and the idea is the same for our simplified version. The implementation is a paral-
lelism between the controller (the second process), which is implemented by an instance of
MultiSyncControl, and an interleaving of clients (the first process), which are implemented by
instances of MultiSyncClient.

The controller is the process that manages the requests for multi-synchronisation made by
the clients. Since in our simplified version we deal with only one multi-synchronised channel, our
model contains only one controller. It communicates with the clients through channels toA, fromA,
toB and fromB ; these communications represents the four phases of the protocol. In our model,
we deal with four channels, instead of reusing the implementation’s channels to and from, in the
first and third, and second and fourth phases of the protocol, respectively.

The channels from are arrays that each controller uses to communicate with its clients. The
channels to are used by the clients to communicate values to the controller; it is a shared channel,
however, it is not multi-synchronised, because the clients synchronise with the controller one at a
time.

Channels fromA and fromB carry values from the set I × Boolean. The type Boolean is
introduced as a free type. Remember that channel from, in the implementation, is an array of
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process Network Impl =̂






||| i : I •
µX • toA!i →

fromA.i?any →
toB !i →

fromB .i?synchronised →
(synchronised = true) & q .i → X
2

(synchronised = false) & X
2

interrupt .i →
toA!(flip i) → X
2

fromA.i?anyt → toB !(flip i) → fromB .i?any → X




|[{toA, fromA, toB , fromB}]|


(µX • count : I •
(count > 0 ∧ count ≤ n) &

toA?nextOffer →
(nextOffer ≥ 0) & X (count − 1)
2

(nextOffer < 0) & X (count + 1)
2

(count = 0) &
(µY • i : I •

(i < n) & fromA.i !true → Y (i + 1)
2

(i = n) &
(µZ • i , count : I •

(i ≥ 0 ∧ i < n) & toB?nextcommit →
(nextcommit ≥ 0) & Z (i + 1, count − 1)
2

(nextcommit < 0) & Z (i + 1, count)
2

(i = n) &
(µW =̂ i : I •

(i < n) &
fromB .i !(count = 0) → W (i + 1)

2

(i = n) & X (n)
)(0)

)(0,n)
)(0)

)(n)







\ {| toA, fromA, toB , fromB |}

Figure 6.1: Circus model for the multi-synchronisation protocol
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channels; that is why we defined its type as a cartesian product. The I represents the index of
the array, and Boolean is the type of the values the channel carries.

Boolean ::= True | False

channel fromA, fromB : I × Boolean

We also define an auxiliary function flip, which is introduced in an axiomatic definition.

flip : N→ N

∀ i : N • flip i = −(i + 1)

This function is used to invert the signal of the index of a process; channels toA and toB send
a flipped index to signal to the controller that a client has given up participating in the multi-
synchronisation. Their definitions are as follows.

Message == −n . . (n − 1)

channel toA, toB : Message

The multi-synchronisation protocol consists of four phases. In the first phase, clients use channel
toA to make offers to take part in the multi-synchronisation. The controller counts how many
clients have not made an offer yet. It does not pass to the second phase until count is zero, that
is, all clients have made an offer. The first phase is implemented by the first recursion, on X , in
the controller.

In the second phase (recursion on Y ), the controller invites the clients to commit to the multi-
synchronisation. Clients have the chance to commit to the multi-synchronisation, by executing
the event fromA.i , or to interrupt, by executing interrupt .i .

If all the clients decide to commit then the multi-synchronisation will occur. In the third phase
(recursion on Z ), the controller counts how many clients interrupted. In the fourth phase (recursion
on W ) the controller communicates to the clients if all clients agreed to synchronise, that is, if count
is equal to zero. If this is the case, then the clients perform their q .i events, to acknowledge that
the multi-synchronisation has occurred and the protocol is reinitialised; otherwise, the protocol is
just reinitialised.

In our model of the implementation, the channels used for communication between the con-
troller and clients are hidden. This gives us an interface which is the same as the one for our
model of the specification: only channels interrupt and q can be seen by the environment. The
refinement consists in proving that every behaviour that can be observed in the specification model
is also a behaviour that can be observed in the implementation model. This is what is guaranteed
by the Circus refinement relation.

6.3 Proof of refinement

Here we present an overview of the steps used to prove that the specification is refined by the
multi-synchronisation protocol. Each step is justified by the application of a refinement law; the
complete refinement can be found in the extended version of this thesis [16]. We used the Circus
laws already published in the literature [42, 32], but we also needed some new laws which we
present in Appendix B. The proof of these new laws is left as future work.

The approach taken for carrying out the refinement consists in refining the specification to an
action system; transforming the model for the implementation to another action system; and then
proving that the action systems are equivalent. An action system is a recursive process in which
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only one event is performed in each iteration. The execution is controlled by a local variable,
the program counter, whose value is used to check which event is enabled in each iteration. The
transformation into an action system is a way to linearise the model. The strategy for refinement
is summarised in Figure 6.2.

Network_Spec

Refine to action system

Network_SpecAS

Network_Impl

Transform to action system

Network_ImplAS

Prove equality

Figure 6.2: Strategy for proof of refinement

6.3.1 Refining Network Spec to an action system

We start with our model for the specification of a multi-synchronisation.



‖ i : I • |[{m}]|
(µX •

m → q .i → X
2

interrupt .i → X
)



\ {| m |}

First, we refine each of the parallel processes to an action system. For that, we introduce a variable
block that introduces a variable pcs, which is the program counter for each process i .

v { Law B.1 (Action system conversion) }



‖ i : I • |[{m}]|
var pcs : N •

pcs := 0;
(µX •

pcs = 0 & m → pcs := 1; X
2

pcs = 0 & interrupt .i → pcs := 0; X
2

pcs = 1 & q .i → pcs := 0; X
)




\ {| m |}

Now we widen the scope of the counter pcs, by bringing its declaration to the outside of the
parallelism. The variable pcs is now an array, indexed by the variable i from I .

= {Laws B.88 (Parallel state) and B.89 (Parallel assignment) }
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var pcsi : N •
(||| i : I • pcsi := 0);
‖ i : I • |[{m}]|

(µX •
pcsi = 0 & m → pcsi := 1; X
2

pcsi = 0 & interrupt .i → pcsi := 0; X
2

pcsi = 1 & q .i → pcsi := 0; X
)




\ {| m |}

Now the parallel composition is transformed into a sequential action system. The event m, which
was shared between the processes, gives rise to a prefixing whose guard is the conjunction of the
processes’ guards, and whose action is the interleaving of the processes’ actions.

= { Law B.2 (Action system parallel) }



var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & m → (||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




\ {| m |}

The operation of hiding the event m can be distributed over the variable declaration, the sequen-
tial composition, the iterated interleaving, the assignment and the fixed point operator.

= { Laws B.22, B.23, B.24, B.25 and B.26 (Hiding distribution) }

var pcsi : N •
||| i : I • pcsi := 0;

µX •




(∀ i : I • pcsi = 0) & m → (||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X



\ {| m |}

Now we transform the external choice composed by the last two branches into a guarded action,
so that the specification is in an adequate format for the application of the next law, which dis-
tributes the hiding over the external choice. Note that the guard of an iterated external choice is
the existential quantification of their guards.

= { Law B.77 (External choice/Guarded action) }
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var pcsi : N •
||| i : I • pcsi := 0;

µX •




(∀ i : I • pcsi = 0) & m → (||| i : I • pcsi := 1); X
2

(∃ i : I • pcsi = 0) ∨ (∃ i : I • pcsi = 1) &
2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X



\ {| m |}

Now we can apply a law to distribute the hiding through the action system. Note that the action
that follows the prefixing of m, and the action in the second branch of the outermost external
choice do not refer to m; so hiding m is vacuous.

= { Laws B.19 (Hiding conditional external choice distribution 2a) and B.21 (Hiding
identity) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (
(||| i : I • pcsi := 1)
2

Stop
u
(∃ i : I • pcsi = 0) ∨ (∃ i : I • pcsi = 1) &

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X
)
2 ¬ (∀ i : I • pcsi = 0) ∧ ((∃ i : I • pcsi = 0) ∨ (∃ i : I • pcsi = 1)) &


2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




We use a law to manipulate the guard of the second branch of the outermost external choice.

= { Law B.65 (Guard combination) }
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var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (
(||| i : I • pcsi := 1)
2

Stop
u
(∃ i : I • pcsi = 0) ∨ (∃ i : I • pcsi = 1) &

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X
)
2 ¬ (∀ i : I • pcsi = 0) &



(∃ i : I • pcsi = 0) ∨ (∃ i : I • pcsi = 1) &
2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




Now we transform the guarded external choices back to a simple external choice again.

= { Law B.77 (External choice/Guarded action) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (
(||| i : I • pcsi := 1)
2

Stop
u


2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




)
2 ¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X

2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X

We distribute the external choice over the internal choice, in the first branch of the outermost
external choice.

= { Law B.75 (External choice/Internal choice - distribution) }
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var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (


(||| i : I • pcsi := 1); X
2

Stop




u


(||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




)
2 ¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X

2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X

The action Stop is the unit of the external choice, so our model can be further simplified.

= { Law B.76 (External choice unit) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (
(||| i : I • pcsi := 1); X
u


(||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




)
2 ¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X

2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X

Note that we have an internal choice between the internal action ||| i : I • pcsi := 1 and an
external choice that offers as choice that same internal action. This is equivalent to keeping only
the external choice.

= { Law B.13 (External choice/Internal choice - Internal action) }
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var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) &


(||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




2 ¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X

We now distribute the guards over the external choice.

= { Law B.67 (Guard/External choice - distribution) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (||| i : I • pcsi := 1); X
2

(∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

(∀ i : I • pcsi = 0) & 2 i : I • pcsi = 1 & q .i → pcsi := 0; X
2

¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

¬ (∀ i : I • pcsi = 0) & 2 i : I • pcsi = 1 & q .i → pcsi := 0; X

We note that there are some common branches in the external choice. We can combine these
branches with the disjunction of guards.

= { Law B.66 (Guard expansion) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (||| i : I • pcsi := 1); X
2

(∀ i : I • pcsi = 0) ∨ ¬ (∀ i : I • pcsi = 0) &
2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X

2

(∀ i : I • pcsi = 0) ∨ ¬ (∀ i : I • pcsi = 0) &
2 i : I • pcsi = 1 & q .i → pcsi := 0; X

Also note that (∀ i : I • pcsi = 0) ∨ ¬ (∀ i : I • pcsi = 0) is always true.

= { Predicate calculus }
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var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (||| i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X

To finalise, we substitute the interleaving of internal actions in the first branch of the external
choice by a sequential composition of internal actions.

= { Law B.17 (Interleaving/Sequential composition - internal actions 2) }

var pcsi : N •
(||| i : I • pcsi := 0);
µX •

(∀ i : I • pcsi = 0) & (; i : I • pcsi := 1); X (I.a)
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X (I.b)
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X (I.c)

In this resulting model, we have eliminated the parallelism of processes and the multi-synchronised
event m. We give an intuition for why this model corresponds to the original one.

The array of variables pcs, indexed by I , serves to control the state of each parallel process
i ∈ I from the original model. The possible states are: zero, where the process can choose between
the events m and interrupt .i ; and 1, where the event m has just occurred.

When a process is in state zero, it can perform interrupt .i , independently (note that (I.b) is
a multiple external choice), or m (I.a). Since m is shared by all processes, they all must be in
state zero, in order that this event can occur. This is what the guard of (I.a) states. After the
multi-synchronisation, which is implicit in the resulting model, all processes go to state 1. Once
in this state, they must perform q .i before going back to initial state (I.c), where they are able to
execute the other events again.

6.3.2 Transforming Network Impl into an action system

In this section, we transform the model for the implementation into an action system. The
refinement steps are quite similar to the ones presented in the last section.
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process Network Impl =̂




||| i : I •
µX • toA!i →

fromA.i?any →
toB !i →

fromB .i?synchronised →
(synchronised = true) & q .i → X
2

(synchronised = false) & X
2

interrupt .i →
toA!(flip i) → X
2

fromA.i?anyt → toB !(flip i) → fromB .i?any → X




(II.a)

|[{toA, fromA, toB , fromB}]|


(µX • count : I •
(count > 0 ∧ count ≤ n) &

toA?nextOffer →
(nextOffer ≥ 0) & X (count − 1)
2

(nextOffer < 0) & X (count + 1)
2

(count = 0) &
(µY • i : I •

(i < n) & fromA.i !true → Y (i + 1)
2

(i = n) &
(µZ • i , count : I •

(i ≥ 0 ∧ i < n) & toB?nextcommit →
(nextcommit ≥ 0) & Z (i + 1, count − 1)
2

(nextcommit < 0) & Z (i + 1, count)
2

(i = n) &
(µW =̂ i : I •

(i < n) & fromB .i !(count = 0) → W (i + 1)
2

(i = n) & X (n)
)(0)

)(0,n)
)(0)

)(n)




(II.b)

First, let us consider the interleaving of clients (II.a). We transform each interleaved client into
an action system. The result is similar to that of Law B.1 (Action system conversion): we have
the program counter pc, but this time there are eight possible states for the action system. The
derivation of Lemma B.98 is in Appendix C of the extended version. It includes the application
of the Least Fixed Point Law, used to refine a recursion.
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(II.a)

= { Lemma B.98 }
||| i : I •

var pc : N, sync : Boolean •
pc := 0;
µX •

pc = 0 & toA!i → pc := 1; X
2 pc = 1 & fromA.i?any → pc := 2; X
2 pc = 2 & toB !i → pc := 3; X
2 pc = 3 & fromB .i?synchronised → pc := 4; sync := synchronised ; X
2 (pc = 4 ∧ sync = true) & q .i → pc := 0; X
2 (pc = 4 ∧ sync = false) & pc := 0; X
2 pc = 1 & interrupt .i → pc := 5; X
2 pc = 5 & toA!(flip i) → pc := 0; X
2 pc = 5 & fromA.i?anyt → pc := 7; X
2 pc = 7 & toB?(flip i) → pc := 8; X
2 pc = 8 & fromB .i?anyf → pc := 0; X

As it was done with the model of the specification, we can apply laws to transform the interleaving
of action systems into a single action system. As we widen the scope of the counter pc, we have
an array of counters pci , instead. We then get the following action system for the interleaving of
clients.

= { Laws B.88 (Parallel state), B.89 (Parallel assignment) and B.2 (Action system parallel)}
var pci : N, synci : Boolean •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & toA!i → pci := 1; X
2

2 i : I • pci = 1 & fromA.i?any → pci := 2; X
2

2 i : I • pci = 2 & toB !i → pci := 3; X
2

2 i : I • pci = 3 & fromB .i?synchronised → pci := 4; synci := synchronised ; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • pci = 5 & toA!(flip i) → pci := 0; X
2

2 i : I • pci = 5 & fromA.i?anyt → pci := 7; X
2

2 i : I • pci = 7 & toB?(flip i) → pci := 8; X
2

2 i : I • pci = 8 & fromB .i?anyf → pci := 0; X
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Now we transform the controller into an action system, using Lemma B.99. The variable pc is
the program counter for this action system.

