Title
An Investigation of Square Waves for Evolution in Carbon Nanotubes Material
An Investigation of Square Waves for Evolution in Carbon Nanotubes Material
Download via this paper's page on the MIT Press ECAL 2015 Proceedings website.
Materials suitable to perform computation make use of evolved configuration signals which specify how the material samples are to operate. The choice of which input and configuration parameters to manipulate obviously impacts the potential of the computational device that emerges. As such, a key challenge is to understand which parameters are better suited to exploit the underlying physical properties of the chosen material. In this paper we focus on the usage of square voltage waves as such manipulation parameters for carbon nanotubes/polymer nanocomposites. The choice of input parameters influence the reachable search space, which may be critical for any kind of evolved computational task. We provide common measurements such as power spectrum and phase plots, taken with the the Mecobo platform, a custombuilt board for evolution-in-materio. In addition, an initial investigation is carried out, which links the frequency of square waves to comparability of the output from the material, while also showing differences in the material’s physical parameters. Observing the behaviour of materials under varying inputs allows macroscopic modelling of pin-to-pin characteristics with simple RC circuits. Finally, SPICE is used to provide a rudamentary simulation of the observed properties of the material. This simulation models the per-pin behaviours, and also shows that an instance of the traveling-salesmanproblem can be solved with a simple randomly generated cloud of resistors.