The proof of this lemma is also in Appendix C of the extended version. The controller is a
parametrised recursion, so, the first step in is to transform it into a non-parametrised recursion.
For that, we need to convert the parameters into local variables, and rename them where neces-
sary, to avoid confusion; this originate variables countx , countz , iy , iz , iw . After that, the steps
are pretty similar to those of Lemma B.98 for the conversion of clients; we use Laws B.33 (Least
fixed point) and B.29 (Assumption/recursion - refinement) to prove refinement in both directions.

(II.b)

= { Lemma B.99 }

var pc : N; countx , countz , iy , iz , iw : I ; nextO ,nextC : Message •
pc := 0;
countx := n;
µX •

(pc = 0 ∧ countx > 0) & toA?nextOffer → pc := 1; nextO := nextOffer ; X
2

(pc = 1 ∧ nextO ≥ 0) & pc := 0; countx := countx − 1; X
2

(pc = 1 ∧ nextO < 0) & pc := 0; countx := countx + 1; X
2

(pc = 0 ∧ countx = 0) & pc := 2; iy := 0; X
2

(pc = 2 ∧ iy < n) & fromA.iy !true → pc := 2; iy := iy + 1; X
2

(pc = 2 ∧ iy = n) & pc := 3; iz := 0; countz := n; X
2

(pc = 3 ∧ iz ≥ 0 ∧ iz < n) & toB?nextCommit → pc := 4; nextC := nextCommit ; X
2

(pc = 4 ∧ nextC ≥ 0) & pc := 3; iz := iz + 1; countz := countz − 1; X
2

(pc = 4 ∧ next < 0) & pc := 3; iz := iz + 1; X
2

(pc = 3 ∧ iz = n) & pc := 5; iw = 0; X
2

(pc = 5 ∧ iw < n) & fromB .iw !(countz = 0) → pc := 5; iw := iw + 1; X
2

(pc = 5 ∧ iw = n) & pc := 0; X

Now we merge the action systems for the interleaving of clients and the controller. To do this, we
combine the guards of any events on which the parallel processes synchronise using Law B.3 (Merge
action system parallel); and we also compose in parallel the actions that follow the prefixing. Since
these actions are only internal and do not share the same variables, their parallelism is equal to
their sequential composition (Laws B.91- Parallelism/Interleaving - equivalence 2 and B.16 -
Interleaving/Sequential composition - internal actions).
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= { Laws B.3, B.91 and B.16 }

var pc : N; countx , countz , iy , iz , iw : I ; nextO ,nextC : Message; pci : N; synci : Boolean •
pc := 0;
countx := n;
(||| i : I • pci := 0);
µX •

2 i : I • (pci = 0 ∧ pc = 0 ∧ countx > 0) & toA.i →
pci := 1; pc := 1; nextO := i ; X

2

2 i : I • (pci = 1 ∧ pc = 2 ∧ iy < n ∧ i = iy) & fromA.i .true →
pci := 2; pc := 2; iy := iy + 1; X

2

2 i : I • (pci = 2 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) & toA.i →
pci := 3; pc := 4; nextC := i ; X

2

2 i : I • (pci = 3 ∧ pc = 5 ∧ iw < n ∧ i = iw ) & fromA.i .(countz = 0) →
pci := 4; pc := 5; synci := (countz = 0); iw := iw + 1; X

2

2 i : I • (pci = 5 ∧ pc = 0 ∧ countx > 0) & toA.(flip i) →
pci := 0; pc := 1; nextO := flip i ; X

2

2 i : I • (pci = 5 ∧ pc = 2 ∧ iy < n ∧ i = iy) & fromA.i .true →
pci := 7; pc := 2; iy := iy + 1; X

2

2 i : I • (pci = 7 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) & toA.(flip i) →
pci := 8; pc := 4; nextC := (flip i); X

2

2 i : I • (pci = 8 ∧ pc = 5 ∧ iw < n ∧ i = iw ) & fromA.i .(countz = 0) →
pci := 0; pc := 5; iw := iw + 1; X

2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2 (pc = 1 ∧ nextO ≥ 0) & pc := 0; countx := countx − 1; X
2 (pc = 1 ∧ nextO < 0) & pc := 0; countx := countx + 1; X
2 (pc = 0 ∧ countx = 0) & pc := 2; iy := 0; X
2 (pc = 2 ∧ iy = n) & pc := 3; iz := 0; countz := n; X
2 (pc = 4 ∧ nextC ≥ 0) & pc := 3; iz := iz + 1; countz := countz − 1; X
2 (pc = 4 ∧ next < 0) & pc := 3; iz := iz + 1; X
2 (pc = 3 ∧ iz = n) & pc := 5; iw = 0; X
2 (pc = 5 ∧ iw = n) & pc := 0; X

) \ {toA, fromA, toB , fromB}

Our next step is to eliminate the communications on channels to and from, and the hiding operator.
We use steps similar to those we used for the model of the specification. First, we distribute the
hiding over the action system variable declarations, assignments and recursion (Laws B.22, B.23,
B.24, B.25 and B.26 - Hiding distribution). Then we apply Law B.20 (Hiding conditional external



CHAPTER 6. VERIFICATION OF THE MULTI-SYNCHRONISATION PROTOCOL 77

choice 3) to distribute the guard over the action system. The result is not an action system
anymore, but then we can manipulate guards and choices to make it an action system again. We
are left with an action system similar to that obtained from the previous step, but without the
communications. In the extended version of this thesis, the detailed steps of transformation are
presented. Figure 6.3 shows the resulting model, where we can distinguish three groups of actions
in the external choice: the first are the actions performed only by the clients; the second one are
the communications between the controller and the clients, which now are implicit; the third are
the actions performed only by the controller. This observation will guide us in the following steps
of transformation.

var pc : N; countx , countz , iy , iz , iw : I ; nextO ,nextC : Message; pci : N; synci : Boolean •
pc := 0;
countx := n;

(||| i : I • pci := 0);

µX •


2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X

2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X

2

2 i : I • pci = 1 & interrupt .i → pci := 5; X




2


2 i : I • (pci = 0 ∧ pc = 0 ∧ countx > 0) & pci := 1; pc := 1; nextO := i ; X (III.a)

2

2 i : I • (pci = 1 ∧ pc = 2 ∧ iy < n ∧ i = iy) & pci := 2; pc := 2; iy := iy + 1; X

2

2 i : I • (pci = 2 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) & pci := 3; pc := 4; nextC := i ; X (III.b)

2

2 i : I • (pci = 3 ∧ pc = 5 ∧ iw < n ∧ i = iw ) &

pci := 4; pc := 5; synci := (countz = 0); iw := iw + 1; X
2

2 i : I • (pci = 5 ∧ pc = 0 ∧ countx > 0) & pci := 0; pc := 1; nextO := flip i ; X (III.c)

2

2 i : I • (pci = 5 ∧ pc = 2 ∧ iy < n ∧ i = iy) & pci := 7; pc := 2; iy := iy + 1; X

2

2 i : I • (pci = 7 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) &

pci := 8; pc := 4; nextC := (flip i); X (III.d)
2

2 i : I • (pci = 8 ∧ pc = 5 ∧ iw < n ∧ i = iw ) & pci := 0; pc := 5; iw := iw + 1; X




2


(pc = 1 ∧ nextO ≥ 0) & pc := 0; countx := countx − 1; X (III.a′)
2 (pc = 1 ∧ nextO < 0) & pc := 0; countx := countx + 1; X (III.c′)
2 (pc = 0 ∧ countx = 0) & pc := 2; iy := 0; X
2 (pc = 2 ∧ iy = n) & pc := 3; iz := 0; countz := n; X
2 (pc = 4 ∧ nextC ≥ 0) & pc := 3; iz := iz + 1; countz := countz − 1; X (III.b′)
2 (pc = 4 ∧ nextC < 0) & pc := 3; iz := iz + 1; X (III.d′)
2 (pc = 3 ∧ iz = n) & pc := 5; iw = 0; X
2 (pc = 5 ∧ iw = n) & pc := 0; X




Figure 6.3: Action system for Network Impl
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6.3.3 Proof of equality of the action systems for specification and im-
plementation

In this section we start from the action system obtained from the implementation, and simplify it,
until we reach the action system obtained from the specification. We have eliminated explicitly the
hidden channels in both models, so that now we have the same interface (channels) in both models.
However, each model uses different local variables. Therefore, to carry out the transformations
we need to perform a data refinement. When performing data refinement in Circus, the structure
of the specification is usually maintained.

In our approach for the transformation, we gradually simplify the action system for the im-
plementation. The goal is to reach the same structure of the action system for the specification.
Many of the steps involve merging branches or narrowing the set of values that the variables can
represent. During the process of simplification, we sometimes make some of the variables useless,
and eliminate them, sometimes using data refinement, sometimes using laws for manipulation of
variables. When we reach the same structure of the action system for the specification, we are left
with only the variables pci and synci . We apply data refinement to reach the model which uses
only the variables pcsi .

To proceed with the transformation, we note that it is possible to merge branches (III.a′),
(III.b′), (III.c′) and (III.d′) with (III.a), (III.b), (III.c) and (III.d), respectively, using Law B.14 (Elim-
ination of internal action 2). Intuitively, we can do that because the internal action in the first
group enables the guard of the internal action in the second group, so we know that they will
eventually occur.
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= { Law B.14 }

var pc : N; countx , countz , iy , iz , iw : I ; nextO ,nextC : Message; pci : N; synci : Boolean •
pc := 0;
countx := n;
||| i : I • pci := 0;
µX •


2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X




2


2 i : I • (pci = 0 ∧ pc = 0 ∧ countx > 0) &
pci := 1; pc := 0; countx := countx − 1; nextO := i ; X (IV.a)

2

2 i : I • (pci = 5 ∧ pc = 0 ∧ countx > 0) &
pci := 0; pc := 0; countx := countx + 1; nextO := flip i ; X (IV.b)

2

2 i : I • (pci = 1 ∧ pc = 2 ∧ iy < n) & pci := 2; pc := 2; iy := iy + 1; X
2

2 i : I • (pci = 5 ∧ pc = 2 ∧ iy < n) & pci := 7; pc := 2; iy := iy + 1; X
2

2 i : I • (pci = 2 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) &
pci := 3; pc := 3; iz := iz + 1; countz := countz − 1; nextC := i ; X

2

2 i : I • (pci = 7 ∧ pc = 3 ∧ iz ≥ 0 ∧ iz < n) & pci := 8; pc := 3;
iz := iz + 1; countz := countz − 1; nextC := (flip i); X

2

2 i : I • (pci = 3 ∧ pc = 5 ∧ iw < n) &
pci := 4; synci := (countz = 0); pc := 5; iw := iw + 1; X

2

2 i : I • (pci = 8 ∧ pc = 5 ∧ iw < n) & pci := 0; pc := 5; iw := iw + 1; X




2


(pc = 0 ∧ countx = 0) & pc := 2; iy := 0; X (IV.c)
2 (pc = 2 ∧ iy = n) & pc := 3; iz := 0; countz := n; X
2 (pc = 3 ∧ iz = n) & pc := 5; iw = 0; X
2 (pc = 5 ∧ iw = n) & pc := 0; X




After the last transformation, variables nextO and nextC become useless, because their values
are never used to determine the flow of execution of the action system. We can use Laws B.78
(Useless assignment - External choice) and B.30 (Useless assignment - Recursion) to move the
assignments to these variables over the external choice and the recursion; then, we eliminate the
assignments with Laws B.83 (Useless assignment) and B.84 (Useless assignment 2); and finally,
since the variables are not used in the program, we can use Law B.87 (Unused variable) to eliminate
the declarations of variables nextO and nextC . The result is a program similar to the previous
one, but without the references to variables nextO and nextC .

Our next step is to eliminate the variable pc. This variable appeared when we the transformed
the controller into an action system. It is the program counter for the action system that repre-
sented the controller. Its role is to control which phase of the protocol is being executed, so that
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only the guards for one phase of the protocol are enabled each time. After the last simplification,
pc can assume four values: 0, 2, 3 or 5, each one corresponding to one phase of the protocol. Note
that, in the previous specification, branches (IV.a), (IV.b) and (IV.c) are enabled only when pc is
zero, and this corresponds to the first phase of the protocol. The guard of branch (IV.c) is the
condition for finishing the first phase of the protocol. The corresponding action assigns the value
2 to the variable pc, and initiates the second phase of the protocol.

If we split up the action system into a sequential composition of four recursions, we can make
the four phases of the protocol explicitly separated. This eliminates the need of the variable pc,
since its role is only to determine which actions are enabled in each phase. The first law to apply
is Law B.34 (Recursion split), to break the action system into a sequential composition of action
systems. The result is an outer recursion, on S , which has as its body a sequential composition
of recursions. Then we use Law B.27 (Recursion halt) to separate the action that follows the
stopping condition in each recursion. The stopping condition is now followed by the action Skip,
and the action is composed in sequence with the recursion.

To proceed, we use laws for manipulation of assumptions to eliminate the variable pc: we
add assumptions after each assignment to the variable pc (Law B.53 - Assumption introduction -
assignment), and place them just before the beginning of the next recursion (Law B.54 - Assump-
tion move - assignment). Each of the recursions is now preceded by an assumption that states the
initial value of pc. The assumptions make the assignments in the body of the recursions useless,
so we can use Law B.36 (Useless variable - recursion) to eliminate them and the references to the
variable pc in the guards.

When we have taken away all the references to the variable pc from inside the inner recursions,
we are left with its initialisation and the assignments in between the recursions. The assignments
to the variable pc are eliminated with Laws B.31 (Fixed Point Rolling), B.53 (Assumption intro-
duction - assignment), B.48 (Move assignment), B.49 (Assignment sequence) and B.30 (Useless
assignment - recursion). Finally, we eliminate the declaration of pc with Law B.87 (Unused vari-
able).

= { Laws B.78, B.30, B.83, B.84, B.87, B.87, B.34, B.27, B.53, B.54, B.36, B.31, B.53, B.48,
B.49, B.30 and B.87 }

var countx := n, countz , iy , iz , iw , pci , synci •
(||| i : I • pci := 0);
µS •

µX •


2 i : I • (pci = 0 ∧ countx > 0) & pci := 1; countx := countx − 1; X
2

2 i : I • (pci = 5 ∧ countx > 0) & pci := 0; countx := countx + 1; X
2

(countx = 0) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X




;

iy := 0;



CHAPTER 6. VERIFICATION OF THE MULTI-SYNCHRONISATION PROTOCOL 81

µX •


2 i : I • (pci = 1 ∧ iy < n) & pci := 2; iy := iy + 1; X
2

2 i : I • (pci = 5 ∧ iy < n) & pci := 7; iy := iy + 1; X
2

(iy = n) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X




;

iz := 0; countz := n;
µX •


2 i : I • (pci = 2 ∧ iz ≥ 0 ∧ iz < n) &
pci := 3; iz := iz + 1; countz := countz − 1; X

2

2 i : I • (pci = 7 ∧ iz ≥ 0 ∧ iz < n) &
pci := 8; iz := iz + 1; countz := countz − 1; X

2

(iz = n) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X




;

iw = 0;
µX •


2 i : I • (pci = 3 ∧ iw < n) & pci := 4; synci := (countz = 0); iw := iw + 1; X
2

2 i : I • (pci = 8 ∧ iw < n) & pci := 0; iw := iw + 1; X
2

(iw = n) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X




;

countx := n;
S

Each of the inner recursions has an invariant; they are presented in Table 6.1. The invariants
determine which are the possible states of a client in each phase of the protocol. We can use this
observation to eliminate actions in the external choice that are never chosen. For that, we apply
Law B.8 (Eliminate useless branch) to each recursion.
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Recursion Invariant
First recursion ∀ i • (pci = 0 ∨ pci = 4 ∨ pci = 1 ∨ pci = 5)
Second recursion ∀ i • (pci = 1 ∨ pci = 2 ∨ pci = 5 ∨ pci = 7)
Third recursion ∀ i • (pci = 2 ∨ pci = 3 ∨ pci = 7 ∨ pci = 8)
Fourth recursion ∀ i • (pci = 3 ∨ pci = 8 ∨ pci = 4 ∨ pci = 0)

Table 6.1: Recursion invariants

= { Law B.8 }
var countx := n, countz , iy , iz , iw , pci , synci •

(||| i : I • pci := 0);
µS •

µX •


2 i : I • (pci = 0 ∧ countx > 0) & pci := 1; countx := countx − 1; X (V.a)
2

2 i : I • (pci = 5 ∧ countx > 0) & pci := 0; countx := countx + 1; X
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X
2 (countx = 0) & Skip




;

iy := 0;
µX •


2 i : I • (pci = 1 ∧ iy < n) & pci := 2; iy := iy + 1; X
2

2 i : I • (pci = 5 ∧ iy < n) & pci := 7; iy := iy + 1; X
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2 (iy = n) & Skip




;

iz := 0; countz := n;
µX •


2 i : I • (pci = 2 ∧ iz ≥ 0 ∧ iz < n) &
pci := 3; iz := iz + 1; countz := countz − 1; X

2

2 i : I • (pci = 7 ∧ iz ≥ 0 ∧ iz < n) &
pci := 8; iz := iz + 1; countz := countz − 1; X

2 (iz = n) & Skip




;

iw = 0;
µX •


2 i : I • (pci = 3 ∧ iw < n) &
pci := 4; synci := (countz = 0); iw := iw + 1; X (V.b)

2

2 i : I • (pci = 8 ∧ iw < n) & pci := 0; iw := iw + 1; X
2

2 i : I • (pci = 4 ∧ synci = true) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ synci = false) & pci := 0; X
2 (iw = n) & Skip




;

countx := n;
S
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Now we eliminate the variables countx , which is only a counter, and synci . For this, we use
data refinement with the following retrieve relation:

countx = #{i • pci = 0 ∨ pci = 4} ∧ (synci = true ⇔ countz = 0)

The variable countx is used to count how many clients have not made the request for multi-
synchronisation yet. It is initialised with n, the number of clients, and it is decremented when
a client goes from state 0 to 1 (see action (V.a) of the previous program). The clients that have
not made the request for multi-synchronisation are those that are in state 0 or 4. The variable
countz counts the number of processes that chose to interrupt instead of participating in the
multi-synchronisation. The variables synci determine if the multi-synchronisation will happen or
not. Each is assigned true if countz is zero (see branch (V.b) of the previous program).

The laws for simulation (Laws B.92, B.93, B.94, B.95, B.96 and B.97) justify this transforma-
tion.

= { Laws B.92, B.93, B.94, B.95, B.96 and B.97) }
var countz , iy , iz , iw , pci •

||| i : I • pci := 0;
µS •

µX •


2 i : I • (pci = 0 ∧ ∃ j • (pcj = 0 ∨ pcj = 4)) & pci := 1; X
2

2 i : I • (pci = 5 ∧ ∃ j • (pcj = 0 ∨ pcj = 4)) & pci := 0; X
2

(∀ i • pci = 1 ∨ pci = 5) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X




; (VI.a)

iy := 0;
µX •


2 i : I • (pci = 1 ∧ iy < n) & pci := 2; iy := iy + 1; X
2

2 i : I • (pci = 5 ∧ iy < n) & pci := 7; iy := iy + 1; X
2

(iy = n) & Skip
2

2 i : I • pci = 1 & interrupt .i → pci := 5; X




;

iz := 0; countz := n;
µX •


2 i : I • (pci = 2 ∧ iz ≥ 0 ∧ iz < n) &
pci := 3; iz := iz + 1; countz := countz − 1; X

2

2 i : I • (pci = 7 ∧ iz ≥ 0 ∧ iz < n) &
pci := 8; iz := iz + 1; countz := countz − 1; X

2

(iz = n) & Skip




;
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iw = 0;
µX •


2 i : I • (pci = 3 ∧ iw < n) &
pci := 4; synci := (countz = 0); iw := iw + 1; X

2

2 i : I • (pci = 8 ∧ iw < n) & pci := 0; iw := iw + 1; X
2

(iw = n) & Skip
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X




;

countx := n;
S

The stop condition of the first recursion states that no client can be in state zero when the recur-
sion terminates. Based on this observation, we can apply a law that merges some branches of the
action system and eliminates others. The result is shown next.

(VI.a)

= { Law B.9 (Merge branch 1)}

µX •


2 i : I • pci = 0 & pci := 1; X
2

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X




The recursions can now be transformed to combinations of recursion and specification statements.
At this point we eliminate the variables iy , iz , and iw , because they are only counters for the
previous recursions. The intuitive idea for this step is that we replace the internal actions with
specification statements, and then we obtain a model that contains communications, and whose
internal state transformations are described by specification statements. This is needed to simplify
the model. Our goal is to minimise the number of branches of the action system that contains
only internal transformations, so that we can have a system with a structure which is closer to
the one we want to reach, that is, the action system for the specification. The laws that we used
in this step are: Law B.15 (Elimination of internal action 2), for the first recursion; Law B.10
(Merge branches 2), for the second recursion; Law B.38 (Iteration), for the third recursion; and
Law B.11 (Merge branches 3), for the fourth recursion.

After these transformations, the variables iy , iz , and iw are not referenced anymore in the
program. We use Law B.87 (Unused variable) to eliminate their declarations.
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= { Laws B.15, B.10, B.38 and B.11 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •


2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 1 ∧ pci = 5 ⇒ pc′i = pci ]




;

µX •


2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

pci : [∀ i • pci = 1 ∨ pci = 5, ∀ i • pci = 1 ⇒ pc′i = 2 ∧ pci = 5 ⇒ pc′i = 7]


 ;

pci , countz :
[∀ i • pci = 2 ∨ pci = 7,
∀ i • (pci = 2 ⇒ pc′i = 3 ∧ pci = 7 ⇒ pc′i = 8) ∧ countz = #{i • pc′i = 8}];

pci : [∀ i • pci = 3 ∨ pci = 8,∀ i • pci = 3 ⇒ pc′i = 4 ∧ pci = 8 ⇒ pc′i = 0];

µX •


2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

Skip




;

S

Since the recursions are finite, for each one of them we can bring to the inside of the recursion the
actions that follow the stop condition. For that, we use Law B.27 (Recursion halt). We rename
the recursion variables to avoid confusion with their names.
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= { Law B.27 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •
2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 1 ∧ pci = 5 ⇒ pc′i = pci ];

µY •
2 i : I • pci = 1 & interrupt .i → pci := 5; Y
2


pci : [∀ i • pci = 1 ∨ pci = 5,
∀ i • pci = 1 ⇒ pc′i = 2 ∧ pci = 5 ⇒ pc′i = 7];

pci , countz : [∀ i • pci = 2 ∨ pci = 7,
∀ i • pci = 2 ⇒ pc′i = 3 ∧ pci = 7 ⇒ pc′i = 8 ∧

countz = #{i • pc′i = 8}];
pci : [∀ i • pci = 3 ∨ pci = 8,

∀ i • pci = 3 ⇒ pc′i = 4 ∧ pci = 8 ⇒ pc′i = 0];

µZ •
2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; Z
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; Z
2

Skip




;

S

We apply Law B.27 (Recursion halt) again to separate the action that follows the end of the
recursion on Y , preparing for the next step.
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= { Law B.27 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •
2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 1 ∧ pci = 5 ⇒ pc′i = pci ]

µY •


2 i : I • pci = 1 & interrupt .i → pci := 5; Y
2

Skip


 ;




pci : [∀ i • pci = 1 ∨ pci = 5,
∀ i • pci = 1 ⇒ pc′i = 2 ∧ pci = 5 ⇒ pc′i = 7];

pci , countz : [∀ i • pci = 2 ∨ pci = 7,
∀ i • pci = 2 ⇒ pc′i = 3 ∧ pci = 7 ⇒ pc′i = 8 ∧

countz = #{i • pc′i = 8}];
pci : [∀ i • pci = 3 ∨ pci = 8,

∀ i • pci = 3 ⇒ pc′i = 4 ∧ pci = 8 ⇒ pc′i = 0];

µZ •
2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; Z
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; Z
2

Skip




;

S

With the assumption that the guard (∀ i • pci = 0 ∨ pci = 5) introduces (Laws B.57 -
Guard/assumption - introduction), we can swap the order of the specification statement and
the recursion on Y (Law B.63 - Move specification statement), updating the guards in the re-
cursion to check the old values of pci , that is, before the transformation that the specification
statement describes. After that, we use Law B.27 (Recursion halt) to bring the actions that fol-
lows the recursion on Y back to the external choice again. The result is that we have a sequential
composition of four specification statements following the recursion on Y .
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= { Laws B.57, B.63 and B.27 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •
2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X (VII)
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
µY •

2 i : I • pci = 0 & interrupt .i → pci := 5; Y (VII)
2


pci : [∀ i • pci = 0 ∨ pci = 5,
∀ i • pci = 0 ⇒ pc′i = 1 ∧ pci = 5 ⇒ pc′i = pci ]

pci : [∀ i • pci = 1 ∨ pci = 5,
∀ i • pci = 1 ⇒ pc′i = 2 ∧ pci = 5 ⇒ pc′i = 7];

pci , countz : [∀ i • pci = 2 ∨ pci = 7,
∀ i • pci = 2 ⇒ pc′i = 3 ∧ pci = 7 ⇒ pc′i = 8 ∧

countz = #{i • pc′i = 8}];
pci : [∀ i • pci = 3 ∨ pci = 8,

∀ i • pci = 3 ⇒ pc′i = 4 ∧ pci = 8 ⇒ pc′i = 0];

µZ •
2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; Z
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; Z
2

Skip




;

S

The branch (VII) appears in the recursion on X and also in the recursion on Y . This is a
redundancy, since the decision to stop the first loop is non-deterministic. We can keep only the
first one, using Law B.28 (Elimination of redundant branch in recursion).

The four specification statements transform, step by step, the variables pci with values 1 (the
clients that did not interrupt) and 5 (the clients that interrupted), into 4 and 0, respectively.
The third specification statement will also assign to countz the number of clients that did not
interrupt. So we can merge these four specification statements into a single one, by applying
Law B.42 (Sequential composition) repeatedly.
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= { Laws B.28 and B.42 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •
2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
countz = #{i • pc′i = 0}];

µZ •
2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; Z
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; Z
2

Skip;
S

Again, there are redundant branches in the inner recursion. We can use Law B.28 (Elimination
of redundant branch in recursion) to simplify the specification. After that, we are left with only
the action Skip as the body of the recursion; the fixed point operator is clearly useless, and then
can be eliminated. For that, we use Laws B.43 (Sequence unit) and B.37 (Useless recursion).

= { Laws B.28, B.43 and B.37 }

var pci , countz •
||| i : I • pci := 0;
µS •

µX •
2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
countz = #{i • pc′i = 0}];

S
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The outer recursion does nothing more than calling the inner recursion again when it finishes. It
can be eliminated with the diagonal rule.

= { Law B.32 (Fixed point diagonal) }
var pci , countz •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5,

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
countz = #{i • pc′i = 0}]; X

We introduce an alternation to split the last branch in two cases: the case where all pcis are in
stage zero, which means that there was no interruption and, thus, the synchronisation will happen;
and the case where a interruption has happened. This is valid because the precondition implies
that one of the guards is always true.

= { Law B.39 (Alternation introduction) }
var pci , countz •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
if ∀ i • pci = 0 →

pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ∀ i • pci = 0,
∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧

countz = #{i • pc′i = 0}]; X
[]¬ (∀ i • pci = 0) →

pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ¬ (∀ i • pci = 0),
∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧

countz = #{i • pc′i = 0}]; X
fi

It is possible to transform the alternation to an external choice, since the guards exclude each
other and one of them will always be true.
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= { Law B.41 (Alternation/Guarded Actions - interchange) }
var pci , countz •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) &
∀ i • pci = 0 &

pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ∀ i • pci = 0,
∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧

countz = #{i • pc′i = 0}]; X
2

¬ (∀ i • pci = 0) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ¬ (∀ i • pci = 0),

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
countz = #{i • pc′i = 0}]; X

We distribute the guards, and now we have a single external choice.

= { Law B.67 (Guard/External choice - distribution) }
var pci , countz •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X
2

(∀ i • pci = 0 ∨ pci = 5) ∧ (∀ i • pci = 0) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ∀ i • pci = 0,

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
count ′z = #{i • pc′i = 0}]; X

2

(∀ i • pci = 0 ∨ pci = 5) ∧ ¬ (∀ i • pci = 0) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ¬ (∀ i • pci = 0),

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
count ′z = #{i • pc′i = 0}]; X

We simplify the guards, the pre-condition and the pos-condition of the first specification statement.
Law B.61 allows to substitute a pos-condition pos by pos1, if, in the context of the pre-condition,
pos and pos1 are equivalent, which is the case here.
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= { Predicate calculus, Law B.61 (Equivalent pos-condition) }

var pci , countz •
||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X (VIII.a)
2

2 i : I • pci = 0 & interrupt .i → pci := 5; X (VIII.b)
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X (VIII.c)
2

2 i : I • (pci = 4 ∧ countz 6= 0) & pci := 0; X (VIII.d)
2

(∀ i • pci = 0) &
pci , countz : [∀ i • pci = 0,

∀ i • pc′i = 4 ∧ count ′z = 0]; X (VIII.e)
2

(∀ i • pci = 0 ∨ pci = 5) ∧ ¬ (∀ i • pci = 0) &
pci , countz : [∀ i • pci = 0 ∨ pci = 5 ∧ ¬ (∀ i • pci = 0),

∀ i • pci = 0 ⇒ pc′i = 4 ∧ pci = 5 ⇒ pc′i = 0 ∧
count ′z = #{i • pc′i = 0}]; X (VIII.f)

The action system contains three irrelevant branches, whose behaviour can be simulated by the
execution in sequence of other branches. We can give an informal explanation of why they are
irrelevant. Since all the pcis are initialised with zero, the branch (VIII.b) needs to be chosen at
some point for the guard (∀ i • pci = 0 ∨ pci = 5) ∧ ¬ (∀ i • pci = 0) of branch (VIII.f) to become
available. If (VIII.f) is chosen, then those pcis in stage 5 are reinitialised; and the branch (VIII.c)
will eventually be chosen to reinitialise the pcis that were in stage 0. For those branches that
have performed an interruption when (VIII.f) is chosen, this is equivalent to branch (VIII.a), which
performs an interruption and does not change state; for the others, this is all equivalent to Skip.

= { Law B.14 (Elimination of internal action) }

var pci , countz •
||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

(∀ i • pci = 0) & pci , countz : [∀ i • pci = 0, ∀ i • pc′i = 4 ∧ count ′z = 0]; X

The guard of the third branch matches the precondition of the specification statement. We can
take advantage of that to insert an assumption and introduce an assignment.
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= { Laws B.57 (Guard/Assumption - introduction), B.45 (Assignment) }
var pci , countz •

||| i : I • pci := 0;
µX •

2 i : I • pci = 0 & interrupt .i → pci := 0; X
2

2 i : I • (pci = 4 ∧ countz = 0) & q .i → pci := 0; X
2

(∀ i • pci = 0) & (; i : I • pci := 4); countz := 0; X

And we can finally carry out a data refinement with a very straightforward retrieve relation:

(pcsi = 1 ⇔ pci = 4 ∧ countz = 0) ∧ (pcsi = 0 ⇔ pci = 0)

The value zero for the program counter in both action systems (specification and implementation)
represent the initial conditions. In the action system for the implementation, pci = 4 means that
we are in the final stage of the protocol; countz = 0 means that no client chose to interrupt.
Therefore, the synchronisation occurs. This is equivalent, in the action system for the specifica-
tion to the situation where a process is in state 1; this means that the multi-synchronisation has
occurred. The laws for simulation are used to justify the data refinement.

= { Laws B.92, B.93, B.94, B.95, B.96 and B.97 (Simulation) }
var pcsi : N •

||| i : I • pcsi := 0;
µX •

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X
2

(∀ i : I • pcsi = 0) & (; i : I • pcsi := 1); X

We conclude with a reordering of the branches of the external choice.

= { Law B.72 (Commutativity of external choice) }
var pcsi : N •

(||| i : I • pcsi := 0);
µX •



(∀ i : I • pcsi = 0) & (; i : I • pcsi := 1); X
2

2 i : I • pcsi = 0 & interrupt .i → pcsi := 0; X
2

2 i : I • pcsi = 1 & q .i → pcsi := 0; X




And we finally reach the action system for the specification.

6.4 Final considerations

In this chapter we have verified the implementation for the multi-synchronisation protocol. We
have proposed a specification for a situation where the multi-synchronised channel occurs in an
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external choice. The implementation is based on a protocol with four phases, in which a controller
handles the requests for multi-synchronisation.

In [42] a simpler form of multi-synchronisation, which did not involve choice, was verified. This
work was our major source of inspiration for the development of the refinement described in this
chapter. We follow the same approach of reducing the program to an action system in the first
stages of development. We used some laws introduced in that work, but we needed to propose
some new laws.

Some of the new laws we have proposed are derived laws, that is, laws that result from the
application of simpler laws in sequence. Some of the derivations are presented in the Appendix C
of the extended version of this thesis [16].

Other laws are quite specific. Proof of refinement laws of a language involves the semantics of
the language. Circus is based on the UTP, which is a theory of relations; refinement in the UTP
is interpreted as inverse implication. To prove that P1 v P2, we need to demonstrate that the
semantic model for P2 implies the semantic model for P1. We left the proof of the refinement laws
that we proposed as future work. In spite that, we believe that the refinement described in this
work is an important step towards the verification of the multi-synchronisation protocol.



Chapter 7

Conclusions

In this chapter we draw conclusions and cite the main contributions of our work. We also present
and analyse related work, and identify areas on which our work can be improved and extended.

7.1 Contributions

The use of tools is of fundamental importance to the practical application of formal methods.
Theorem provers, model checkers, tools for refinement and translators between formalisms provide
the necessary automation of techniques that help designers and developers to avoid errors and save
time when manipulating the complex formulas that are typical of the use of formal methods.

In this work we have implemented a tool for the Circus language: JCircus, a translator from
concrete Circus to Java. The implementation was based on previous work [29], which proposed rules
for translation from Circus to Java. The implementation of JCircus showed that the automation
of the translation strategy is feasible. Our effort for implementation revealed some errors in the
original strategy, and alternative translation rules have been proposed.

The automation provided by JCircus protects the user from the tedious and error-prone task
of manually coding the Java program resulting from the translation rules. Once the final concrete
specification has been reached, an implementation can be obtained within minutes. JCircus is
available for download from www.cs.york.ac.uk/circus, where we can also find the case studies
that we have carried out.

The programs generated by JCircus also provide a graphical interface, so that users can interact
with the program. Buttons represent channels, input parameters for the channels are entered on
text fields, and output parameters can be seen on the screen. The graphical interface, however, is
separated from the classes that implement each Circus program, so that it does not interfere on
the translation rules. The interface helps the user to visualise what the program does and can be
a useful tool to validate it. Therefore, JCircus proved itself not only an automatic translator, but
also an automatic generator of animators for Circus.

We have followed a structured approach in the development of JCircus, and used UML to
document the project. JCircus was implemented in Java, and uses the CZT framework, which was
recently extended with support for Circus. The CZT framework was designed to provide support
for Z and its extensions. Therefore, its design allows that extensions of formalisms can be easily
included. This is an important point, as Circus itself has extensions under development, which
include support for object-orientation, time and mobility. We want, in the future, to be able to
extend JCircus for these extensions as well.

We have followed a test strategy that included various types of tests, and we can say that JCircus
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is quite well-tested. In total, we have tested about 1000 lines of LATEX Circus specifications. These
tests included simple test cases to test the correctness of implementation of each translation rule,
and some simple programs like the GCD calculator described in Chapter 2.

The original translation strategy was presented in a didactic approach. First, it introduced
rules that did not cover systems that contained multi-synchronisation or generic channels. Then,
it was extended to consider these new features, and new versions of some rules were proposed
to deal specifically with each of them. In order to implement a generic approach, we had to
unify these different versions. This was specially important in the case of multi-synchronisation,
because when translating a process, we do not know if their channels will take part or not in
multi-synchronisation; this depends on which other process this process will be composed with.
To solve this problem, we came up with a design that permitted the translation of channels that
are at the same time generic and multi-synchronised, which the original strategy did not allow.

Our work also helped to make explicit some requirements that were implicit in the original
strategy, like the requirement on hiding of channels, for example. This requirement determines that
hiding of channels appears only as the last operator applied to a process in a process definition, and
arises from the way hidden channels are treated by the strategy. The requirements are documented
in Chapter 4.

The work on the formal verification of the multi-synchronisation was inspired on the results
of [42] and also on a FDR script for verification of the multi-synchronisation protocol that is
implemented by the tool. We wanted to verify the same protocol using refinement calculus, so
that we have a more general result that is not limited to a fixed number of clients. We also have
come up with new Circus refinement laws.

7.2 Related work

We have found some works that have been carried out on automatic translation of formalisms into
some programming language. The main motivation for these works is to improve productivity and
reliability: automation reduces the risk of human errors and saves human effort. Here we describe
some of such works.

In [34], the authors present a tool that converts a subset of CSP into Handel-C code. Handel-C
is a language designed to program hardware; its compiler generates scripts that can be used to
program FPGAs. It has a syntax similar to the standard C, but provides built-in constructors
to deal with concurrency and communication, such as channels, parallelism and alternation. The
paper describes a methodology for implementing concurrent systems on FPGAs, starting from a
CSP description. In this tool, CSP scripts are written in the machine-readable notation used by
ProBE and FDR, with additional macro declarations for embedding Handel-C statements in the
CSP script.

The work in [35] describes tools that automatically convert a subset of machine-readable CSP
script to executable Java or C code with the use of library implementations of CSP. Namely, they
use CCSP and CTJ; CCSP is a library for the C programming language and CTJ is also for
Java, with support for real-time features. These tools also deal with specifications written in the
machine-readable form and accepts a subset of CSP. However, the tools do not handle non-CSP
code, that is, operations over variables and expressions like those available in Circus. The operators
of CSP are also limited; replication operators, boolean guards and sequential composition are not
covered.

As far as we know, these works described do not provide a formal specification of the translation
rules. Also, we have not found references to concerns about formal verification of the strategy.
Correctness of the implementations have been only evidenced by tests and simulations.

Both tools described were in initial stages of development, as ours is. The CSP/Handel-C
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translator serves a purpose different from ours. Their goal is to have a Handel-C script to program
hardware, while ours is to develop software systems based on Java. Anyway, a distinguishing
feature of JCircus is the graphical interface generated which provides friendly interaction with the
user, and helps to visualise the behaviour of the resulting program.

In [12], a translation strategy from CSP-OZ to Java, using the CTJ library is presented. Since
it deals with a combination of CSP with a state-based language (Object-Z), and not purely CSP,
this is the closest work to ours. Also, the translation rules are described in a way similar to
ours. In the CSP-OZ notation, the behavioural and communication aspects are kept separated
from the state operations. The implementation reflects this architecture, and as a result, the
code is usually inefficient and unnecessarily complicated. Circus is a programming as well as a
specification language, in which CSP and Z constructs are freely mixed; actually, the difficulties
found in this work were one of the motivations for the design of Circus. As a consequence of its
simplicity, the translation rules for Circus result in less complicated programs.

In [27], there is an example of the formal development of a control system based on CSP:
an abstract CSP specification is refined to a concrete CSP model, which is implemented using
JCSP. As part of the refinement, multi-way synchronisation is eliminated. The protocol used
and its proof of correctness are not presented, but the example indicates that the protocol is
similar to that implemented in JCircus, which makes possible the elimination of several multi-
synchronisations that take part in an external choice. It follows the ideas presented in [42].
Translation to JCSP seems to be a simpler matter in [27], since the starting point is a CSP model
without multi-way synchronisation. In our tool, we automate that development step, using a JCSP
implementation of a multi-way synchronisation in Java to allow the translation of more elaborate
Circus programs. We have also verified a simpler version of the protocol, which allows at most one
multi-synchronisation in a choice. This enhances our confidence in the translation; the protocol
that is actually implemented is an extension, and can be verified using a similar approach.

7.3 Future work

The implementation of JCircus has proved itself an interesting work, but it is far from complete.
There are still some features to implement, which can make the tool more robust and useful.

The most important extension is the provision of an implementation for more kinds of Circus
types; so far, we have only implemented free types and A (number). It is important to deal
with sets, cartesian products and schema types. The use of a broader range of types will require
implementations for more types of Z expressions. An interesting extension is the implementation
of the mathematical toolkit of the Standard Z in Java. So far, only the number toolkit has
been implemented, to provide support for the translation of expressions of the built-in type A.
Some limitations of JCSP prevented the implementation of important features of Circus. For
instance, there are limitations on the forms of parallelism and interleaving that can be handled.
JCSP provides an implementation for Hoare’s version of parallelism: the alphabets of the parallel
processes are implicit and the processes synchronize on all events that they have in common. In
JCSP, it is not possible to define the synchronisation set, as in Roscoe’s and Circus’ interface
parallel. It also does not implement interleaving; this operation is implemented with the parallel
operator, only in the case where the processes do not share any channel.

Another limitation of JCSP is that it does not support output channels in an alternation.
Another piece of future work is the investigation of alternative implementations for the external
choice, that do not use the Alternative class of JCSP, to allow the definition of output guards
in an external choice. Another possibility is to find a protocol to eliminate output channels from
alternations, in the same way that we used a protocol to eliminate multi-synchronisations.

Some constructs of the Circus grammar are not supported by our tool for the reason that we
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still do not have a robust enough parser, and extending it was not in the scope of our project.
Our parser still has some conflicts; some less essential constructs have been left out in an attempt
to try to reduce the conflicts while they are not solved. Building a parser for a complex language
like Circus is a great challenge. As a matter of fact, Circus is an extension of an already complex
language, Z.

It is in our plans is to implement a new Circus parser by extending the Z parser from CZT.
Doing so, we can take advantage of the completeness and robustness of the Z parser of CZT. For
that, it is necessary not only to extend the grammar rules for Circus but also to implement the
lexical scanners necessary within the framework. As we are already using the CZT abstract syntax
tree for Circus, the migration to the new parser will not imply in great modifications in the code
of JCircus.

In the area of formal verification, we plan prove the soundness of the refinement laws that we
have proposed. We also want to formally verify the version of the multi-synchronisation strategy
that is currently implemented, which allows more than one multi-synchronisation to take part in
an external choice.

JCircus is one in a set of tools that the Circus team is currently working on. The Circus type
checker has already been integrated to JCircus. We have a prototypal model checker and a theorem
prover under development; a refinement editor is also in the plans. The ultimate goal is to have
an integrated environment for supporting the formal development of concurrent reactive systems
using Circus. All these tools working together will assist the user in all phases of development,
making the process much easier and trustable. The work we reported here was an important step
towards this major goal.



Appendix A

Translation rules

Process declaration

Rule A.1 Normal process declaration

|[ ]|ProcDecls : Program 7→ N 7→ JCode

|[ε ]|ProcDecls proj = ε

|[process P =̂ ProcDef ProcDecls ]|ProcDecl proj =
package proj.processes;
import java.util.*;
import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.typing.*;
public class P implements CSProcess { |[ProcDef ]|ProcDef P }

|[ProcDecls ]|ProcDecls proj

Rule A.2 Generic process declaration

|[ ]|ProcDecls : Program 7→ N 7→ JCode

|[process P [T0, ...,Tn ] =̂ ProcDef ProcDecls ]|ProcDecls proj =
package proj.processes;
import java.util.*;
import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.typing.*;
public class P implements CSProcess {

(|[t0 : N; . . . ; tn : N; Decl • Proc ]|ProcDef P ε)
[Type, . . . , Type/JType T0, . . . ,JType Tn ]
[t_0.intValue(), . . . , t_n.intValue()/
Type.(Capitals(JType(T0))), . . . , Type.(Capitals(JType(Tn)))]

}

|[ProcDecls ]|ProcDecls proj
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Process definition

Rule A.3 Non-parametrised process definition

|[ ]|ProcDef : ProcDef 7→ N 7→ JCode

|[Proc ]|ProcDef P =
ChannelDecl VisChanEnv ChanTypeEnv SyncCommEnv
ChannelDecl HidChanEnv ChanTypeEnv SyncCommEnv
public P((VisibleCArgs VisChanEnv ChanTypeEnv

SyncCommEnv)){
MultiAssign (ChannelDecl VisChanEnv ChanTypeEnv

SyncCommEnv)
(VisibleCArgs VisChanEnv ChanTypeEnv

SyncCommEnv)
HiddenCCreation HidChanEnv ChanTypeEnv

SyncCommEnv TypesEnv MultiSyncEnv ReadWriteEnv P
}

public void run(){ ProcessCall Proc HidChanEnv MultiSyncEnv }

ChannelDecl : seq N 7→ (N 7→ (seq Expr × seq Expr)) 7→ (N → SC ) 7→ JCode
ChannelDecl 〈〉δ ζ = ε
ChannelDecl (〈c〉a cs) δ ζ =

private GeneralChannel
(ArrayDim (fst (δ c)) (snd (δ c)) (ζ c) 0) c;

ChannelDecl cs δ ζ

VisibleCArgs : seq N 7→ (N 7→ (seq Expr × seq Expr)) 7→ (N → SC ) 7→ JCode
VisibleCArgs 〈〉δ ζ = ε
VisibleCArgs (〈c〉a cs) δ ζ =

GeneralChannel (ArrayDim (fst (δ c)) (snd (δ c)) (ζ c) 0) newc,
VisibleCArgs cs δ ζ

MultiAssign : JCode 7→ JCode 7→ JCode
MultiAssign (private GeneralChannel v_1 ; . . . ; private GeneralChannel v_n;)

(GeneralChannel newv_1 ; . . . , GeneralChannel newv_n;) =
this.v_1 = newv_1; . . . ; this.v_n = newv_n;
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HiddenCCreation : seq N 7→ (N 7→ (seq Expr × seq Expr)) 7→ (N → SC ) 7→
seq Expr 7→ (N 7→ (N 7→ N)) 7→
(N 7→ (N 7→ ChanUse)) 7→ N 7→ JCode

HiddenCCreation ∅ δ ζ types ω α P = ε
HiddenCCreation (〈c〉a cs) δ ζ types ω α P =

let brackets = (ArrayDim (fst (δ c)) (snd (δ c)) (ζ c) 0) in
if (brackets = ε) then

if (c /∈ domω) then
InitChanInfoSS (α c) c
this.c = new GeneralChannel(

new Any2OneChannel(),
chanInfo_c,
P

);
else

InitChanInfoMS (ω c) c
this.c = new GeneralChannel(

new Any2OneChannel(),
Any2OneChannel.create(#ω),
chanInfo_c,
P

);
else

if (c /∈ domω) then
InitChanInfoSS (α c) c
this.c = (InstArray (fst (δ c)) (snd(δ c)) sc

τ GeneralChannel ε BCGenChanSimple)
else

InitChanInfoMS (ω c) c
Any2OneChannel from_c brackets[] =

(InstArray (fst (δ c)) (snd(δ c)) sc τ Any2OneChannel ε BCChanFrom)
Any2OneChannel to_c brackets =

(InstArray (fst (δ c)) (snd(δ c)) sc τ Any2OneChannel ε BCChanTo)
this.c =

(InstArray (fst (δ c)) (snd(δ c)) sc τ GeneralChannel ε BCGenChanMult)
HiddenCCreation cs δ ζ types

Index ::= Type〈〈Expr〉〉 | Int〈〈N〉〉

BCGenChanSimple : seq Index 7→ JCode
BCGenChanSimple β = new GeneralChannel(new Any2OneChannel(), chanInfo_c, procName)

BCChanTo : seq Index 7→ JCode
BCChanTo β = new Any2OneChannel()

BCChanFrom : seq Index 7→ JCode
BCChanFrom β = Any2OneChannel.create(#ω)
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BCGenChanMult : seq Index 7→ JCode
BCGenChanMult β = new GeneralChannel(to_c(Indexes β)

from_c(Indexes β), chanInfo_c, procName)

BCMSCtrl : seq Index 7→ JCode
BCMSCtrl β = new MultiSyncControl(c(Indexes β).getFromController(),

c(Indexes β).getToController())

Indexes : seq Index 7→ JCode
Indexes 〈Type〈〈T 〉〉〉a ts = [Type.(CType T )] Indexes ts
Indexes 〈Int〈〈n〉〉〉a ns = [n] Indexes ns

InstArray : seq Expr 7→ seq Expr 7→ SC 7→ seq Expr 7→
JCode 7→ seq Index 7→ (seq Index 7→ JCode) 7→ JCode

InstArray genTypes types sc τ nmComp β func =
let dim = (ArrayDim genTypes types sc) in

if (#genTypes > 0) then
new nmComp dim{ GenericInst genTypes types sc τ τ nmComp β func }

else InstArraySync types sc nmComp β func

GenericInst : seq Expr 7→ seq Expr 7→ SC 7→ seq Expr 7→ seq Expr 7→
JCode 7→ seq Index 7→ (seq Index 7→ JCode) 7→ JCode

GenericInst genTypes types sc τ 〈T 〉 nmComp β func =
InstArray (tail genTypes) (replace(head genTypes,T , types)) sc

τ nmComp β a 〈 Type〈〈T 〉〉〉 func
GenericInst genTypes types sc τ 〈T 〉a ts nmComp β func =

InstArray (tail genTypes) (replace(head genTypes,T , types)) sc
τ nmComp β a 〈 Type〈〈T 〉〉〉 func,

GenericInst genTypes types sc τ ts nmComp β func

InstArraySync : seq Expr 7→ SC 7→ JCode 7→ seq Index 7→ (seq Index 7→ JCode) 7→ JCode
InstArraySync types sc nmComp β func =

let type = if #types > 0 then (head types) else null ,
dim = (ArrayDimSync types sc 0) in
if (#types = 1 and sc = C ) or #types = 0 then

(func β)
else new nmComp dim

{ TypeInstSync types sc Max (JType(type)) nmComp β func }

TypeInstSync : seq Expr 7→ SC 7→ N 7→ JCode 7→ seq Index 7→ (seq Index 7→ JCode) 7→ JCode
TypeInstSync types sc 1 nmComp β func =

InstArraySync (tail types) sc nmComp β a 〈Int〈〈1〉〉〉 func
TypeInstSync types sc n nmComp β func =

InstArraySync (tail types) sc nmComp β a 〈Int〈〈n〉〉〉 func,
TypeInstSync types sc (n − 1) nmComp β func
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ArrayDim : seq Expr 7→ seq Expr 7→ SC 7→ JCode
ArrayDim genTypes types sc =

let dim = #genTypes + (ArrayDimSync types sc) =
in []dim

ArrayDimSync : seq Expr 7→ SC 7→ JCode
ArrayDimSync types sc =

let dim = if types = 〈Sync〉 then 0
else if sc = C then #types − 1
else #types

in []dim

InitChanInfoMS : (N 7→ N) 7→ N 7→ JCode
InitChanInfoMS ∅ c = ε
InitChanInfoMS (procName 7→ n) ∪ α c =

ChanInfo chanInfo_c = new ChanInfo();
chanInfo_c.put(procName, new Integer(n));
InitChanInfoMS α c

InitChanInfoSS : (N 7→ (N 7→ ChanUse)) 7→ N 7→ JCode
InitChanInfoSS ∅ c = ε
InitChanInfoSS (procName 7→ I ) ∪ α c =

ChanInfo chanInfo_c = new ChanInfo();
chanInfo_c.put(procName, new Integer(1));
InitChanInfoSS α c

InitChanInfoSS (procName 7→ O) ∪ α c =
ChanInfo chanInfo_c = new ChanInfo();
chanInfo_c.put(procName, new Integer(0));
InitChanInfoSS α c

ProcessCall : ProcDef 7→ seq N 7→ (N 7→ (N 7→ N)) 7→ JCode
ProcessCall Proc ι ω =

if (ran ι ∩ domω) 6= ∅ then
let (ran ι ∩ dom ω) = {c1, ..., cn} in

Any2OneChannel endManager = new Any2OneChannel();
InitChanInfoMS (fst ω) P
|[ProcessManagerMultiSync(Proc) ||
 ControllersManager




MultiSyncControl(from c1, to c1)
|| ...
|| MultiSyncControl(from cn , to cn)





]|Proc

else |[Proc]|Proc

|[MultiSyncControl(fromc , toc)]|Proc =
new MultiSyncControl(from_c, to_c).run();
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|[ProcessManagerMultiSync(Proc)]|Proc =
(new ProcessManagerMultiSync(

endManager,

new CSProcess() { public void run() { |[Proc ]|Proc }}
)).run();

|[ControllersManager(Proc)]|Proc =
(new ControllersManager(

endManager,

new CSProcess() { public void run() { |[Proc ]|Proc }}
)).run();

Rule A.4 Parametrised process definition

|[Decl • Proc ]|ProcDef P =
ParamsDecl Decl
ChannelDecl VisChanEnv ChanTypeEnv SyncCommEnv
ChannelDecl HidChanEnv ChanTypeEnv SyncCommEnv
public P(ParamsArgs Decl,

(VisibleCArgs VisChanEnv ChanTypeEnv
SyncCommEnv)){

MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
MultiAssign (ChannelDecl VisChanEnv ChanTypeEnv

SyncCommEnv)
(VisibleCArgs VisChanEnv ChanTypeEnv

SyncCommEnv)
HiddenCCreation HidChanEnv ChanTypeEnv

SyncCommEnv TypesEnv
}

public void run(){ ProcessCall Proc HidChanEnv MultiSyncEnv }

ParamsDecl : Decl 7→ JCode
ParamsDecl x1 : T1; . . . ; xn : Tn =

private (JType T1) x_1; . . . ; private (JType Tn) x_n;

ParamsArgs : Decl 7→ JCode
ParamsArgs x1 : T1; . . . ; xn : Tn =

(JType T1) newx_1, . . . , (JType Tn) newx_n

Rule A.5 Indexed process definition

|[x1 : T1; . . . ; xn : Tn ¯ Proc ]|ProcDef P =
|[ (x1 : T1; . . . ; xn : Tn • Proc)[c : used(Proc) • c := c x 1 . . . x n] ]|ProcDef P
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Processes

Rule A.6 Basic process

|[ ]|Proc : Process 7→ JCode

|[begin PPars1 state PSt PPars2 • Main ]|Proc =
(new CSProcess(){

StateDecl PSt
|[PPars1 PPars2]|PPars

public void run() { |[Main ]|Action }
}).run();

StateDecl : SchemaExp 7→ JCode
StateDecl [ x1 : T1; . . . ; xn : Tn | inv ] =

private (JType T1) x_1; . . . ; private (JType Tn) x_n;

Rule A.7 Process call

|[N ]|Proc = (new N(ExtractChans VisChanEnv N )).run();

Rule A.8 Parametrised process call

|[N (e1, . . . , en) ]|Proc =
(new N((JExp e1), . . . ,(JExp en),

(ExtractChans VisChanEnv N ))).run();

ExtractChans : seq N 7→ N 7→ JCode
ExtractChans 〈c〉a 〈〉 N = new GeneralChannel(c, N)
ExtractChans 〈c〉a cs N = c,(ExtractChans cs N ), cs 6= 〈〉

Rule A.9 Implicit parametrised process call

|[(Decl • Proc)(e1, . . . , en)]|Proc =
(new CSProcess(){

public void run() {
DeclareProcessClass Decl Proc index
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();
}

}).run();
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DeclareProcessClass : Decl 7→ Proc 7→ N 7→ JCode
DeclareProcessClass Decl Proc index =

class I_index implements CSProcess {
ParamsDecl Decl
public I_index(ParamsArgs Decl){

MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
}
public void run (){

|[Proc]|Proc

}
}

Rule A.10 Indexed call

|[N bv1, . . . , vnc ]|Proc = |[N (v1, . . . , vn) ]|Proc

Rule A.11 Implicit indexed call

|[ ]|Proc : Proc 7→ JCode

|[ (x1 : T1; . . . ; xn : Tn ¯ Proc)bv1, . . . , vnc ]|Proc =
|[ ((x1 : T1; . . . ; xn : Tn • Proc)[c : used(Proc) • c := c x 1 . . . x n])

(v1, . . . , vn) ]|Proc

Rule A.12 Generic instantiation

|[N [T0, . . . ,Tn ] ]|Proc =
(new N(new Integer(Type.(Capitals JType(T0))), . . . ,

new Integer(Type.(Capitals JType(Tn))),
ExtractChans VisChanEnv)).run();

Rule A.13 Generic instantiation and parametrised call

|[N [T0, . . . ,Tn ](e1, . . . , en) ]|Proc =
(new N(new Integer(Type.(Capitals JType(T0))), . . . ,

new Integer(Type.(Capitals JType(Tn))),
(JExp e1), . . . ,(JExp en),
ExtractChans VisChanEnv)).run();

Rule A.14 Channel renaming

|[Proc[x1, . . . , xn := y1, . . . , yn ]]|Proc =
|[Proc ]|Proc [y_1, . . . , y_n/x_1, . . . , x_n]

Rule A.15 Hiding

|[Proc \ {| cs |}]|Proc = |[Proc]|Proc
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Rule A.16 Sequential composition

|[Proc1; . . . ;Procn ]|Proc =
(new CSProcess(){

public void run() {

|[Proc1 ]|Proc ; . . . ; |[Procn]|Proc

}
}).run();

Rule A.17 Internal choice

|[Proc1 u . . . u Procn]|Proc =
(new CSProcess(){

public void run() {
int choosen = RandomGenerator.generateNumber(1,n);
switch(choosen) {

case 1:

{ |[Proc1 ]|Proc }
break;

. . .
case n:

{ |[Procn ]|Proc }
break;

}
}

}).run();

Rule A.18 Process parallelism

|[Proc1 |[CSExp ]| Proc2]|Proc =
new Parallel (

new CSProcess[] {

new CSProcess() { public void run() { |[Proc1 ]|Proc } },

new CSProcess() { public void run() { |[Proc2 ]|Proc } }
}

Rule A.19 Process interleaving

|[Proc1 ||| Proc2]|Proc = |[Proc1 |[ {||} ]| Proc2]|Proc

Rule A.20 Iterated sequential composition
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|[ o
9 x1 : T1; . . . ; xn : Tn • Proc]|Proc =

(new CSProcess(){
public void run() {

InstProcesses procVec_index (x1 : T1; . . . ; xn : Tn) Proc index
for (int i = 0; i<procVec_index.size(); i++){

((CSProcess)procVec_index.get(i)).run();
}

}
}).run();

InstProcesses : N 7→ Decl 7→ Proc 7→ N 7→ JCode
InstProcesses procVecName (x1 : T1; . . . ; xn : Tn) Proc index =

Vector procVecName = new Vector();
DeclareProcessClass (x1 : T1; . . . ; xn : Tn) Proc index
for ((JType T1) x_1 = (Min T1);

x_1.compareTo((Max T1))<=0; (Inc x1 : T1)){
. . .
for ((JType Tn) x_n = (Min Tn);

x_n.compareTo((Max Tn))<=0; (Inc xn : Tn)){
procVecName.add(new I_index(x_1, . . . ,x_n);

}
. . .

}

Rule A.21 Iterated internal choice

|[u x1 : T1; . . . ; xn : Tn • Proc]|Proc =
(new CSProcess(){

public void run() {
ChooseIndexVars (x1 : T1; . . . ; xn : Tn)
DeclareProcessClass (x1 : T1; . . . ; xn : Tn) Proc index
(new I_index(x_1, . . . ,x_n)).run();

}
}).run();

ChooseIndexVars : Decl 7→ JCode
ChooseIndexVars ε = ε
ChooseIndexVars (x : T ; Decls) =

(JType T ) x =
new (JType T )(RandomGenerator.generateNumber((Min T ),(Max T ))));

ChooseIndexVars Decls

Rule A.22 Iterated process parallelism
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|[ |[CSExp ]| x1 : T1; . . . ; xn : Tn • Proc]|Proc =
(new CSProcess(){

public void run() {
InstProcesses procVec_index (x1 : T1; . . . ; xn : Tn) Proc index
CSProcess[] processes_index =

new CSProcess[procVec_index.size()];
for (int i = 0; i < procVec_index.size(); i++){

processes_index[i] =
(CSProcess)procVec_index.get(i);

}
(new Parallel(processes_index)).run();

}
}).run();

Rule A.23 Iterated interleaving

|[ ||| x1 : T1; . . . ; xn : Tn • Proc]|Proc = |[ |[ {||} ]| x1 : T1; . . . ; xn : Tn • Proc]|Proc

Process paragraphs

Rule A.24 Axiomatic definition

|[ ]|PParags : PParagraph∗ 7→ JCode

|[ε]|PParags = ε

|[v : T | v = e1 PPars]|PParags =
private (JType T ) v() { return (JExp e1); }

|[PParags]|PParags

Rule A.25 Non-parametrised action definition

|[N =̂ Action PParags]|PParags =
private void N(){ |[Action ]|Action }

|[PParags]|PParags

Rule A.26 Parametrised action definition

|[N =̂ (Decl • Action) PParags]|PParags =
private void N(ParamsArgs Decl){ |[Action ]|Action }

|[PParags]|PParags

Rule A.27 Recursive parametrised action definition

|[N =̂ µX • (Decl • Action(X (e0, . . . , en)))PParags]|PParags =
|[N =̂ (Decl • Action(N (e0, . . . , en)))]|PParags

|[PParags]|PParags



APPENDIX A. TRANSLATION RULES 110

Actions

CSP Actions

Rule A.28 Skip

|[ ]|Action : Action 7→ JCode

|[Skip]|Action = (new Skip()).run();

Rule A.29 Stop

|[Stop]|Action = (new Stop()).run();

Rule A.30 Chaos

|[Chaos]|Action = while(true){};

Rule A.31 Prefixing action

|[c → Action]|Action = c.synchronise();

Rule A.32 Prefixing action – input

|[c?x → Action]|Action =
let commType = JType(last (snd (ChanTypeEnv c))) in

{ commType x = (commType)c.read();
|[Action ]|Action }

Rule A.33 Prefixing action – output

|[c!e → Action]|Action = c.write(JExp e); |[Action]|Action

Rule A.34 Prefixing action – generic

|[c [T0, . . . ,Tn ].e0 . . . .em → Action]|Action =
c[Type.(CJType T0) ] . . . [Type.(CJType Tn) ]
[(JExp e0).getValue()] . . . [(JExp en).getValue()].synchronise();
|[Action]|Action

Rule A.35 Prefixing action – generic and input
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|[c [T0, . . . ,Tn ].e0 . . . .em?x → Action]|Action =
let commType = JType(last (snd (δ c))) in

{ commType x =
(commType)c[Type.(CJType T0) ] . . . [Type.(CJType Tn) ]

[(JExp e0).getValue()] . . . [(JExp en).getValue()].read();
|[Action ]|Action }

Rule A.36 Prefixing action – generic and output

|[c [T0, . . . ,Tn ].e0 . . . .em !x → Action]|Action =
c[Type.(CJType T0) ] . . . [Type.(CJType Tn) ]
[(JExp e0).getValue()] . . . [(JExp en).getValue()].write(JExp x);
|[Action]|Action

Rule A.37 Guarded action

|[Pred & Action]|Action = if(JExp(Pred)) {

|[Action]|Action

} else {
(new Stop()).run();

}

Rule A.38 Sequential composition

|[Action1; Action2]|Action = |[Action1 ]|Action ; |[Action2]|Action

Rule A.39 External choice

|[A1 2 . . . 2 Am]|Action =
DeclConst A1 1
. . .
DeclConst Am m
RunClient ω ind (InitChanName A1) a . . . a (InitChanName Am)
switch(client_ind.getChoosen()) {

Case A1

. . .
Case Am

}

DeclConst : Action 7→ N 7→ JCode
DeclConst A n = final int (ConstChan A) = n;

Case : Action 7→ JCode
Case A =

case (ConstChan A):
{ |[A ]|Action }
break;
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ConstChan : Action 7→ JCode
ConstChan (c → Action) = CONST_(Capitals c)
ConstChan (c[T0, . . . ,Tn ].x0 . . . .xm) =

CONST_(Capitals c)_Capitals(JType(T0))_ . . . _Capitals(JType(Tn))_X_0_ . . . X_m
ConstChan (g & Action) = ConstChan Action

InitChanName : Action 7→ N
InitChanName (c → Action) = c
InitChanName (c[T0, . . . ,Tn ].x0 . . . .xm) = c
InitChanName (g & Action) = InitChanName Action

RunClient : (N 7→ (N 7→ N)) 7→ N 7→ seq N 7→ JCode
RunClient ω ind c1

a . . . a cm =
Vector seqOfSync_ind = new Vector();
Vector seqOfNotSync_ind = new Vector();
boolean g[] = { Guard A1, ...,Guard Am };
if (c_1.isMultiSync()) {

Object[] sync = new Object[] {
c_1.getFromControlerId(),
c_1.getChannel(),
new Integer(c_1.getProcessId()),
new Integer(0)

};
seqOfSync_ind.addElement(sync);

} else {
seqOfNotSync_ind.addElement(c_1.getChannel());

}
. . .
if (c_m.isMultiSync()) {

Object[] sync = new Object[] {
c_m.getFromControlerId(),
c_m.getChannel(),
new Integer(c_m.getProcessId()),
new Integer(0)

};
seqOfSync_ind.addElement(sync);

} else {
seqOfNotSync_ind.addElement(c_m.getChannel());

}
MultiSyncClient client_ind =

new MultiSyncClient(seqOfSync_ind,seqOfNotSync_ind, null, g);
client_ind.run();

Guard : Action 7→ JCode
Guard (comm → Action) = true
Guard (g & Action) = (JExp g) && Guard Action
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Rule A.40 Internal choice

|[Action1 u . . . u Actionn]|Action =
int choosen = RandomGenerator.generateNumber(1,n);
switch(choosen) {

case 1: { |[Action1 ]|Action } break;
. . .

case n: { |[Actionn ]|Action } break;
}

Rule A.41 Action parallelism

|[Action1 |[NSExp1 | CSExp | NSExp2 ]|Action2]|Action =
let LName = ParallelLeftBranch_index ,

RName = ParallelRightBranch_index in
DeclareClassesActionCall ActionEnv BasicProcEnv
class LName implements CSProcess {

InitAuxVars (setFirst StateCompEnv)) index L
DeclLocalVars LocalVarEnv index L
public LName((LocalVarsArg LocalVarEnv)) {

InitLocalVars LocalVarEnv index L
}

public void run () {

RenameVars |[Action1]|Action

((SetFirst StateCompEnv) ∪ (SetFirst LocalVarEnv))
index L

}
}
CSProcess left_index =

new LName(JList (ListFirst LocalVarEnv));
class RName implements CSProcess {

InitAuxVars ((setFirst StateCompEnv)) index R
DeclLocalVars LocalVarEnv index R
public RName((LocalVarsArg LocalVarEnv)) {

InitLocalVars LocalVarEnv index R
}

public void run () {

RenameVars |[Action2]|Action

((SetFirst StateCompEnv) ∪ (SetFirst LocalVarEnv))
index R

}
}
CSProcess right_index =

new RName(JList (ListFirst LocalVarEnv));
CSProcess[] processes_index =

new CSProcess[]{left_index,right_index};
(new Parallel(processes_index)).run ();
MergeVars LName NSExp1 index L
MergeVars RName NSExp2 index R
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DeclareClassesActionCall : seq(N × Action) 7→ seq(N × Expr) 7→ JCode
DeclareClassesActionCall(N ,Action) a ss env =

class N_ implements CSProcess {
DeclLocalVars (setFirst env) 0 L
public N_(LocalVarsArg env){

InitLocalVars env 0 L
}
public void run() {

|[Action]|Action

}

DeclareClassesActionCall ss env

SetFirst : seq(N × Expr) 7→ PN
SetFirst 〈〉 = ∅
SetFirst 〈x ,T 〉a xs = {x} ∪ (SetFirst xs)

InitAuxVars : PN 7→ N 7→ LeftRight 7→ JCode
InitAuxVars ∅ index S = ε
InitAuxVars ({x} ∪ xs) index L =

public (JType (CType x )) aux_left_x_index = x;
InitAuxVars xs index L

InitAuxVars ({x} ∪ xs) index R =
public (JType (CType x )) aux_right_x_index = x;
InitAuxVars xs index R

DeclLocalVars : seq(N × Expr) 7→ N 7→ LeftRight 7→ JCode
DeclLocalVars [ ] index x = ε
DeclLocalVars ((x ,T ) : xs) index L =

public (JType T ) aux_left_x_index; DeclLocalVars xs index L
DeclLocalVars ((x ,T ) : xs) index R =

public (JType T ) aux_right_x_index; DeclLocalVars xs index R

LocalVarsArg : seq(N × Expr) 7→ JCode
LocalVarsArg [ ] = ε
LocalVarsArg (x ,T ) : [ ] = (JType T ) x
LocalVarsArg (x ,T ) : xs = (JType T ) x, LocalVarsArg xs

InitLocalVars : seq(N × Expr) 7→ N 7→ LeftRight 7→ JCode
InitLocalVars [ ] index x = ε
InitLocalVars ((x ,T ) : xs) index L =

this.aux_left_x_index = x; DeclLocalVars xs index L
InitLocalVars ((x ,T ) : xs) index R =

this.aux_right_x_index = x; DeclLocalVars xs index R

RenameVars : JCode 7→ PN 7→ N 7→ LeftRight 7→ JCode
RenameVars jcode ∅ index x = ε
RenameVars jcode ({x} ∪ xs) index L =

RenameVars (jcode[aux_left_x_index/x]) xs index L
RenameVars(jcode, {x} ∪ xs, index ,R) =

RenameVars (jcode[aux_right_x_index/x]) xs index R
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MergeVars : N 7→ PN 7→ N 7→ {L,R} 7→ JCode
MergeVars name ∅ index x = ε
MergeVars LName ({x} ∪ xs) index L =

x = ((LName)processes_index[0]).aux_left_x_index;
MergeVars LName xs index L

MergeVars RName ({x} ∪ xs) index R =
x = ((RName)processes_index[1]).aux_right_x_index;
MergeVars RName xs index R

Rule A.42 Action interleaving

|[Action1 ||[NSExp1 | NSExp2]|| Action2]|Action = |[Action1 |[NSExp1 | {||} | NSExp2 ]|Action2]|Action

Rule A.43 Recursive action

|[µX • Action(X )]|Action =
class I_index implements CSProcess {

DeclLocalVars LocalVarEnv index L
public I_index(LocalVarsArg LocalVarEnv) {

InitLocalVars LocalVarEnv index L
}

public void run() {
RenameVars

|[Action((RunRecursion index 〈〉))]|Action

(SetFirst LocalVarEnv) index L
}

};
RunRecursion index 〈〉

RunRecursion : (N × seq Expr) 7→ JCode
RunRecursion index 〈e0, . . . , em〉 =

I_index i_index_newIndex =
new I_index(JList (ListFirst LocalVarEnv),JExp(e0), . . . ,JExp(en));

i_index_newIndex.run();
MergeLocalVars LocalVarEnv index newIndex L

MergeLocalVars : PN 7→ N 7→ N 7→ {L,R} 7→ JCode
MergeLocalVars ∅ index newIndex x = ε
MergeLocalVars ({x} ∪ xs) index newIndex L =

x = i_index_newIndex.aux_left_x_index;
MergeLocalVars xs index newIndex L

MergeLocalVars ({x} ∪ xs) index newIndex R =
x = i_index_newIndex.aux_right_x_index;
MergeLocalVars xs index newIndex R
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Rule A.44 Action call

|[N ]|Action = N();

Rule A.45 Action call (in parallel actions)

|[N ]|Action =
N_classn_index = N_class(JList (ListFirst BasicProcEnv));
n_index.run();
RetrieveVars BasicProcEnv

RetrieveVars : seq(N × Expr 7→ N 7→ N 7→ JCode
RetrieveVars〈〉 nClass index
RetrieveVars(v , t) a ss nClass index =

v = nClass_index.v;
RetrieveVars ss nClass index

Rule A.46 Parametrised action call

|[N (e1, . . . , en)]|Action = N((JExp e1), . . . ,(JExp en));

Rule A.47 Implicit parametrised action call

|[(Decl • Action) (e1, . . . , en)]|Action =
DeclareActionClass Decl Action index
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();
MergeLocalVars index index L
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DeclareActionClass : Decl 7→ Action 7→ N 7→ JCode
DeclareActionClass Decl Action index

let sep = if LocalVarEnv = [ ] then ε else , in
class I_index implements CSProcess {

ParamsDecl Decl
DeclLocalVars LocalVarEnv index L
public I_index((ParamsArgs Decl) sep

(LocalVarsArg LocalVarEnv)){
MultiAssign (ParamsDecl Decl) (ParamsArgs Decl)
InitLocalVars index L

}
public void run (){

RenameVars (|[Action]|Action)
(SetFirst LocalVarEnv) index L

}
}

Rule A.48 Implicit recursive parametrised call

|[(µX • (x0 : T0; . . . ; xn : Tn • Action(X (ec0, . . . , ecn))))(ei0, . . . , ein)]|Action =
let ExtLocalVarEnv = LocalVarEnv a 〈(x0,T0), . . . , (xn ,Tn)〉 in

class I_index implements CSProcess {
DeclLocalVars ExtLocalVarEnv index L
public I_index(LocalVarsArg ExtLocalVarEnv) {

InitLocalVars ExtLocalVarEnv index L
}

public void run() {
RenameVars

|[Action((RunRecursion index 〈ec0, . . . , ecn〉))]|Action

(SetFirst ExtLocalVarEnv) index L
}

};
RunRecursion index 〈ei0, . . . , ein〉

Rule A.49 Iterated sequential composition
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|[ o
9 x1 : T1; . . . ; xn : Tn • Action]|Action =

DeclareActionClass (x1 : T1; . . . ; xn : Tn) Action index
for ((JType T1) x_1 = (Min T1);

x_1.compareTo((Max T1))<=0; (Inc x1 : T1)){
. . .
for ((JType Tn) x_n = (Min Tn);

x_n.compareTo((Max Tn))<=0; (Inc xn : Tn)){
I_index i_index_index =

new I_index((JExp e1), . . . ,(JExp en),
(JList (ListFirst LocalVarEnv)));

i_index_index.run();
MergeLocalVars index index L

}
. . .

}

Rule A.50 Iterated internal choice

|[u x1 : T1; . . . ; xn : Tn • Action]|Action =
ChooseIndexVars (x1 : T1; . . . ; xn : Tn)
DeclareActionClass (x1 : T1; . . . ; xn : Tn) Action index
(new I_index(x_1, . . . ,x_n)).run();

Commands

Rule A.51 Single assignment

|[x := e]|Action = x = (JExp e);

Rule A.52 Multiple assignment

|[x1, . . . , xn := e1, . . . , en]|Action =
if ({x1, . . . , xn} ∩ (FV (e1) ∪ . . . ∪ FV (en)) = ∅) then

x_1=(JExp e1); . . . ; x_n=(JExp en);
else

(JType (CType x1)) aux_x_1 = (JExp e1);
. . . ;
(JType (CType xn)) aux_x_n = (JExp en);
x_1=aux_x_1;
. . . ;
x_n=aux_x_n;

Rule A.53 If-command



APPENDIX A. TRANSLATION RULES 119

|[ if g1 → A1 2 . . . 2 gn → An fi ]|Action =
if((JExp g1)){

|[A1]|Action

} else if ( . . . ) {
. . .

} else if((JExp gn)){
|[An]|Action

} else { while(true){} }

Rule A.54 Variable declaration

|[var x1 : T1; . . . ;xn : Tn • Action]|Action =
{

(JType T1) x_1; . . . ; (JType Tn) x_n;

|[Action]|Action

}

Rule A.55 Assumption

|[{g}]|Action = if((JExp g)){ (new Skip()).run(); } else { while(true){} }

Z paragraphs in global scope

Rule A.56 Free type definition

|[ ]|FreeTypes : Program 7→ N 7→ JCode

|[ε ]|FreeTypes proj = ε

|[FTName ::= V0 | . . . | Vn FreeTypes ]|FreeTypes proj =
package proj.typing;
public class FTName extends Type {

DeclFTConstants (V0
a . . . a Vn) 0

protected FTName(){}
public FTName(int value) { this.setValue(value); }

}

|[FreeTypes ]|FreeTypes proj

DeclFTConstants : seq N 7→ N 7→ JCode
DeclFTConstants 〈V 〉a 〈〉 n = public static final int V = n;

DeclFTRange 0 n
DeclFTConstants 〈V 〉a VS ) n = public static final int V = n;

DeclFTConstants VS (n + 1)
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DeclFTRange : N 7→ N 7→ JCode
DeclFTRange min max =

public static final int MIN_VALUE = min ;
public static final int MAX_VALUE = max ;

Rule A.57 Global axiomatic definition

|[ ]|AxDefs : Program 7→ JCode

|[ε]|AxDefs = ε

|[v : T | v = e1 AxDefs]|AxDefs =
public static (JType T ) v() { return (JExp e1); }

|[AxDefs]|AxDefs

Circus program

Rule A.58 Circus program

|[ ]|Program : Program 7→ N 7→ JCode

|[FreeTypes AxDefs ChanDecls ProcDecls ]|Program proj =
DeclareTypeClass (FreeTypes AxDefs ChanDecls ProcDecls) proj
|[FreeTypes ]|FreeTypes proj
DeclareAxDefClass proj AxDefs
|[ProcDecls ]|ProcDecls proj
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DeclareTypeClass : Program 7→ N 7→ JCode
DeclareTypeClass prog proj =

package proj.typing;
public abstract class Type {

private int value;
DeclTypeConstants TypesEnv 0
public int getValue() { return this.value; }
protected void setValue(int value) {
this.value = value;
}
public boolean equals(Type other) {

boolean equals = false;
if (other != null) {

boolean sameClass =
this.getClass().equals(other.getClass());

boolean sameValue =
(this.getValue()==other.getValue());

equals = (sameClass && sameValue);
}
return equals;

}
public int compareTo(Type other) {

int compare = -1;
if (other != null) {

if (this.getValue() == other.getValue()) {
compare = 0;

} else if (this.getValue() > other.getValue()) {
compare = 1;

}
}
return compare;

}
}

DeclareTypeConstants : seq N 7→ N 7→ JCode
DeclareTypeConstants 〈〉 n =

public static final int MIN_TYPE_ID = 0;
public static final int MAX_TYPE_ID = n;

DeclareTypeConstants 〈T 〉a TS n =
public static final int (Capitals (JType T )) = n;
DeclareTypeConstants TS (n + 1)

DeclareAxDefClass : Program 7→ N 7→ JCode
DeclareAxDefClass AxDefs proj =

package proj.axiomaticDefinitions;
import proj.typing.*;
public class AxiomaticDefinitions { |[AxDefs ]|AxDefs }
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Running the program

Rule A.59 Run process

|[]|Run : Proc 7→ N 7→ JCode

|[N ]|Run proj =
package proj;
import java.util.*;
import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.processes.*;
import proj.typing.*;
import proj.util.*;
public class Main {

public static void main(String args[]) { |[N ]|Proc }
}

Function JExp

JExp a = new FT(FT.a)
if a is an element of free type FT .

JExp a = new AxiomaticDefinitions.a()
if a is a global axiomatic definition.

JExp a = this.a()
if a is a local axiomatic defintion.

JExp a = a
if a is a process parameter, action parameter, state component or local variable.

JExp a = new CircusNumber(a)
if a is a number.

JExp false = false
JExp true = true
JExp (¬ p) = (!(JExp p))
JExp (p1 ∧ p2) = (JExp p1 && JExp p2)
JExp (p1 ∨ p2) = (JExp p1 || JExp p2)
JExp (p1 ⇔ p2) = (JExp p1 == JExp p2)
JExp (p1 ⇒ p2) = (!(JExp p1) || JExp p2)
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Refinement laws

B.1 Laws

Action systems

Law B.1 Action system conversion

µX •
a → b → X
2

c → X

v
var pc := 0 •

µX •
pc = 0 & a → pc := 1; X
2

pc = 0 & c → pc := 0; X
2

pc = 1 & b → pc := 0; X

Law B.2 Action system parallel

|[x ]| i : I •


µX • gi & x → Ai ; X
2

hi & yi → Bi ; X




=
µX •

(∀ i : I • gi) & x → (||| i : I • Ai); X
2

2 i : I • hi & yi → Bi ; X

Law B.3 Merge action system parallel

123
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µX •
2 i • g1i & commi → A1i ; X
2

2 i • h1i & event1i → B1i ; X


 |[ns1 | cs | ns2 ]|




µX •
2 i • g2i & commi → A2i ; X
2

2 i • h2i & event2i → B2i ; X




=

µX •
2 i • g1i ∧ g2i & commi → (A1i |[ns1 | cs | ns2 ]|A2i); X
2

2 i • h1i & event1i → B1i ; X
2

2 i • h2i & event2i → B2i ; X

provided

• ∀ i • commi ∈ cs

• ∀ i • event1i , event2i /∈ cs 2

Law B.4 Action system conversion 2

µX • x → y → X
=
var pc : N •

pc := 0;
µX • pc = 0 & x → pc := 1; X

2

pc = 1 & y → pc := 0; X

Law B.5 Action system

µX • g & x → A; X
=
var pc := 0 •

µX • (pc = 0 ∧ g) & x → pc := 1; X
2

pc = 1 & A; pc := 0; X

Law B.6 Action system 2

µX • 2 i • gi & xi → Ai(X )
=
var pc := 0 •

µX • 2 i • (pc = 0 ∧ gi) & xi → pc := i ; X
2

2 i • pc = i & Ai(pc := 0; X )

where i : 1 . . n
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Law B.7 Action system 3

var pc := 0 •
µX • 2 i • (pc = ei ∧ gi) & xi → Ai ; X

2

(pc = en+1 & xn+1 → B ; An+1; X
=
var pc := 0 •

µX • 2 i • (pc = ei ∧ gi) & xi → Ai ; X
2

(pc = en+1 & xn+1 → pc := en+2; X
2

(pc = en+2 & B ; An+1; X

where Ai are assignments, i : 1 . . n, en+2 /∈ {i : 0 . . (n + 1) • ei}

Law B.8 Eliminate useless branch

µX • g1 & A1; X
2

g2 & A2; X
2

g3 & A3; X
=

µX • g1 & A1; X
2

g2 & A2; X

provided inv ⇔ ¬ g3 2

Law B.9 Merge branches 1

{¬ g2}; g1 & x : [g2]; X
2

g2 & A2; x : [g3]; X
2

g3 & x : [g1]; X
2

g4 & A4; X
2

g5 & A5; X
2

g6 & Skip

=
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{¬ g2}; g1 & x : [g2]; X
2

g1 & A2; x : [g1]; X
2

g2 & A2; x : [g3]; X
2

g4 & A4; X
2

g5 & A5; X
2

g6 & Skip

provided

• g1 ⇒ ¬ g6

• g1, g2, g3 and g4 are mutually exclusive

• FV (A5) ∪ FV (g5) 6= FV (g1) ∪ FV (g2) ∪ FV (g3) ∪ x ∪ FV (A2) ∪ FV (A4) 2

Law B.10 Merge branches 2

µX •
2 i • g1i & A1; x : [¬ g1i ∧ ¬ g2i ]; X
2

2 i • g2i & A2; x : [¬ g2i ∧ ¬ g2i ]; X
2

2 i • g1i & c → A3; x : [g2i ∧ ¬ g1i ]; X
2

(¬ ∃ i • g1i ∨ g2i) & B
=
µX •

2 i • g1i & c → A3; x : [g2i ∧ ¬ g1i ]; X
2

Skip
µX •

2 i • g1i & A1; x : [¬ g1i ∧ ¬ g2i ]; X
2

2 i • g2i & A2; x : [¬ g1i ∧ ¬ g2i ]; X
2

(¬ ∃ i • g1i ∨ g2i) & B

Law B.11 Merge branches 3

{¬ ∃ i • g3i}µX •
2 i • g1i & A1; x : [¬ g1i ∧ ¬ g2i ∧ g3i ]; X
2

2 i • g2i & A2; x : [¬ g1i ∧ ¬ g2i ]; X
2

2 i • g3i & A3; x : [¬ g1i ∧ ¬ g2i ]; X
2

(¬ ∃ i • g1i ∨ g2i) & B
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=

µX •
2 i • g1i & A1; x : [¬ g1i ∧ ¬ g2i ∧ g3i ]; X
2

2 i • g2i & A2; x : [¬ g1i ∧ ¬ g2i ]; X
2

(¬ ∃ i • g1i ∨ g2i) & B
µX •

2 i • g3i & A3; x : [¬ g1i ∧ ¬ g2i ]; X
2

Skip

Internal actions

Law B.12 External choice/Internal choice - internal action

((g1 & A) 2 (g2 & B)) u (g2 & B) = ((g1 & A) 2 (g2 & B))

provided

• B contains only internal actions;

• g2 = true 2

Law B.13 External choice X internal choice for internal action

2 i • gi & ci → Ai

2

2 i • hi & xi := ei

=



2 i • gi & ci → Ai

2

2 i • hi & xi := ei




u
2 i • hi & xi := ei

provided ∨ i • hi . 2

Law B.14 Merge internal action

{¬ g3}
µX •

g1 & A1; [¬ g3]; X
2

g2 & A2; [¬ g3]; X

=
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{¬ g3}
µX •

g1 & x : [true, g3 ∧ ¬ g1]; X (1)
2

g3 & A1; [¬ g3]; X (2)
2

g2 & A2; [¬ g3]; X (3)

provided

• wrtV (A2) ∩ FV (g3) = ∅
• wrtV (A2) ∩ FV (g1) = ∅
• x ∩ FV (g2) = ∅
• ∃ x ′ • g3¬ ∨ g1 2

Law B.15 Elimination of internal action 2

{pc = x}
µX •

pc = x & pc := e; X
2

f (pc = e) & A; X
2

pc = y & B ; X

=

{pc = x}
µX •

f (pc = x ) & pc := e; A; X
2

pc = y & B ; X

provided pc = e ⇒ g1 ∧ ¬ g2 2

Law B.16 Interleaving/Sequential composition - internal actions

(A ||[ns1 | ns2]|| B) = A; B

provided

• A and B contain only internal actions

• usedV (A) ∩ ns2 = ∅
• usedV (B) ∩ ns1 = ∅ 2

Law B.17 Interleaving/Sequential composition - internal actions 2

(||| i : T ||[xi ]||• xi := ei) = (o
9 i : T • xi := ei)
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Hiding

Law B.18 Hiding conditional external choice distribution 2



b & x → P
2

c & y → Q


 \ {x} =




b & (P \ {x} 2 (Stop u c & y → Q \ {x}))
2

¬ b ∧ c & y → Q \ {x}




Law B.19 Hiding conditional external choice distribution 2a



b & x → P
2

c & Q


 \ {x} =




b & (P \ {x} 2 (Stop u c & Q \ {x}))
2

¬ b ∧ c & Q \ {x}




Law B.20 Hiding conditional external choice distribution 3



ga & a → A
2

gb & b → B
2

gc & c → C
2

gd & d → D




\ {a, b}

=

ga ∨ gb &







gc & c → C
2

gd & d → D


 u Stop

2


(ga ∧ gb) & A \ {a, b} u B \ {a, b}
2

(ga ∧ ¬ gb) & A \ {a, b}
2

(¬ ga ∧ gb) & B \ {a, b}




(∗)




2

¬ (ga ∨ gb) ∧ (gc ∨ gd) &




gc & c → C (A)
2

gd & d → D (B)




Obs: In case A \ {a, b} and B \ {a, b} contain only internal actions, then

(ga ∧ gb) & A \ {a, b} u B \ {a, b}
2

(ga ∧ ¬ gb) & A \ {a, b}
2

(¬ ga ∧ gb) & B \ {a, b}
=

ga & A \ {a, b}
2

gb & B \ {a, b}
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This happens because A 2 A = A u A if A contains only internal events.

Law B.21 Hiding identity

A \ cs = A

provided cs ∩ usedC (A) = ∅ 2

Law B.22 Hiding/variable declaration - distribution

(var x • A) \ cs = var x • A \ cs

Law B.23 Hiding/sequence - distribution

(A; B) \ cs = (A \ cs; B \ cs)

Law B.24 Hiding/recursion - distribution

(µX • F (X )) \ cs = (µX • F (X ) \ cs)

Law B.25 Hiding/interleaving - distribution

(||| i : I • Ai) \ cs = ||| i : I • (Ai \ cs)

Law B.26 Hiding/assignment - distribution

(x := e) \ cs = (x := e)

Recursion

Law B.27 Recursion halt

µX • A; X
2

g & x := e; B

=



µX • A; X
2

g & Skip


 ; x := e; B
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Law B.28 Elimination of redundant branch in recursion

µX •
g1 & A1; X
2

g2 & A2; X
2

p &
µY •

g1 & A1; Y
2

B

=

µX •
g1 & A1; X
2

g2 & A2; X
2

p & B

provided ¬ (p ⇒ ¬ g1) 2

Law B.29 Assumption/recursion - refinement

{p}; µ X • F (X ) v G({p}; µ X • F (X )) ⇒ {p}; µ X • F (X ) v µX • G(X )

Law B.30 Useless assignment - recursion

x := e; µX • F (X ) = µX • x := e; F (X )

provided provided that x /∈ FV (F (X )). 2

Law B.31 Fixed point rolling

G(µX • F (G(X ))) = µX • G(F (X ))

Law B.32 Fixed point diagonal

µX • F (X ,X ) = µX • (µX • F (X ,Y ))

Law B.33 Least fixed point

F (Y ) v Y ⇒ µX • F (X ) v Y
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Law B.34 Recursion split

{b}
µX •

(b ∧ g1) & A1; X
2

(b ∧ g2) & A2; x : [¬ b]; X
2

(¬ b ∧ g3) & A3; X
2

(¬ b ∧ g4) & A4; x : [b]; X
2

g5 & A5; X

=

{b}
µX •

(b ∧ g1) & A1; X
2

(b ∧ g2) & A2; x : [¬ b]
2

g5 & A5; X
; µX •

(¬ b ∧ g3) & A3; X
2

(¬ b ∧ g4) & A4; x : [b]
2

g5 & A5; X

provided FV (b) ∩ wrtV (A1,A2,A3,A4,A5) = ∅ 2

Law B.35 Parametrised/Non-parametrised recursion

(µX • p : T • F (X (e1)))(e2)
=
var p : T • p := e2 • µX • F (p := e1; X )

Law B.36 Useless variable - recursion
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{pc = e};
µX •

2 i • (pc = e ∧ gi) & Ai ; pc := e; X
2

(pc = e ∧ g) & Skip
2

2 i • hi & Bi ; X
=
{pc = e};
µX •

2 i • gi & Ai ; X
2

g & Skip
2

2 i • hi & Bi ; X

provided

• Ai contains only internal actions

• pc /∈ FV (Ai) ∪ FV (Bi) 2

Law B.37 Useless Recursion

µX • A = A

provided A does not contain a recursive call to X 2

Iteration

Law B.38 Iteration

µX •
2 i • hi & Ai ; X
2

2 i • (gi ∧ variant > 0) & x : [inv ∧ gi , inv ∧ variant ′ < variant ]; X
2

variant = 0 & A

v

µX •
2 i • hi & Ai ; X
2

x : [inv , inv ∧ (∧ i • ¬ gi)]; A
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Alternation

Law B.39 Alternation introduction

w : [pre, pos]
=
if([]i • Gi → w : [Gi ∧ pre, pos])fi

provided pre ⇒ (∨ i • Gi) 2

Law B.40 Alternation Introduction

w : [pre, post ] v if []igi → w : [gi ∧ pre, post ] fi

provided pre ⇒ ∨
i gi 2

Law B.41 Alternation/Guarded Actions - interchange

if g1 → A1[] g2 → A2 fi = g1 & A1 2 g2 & A2

provided

• g1 ∨ g2

• g1 ⇒ ¬ g2 2

Sequential composition

Law B.42 Sequential composition

w : [pre, pos] = w : [pre,mid ]; w : [mid , pos]

provided mid and pos do not contain initial variables 2

Law B.43 Sequence unit

A = A; Skip = Skip; A

Assignment

Law B.44 Assignment introduction

x : [x = e] = x := e
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Law B.45 Assignment introduction

{pre}; w : [pre, pos] = {pre}; w := e

provided pre ⇒ pos[w/e] 2

Law B.46 Assignment introduction - assumption

{x = e} = {x = e}; x := e

Law B.47 Switch assignment

{x := e1}; w , x : [pre, post ∧ x = e1 ⇒ x = e2]; A(x = e2)

=

{x := e1}; A(x = e1)w , x : [pre, post ∧ x = e1 ⇒ x = e2];

Law B.48 Move assignment

x := e; A = A; x := e

provided x /∈ FV (A) 2

Law B.49 Useless assignment 3

(x := e; x := f ) = (x := f )

provided x is not free in f . 2

Assumption

Law B.50 Assumption introduction

{p}; A v A

Law B.51 Assumption introduction - postcondition

w : [pre, pos] = w : [pre, pos]; {pos[w/w ′]}

provided pos does not contain any reference to initial variables. 2
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Law B.52 Assumption introduction - assumption

{g} = {g}; {g1}

provided g ⇒ g1 2

Law B.53 Assumption introduction - assignment

x := e = x := e; {x = e}

Law B.54 Assumption move - assignment

{x1 = e1}x2 := e2 = x2 := e2; {x1 = e1}

Law B.55 Assumption/Recursion

{g}; µX • F (X )
=
{g}; µX • ({g}; F (X ))

provided {g}; F (X ) v F ({g}; X ) 2

Law B.56 Assumption/Guard - introduction

{g}; A = {g}; g & A

Law B.57 Guard/Assumption - introduction 1

g & A = g & {g}; A

Law B.58 Assumption/External choice - distribution

{g}; (A1 2 A2) = ({g}; A1) 2 ({g}; A2)

Law B.59 Assumption/Prefix - distribution

{g}; c → A v c → {g}; A

Law B.60 Assumption/Prefix - distribution 2

{g}; c → A = {g}; c → {g}; A
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Specification statement

Law B.61 Equivalent post-condition

w : [pre, pos] = w : [pre, pos1]

provided pre ∧ post1[w/w ′] ⇔ pos[w/w ′] 2

Law B.62 Unchanged variable

w : [pre, f (y)] = w : [pre, f (y ′)]

provided y /∈ w . 2

Law B.63 Move specification statement

{x = e};
x : [x = e ⇒ x = f ];
A(x = f )
=
{x = e};
A(x = e)
x : [x = e ⇒ x = f ];

Prefixing

Law B.64 Prefix/Skip

c → A = (c → Skip); A

c.e → A = (c.e → Skip); A

Guards

Law B.65 Guard combination

g1 & (g2 & A) = (g1 ∧ g2) & A

Law B.66 Guard expansion

g1 & A 2 g2 & A = (g1 ∨ g2) & A

Law B.67 Guard/External choice - distribution

g & (A1 2 A2) = (g & A1) 2 (g & A2)
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Law B.68 Guard/Internal choice - distribution

g & (A1 u A2) = (g & A1) u (g & A2)

Law B.69 True guard

true & A = A

Law B.70 False guard

false & A = Stop

Law B.71 Guarded Stop

g & Stop = Stop

External choice

Law B.72 External choice commutativity

A1 2 A2 = A2 2 A1

Law B.73 External choice/Sequence - distribution

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

Law B.74 External choice/Sequence - distribution 2

((g1 & A1) 2 (g2 & A2)); B = ((g1 & A1); B) 2 ((g2 & A2); B)

provided g1 ⇒ ¬ g2 2

Law B.75 External choice/Internal choice - distribution

A 2 (B u C ) = (A 2 B) u (A 2 C )

Law B.76 External choice unit

Stop 2 A = A

Law B.77 External choice/Guarded action

(g1 & A1) 2 (g2 & A2) = (g1 ∨ g2) & ((g1 & A1) 2 (g2 & A2))
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Law B.78 Useless assignment - external choice

x := e;
g1 & c1 → A1

2

g2 & A2

=

g1 & c1 → x := e; A1

2

g2 & A2

=

g1 & c1 → A1

2

g2 & x := e; A2

provided x /∈ FV (g1) and x /∈ FV (g2). 2

Law B.79 Internal choice/External choice/Stop

(A u Stop) 2 B
=
(A 2 B) u (Stop 2 B)
=
(A 2 B) u B

Law B.80 Common branch external choice

g1 & (A 2 B)
2

g2 & (A 2 C )

=

A
2

g1 & B
2

g2 & C

provided (g1 ∨ g2) ⇔ true 2
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Internal choice

Law B.81 Internal choice elimination

A u A = A

Law B.82 Internal choice commutativity

A u B = B u A

Variable block

Law B.83 Useless assignment

(var x : T • A; x := e) = (var x : T • A)

Law B.84 Useless assignment 2

(var x : T • x := e; A) = (var x : T • A)

provided x /∈ FV (A) 2

Law B.85 Variable block/sequence - distribution

A1; (var x : T • A2); A3 = (var x : T • A1; A2; A3)

provided {x , x ′} ∩ (FV (A1) ∪ FV (A3)) = ∅ 2

Law B.86 Join variable blocks

var x : T1; y : T2 • A = var x : T1 • var y : T2 • A

Law B.87 Unused variable

(var x : T • A) = A

provided {x , x ′} ∩ FV (A) = ∅ 2
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Parallelism

Law B.88 Parallel state

‖ i : I • (var x : T • Pi) = var xi : T • ( ‖ i : I • Pi [xi/x ])

Law B.89 Parallel assignment

‖ i : I • (xi := e; Pi) = (||| i : I • xi := e); ( ‖ i : I • Pi)

Law B.90 Parallelism/Interleaving - equivalence

A ||[ns2 | ns2]|| B = A |[ns2 | ∅ | ns2 ]| B

Law B.91 Parallelism/Interleaving - equivalence 2

A ||[ns2 | ns2]|| B = A |[ns2 | cs | ns2 ]| B

provided

• usedC (A) ∩ cs = ∅
• usedC (B) ∩ cs = ∅ 2

Simulation

Law B.92 Simple prefix distribution

c.ae → Skip ¹ c.ce → Skip

provided ∀P1.st ; P2.st ; L • R ⇒ ae = ce 2

Law B.93 Guard distribution

ag & A1 ¹ cg & A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ (ag ⇔ cg)

• A1 ¹ A2 2

Law B.94 Sequence distribution

A1; A2 ¹ B1; B2

provided

• A1 ¹ B1

• A2 ¹ B2 2
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Law B.95 External choice distribution

A1 2 A2 ¹ B1 2 B2

provided

• A1 ¹ B1

• A2 ¹ B2

• R is a injective function from the abstract to the concrete state. 2

Law B.96 Interleave distribution

A1 ||[ns1 | ns2]|| A2 ¹ B1 ||[ns1 | ns2]|| B2

provided

• A1 ¹ A2

• B1 ¹ B2

• ∀ vA, vB • R(vA, vB ) ⇒ ((vA ∈ ns1A ⇒ vB ∈ ns1B ) ∧ (vA ∈ ns2A ⇒ vB ∈ ns2B )) 2

Law B.97 Recursion distribution

µX • FA(X ) ¹ µX • FC (X )

provided FA ¹ FC 2
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B.2 Lemmas

Lemma B.98 Converting a client into an action system

µX •
toA!i →

fromA.i?any →
toB !i →

fromB .i?synchronised →
(synchronised = true) & q .i → X
2

(synchronised = false) & X
2

interrupt .i →
toA!(flip i) → X
2

fromA.i?anyt → toB !(flip i) → fromB .i?any → X

=

var pc := 0, sync •
µX •

pc = 0 & toA!i → pc := 1; X
2

pc = 1 & fromA.i?any → pc := 2; X
2

pc = 2 & toB !i → pc := 3; X
2

pc = 3 & fromB .i?synchronised → pc := 4; sync := synchronised ; X
2

(pc = 4 ∧ sync = true) & q .i → pc := 0; X
2

(pc = 4 ∧ sync = false) & pc := 0; X
2

pc = 1 & interrupt .i → pc := 5; X
2

pc = 5 & toA!(flip i) → pc := 0; X
2

pc = 5 & fromA.i?anyt → pc := 7; X
2

pc = 7 & toB?(flip i) → pc := 8; X
2

pc = 8 & fromB .i?anyf → pc := 0; X



APPENDIX B. REFINEMENT LAWS 144

Lemma B.99 Converting the controller into an action system

var countx : I • countx := n;
µX •

(countx > 0 ∧ countx ≤ n) &
to?nextOffer →

(nextOffer ≥ 0) & countx := countx − 1; X
2

(nextOffer < 0) & countx := countx + 1; X
2

(countx = 0) &
variy : I • iy := 0;
µY •

(iy < n) & from.iy !true → iy := iy + 1; Y
2

(iy = n) &
var iz , countz : I • iz := 0; countz := n;
µZ •

(iz ≥ 0 ∧ iz < n) & to?nextcommit →
(nextcommit ≥ 0) & iz := iz + 1; countz := countz − 1; Z
2

(nextcommit < 0) & iz := iz + 1; Z
2

(i = n) &
var iw : I • iw := 0;
µW •

(iw < n) & from.iw !(countz = 0) → iw := iw + 1; W
2

(iw = n) & countx := n; X

=

var countx , iy , iz , countz , iw , pc,nextO ,nextC •
countx := n; pc := 0;

µX •
(pc = 0 ∧ countx > 0) & to?nextOffer → pc := 1; nextO := nextOffer ; X
2 (pc = 1 ∧ nextO ≥ 0) & pc := 0; countx := countx − 1; X
2 (pc = 1 ∧ nextO < 0) & pc := 0; countx := countx + 1; X
2 (pc = 0 ∧ countx = 0) & pc := 2; iy := 0; X
2 (pc = 2 ∧ iy < n) & from.i !true → pc := 2; iy := iy + 1; X
2 (pc = 2 ∧ iy = n) & pc := 3; iz := 0; countz := n; X
2 (pc = 3 ∧ iz ≥ 0 ∧ iz < n) & to?nextCommit → pc := 4; nextC := nextCommit ; X
2 (pc = 4 ∧ nextC ≥ 0) & pc := 3; iz := iz + 1; countz := countz − 1; X
2 (pc = 4 ∧ next < 0) & pc := 3; iz := iz + 1; X
2 (pc = 3 ∧ iz = n) & pc := 5; iw = 0; X
2 (pc = 5 ∧ iw < n) & from.i !(countz = 0) → pc := 5; iw := iw + 1; X
2 (pc = 5 ∧ iw = n) & pc := 0; countx := n; X
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Pernambuco, Brazil, August 2002.

[8] G. Booch, I. Jacobsen, and J. Rumbaugh. Unifying Modeling Language User Guide. Addison-
Wesley, 1997.

[9] M. J. Butler. csp2B: A Practical Approach to Combining CSP and B. Formal Aspects of
Computing, 12(3):182–198, 2000.

[10] D. A. Carrington, D. J. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-Z:
an Object-Oriented Extension to Z. In Formal Description Techniques (FORTE ’89), pages
281–296. North-Holland Publishing Co., 1989.

[11] A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. Control Law Diagrams in Circus. In
J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, Formal Methods (FM 2005), volume 3582
of LCNS, pages 253–268. Springer-Verlag, 2005.

[12] A. L. C. Cavalcanti and A. C. A. Sampaio. From CSP-OZ to Java with Processes. In 16th
International Parallel and Distributed Processing Symposium (IPDPS ’02), page 161. IEEE
Computer Society, 2002.

[13] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes and
Processes. Software and System Modelling, 4(3):277 – 296, 2005.

[14] C. Fischer. CSP-OZ: a Combination of Object-Z and CSP. In H. Bowman and J. Derrick,
editors, 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), pages 423–438. Chapman and Hall, London, 1997.

145



BIBLIOGRAPHY 146

[15] Formal Systems (Europe) Ltd. FDR: User Manual and Tutorial, version 2.28, 1999.

[16] A. Freitas. From Circus to Java: Implementation and Verification of a
Translation Strategy – MSc Thesis Additional Material, December 2005.
http://www.cs.york.ac.uk/circus/jcsp/freitas-msc/.

[17] L. Freitas. JACK – A Process Algebra Implementation in Java. Master’s thesis, Centro de
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