Transfer Request Broker: Resolving Input-Output Choice

Oliver Faust, Bernhard H.C. Sputh, Alastair R. Allen

University of Aberdeen
September 8, 2008

Motivation

- Problem: resolving input and output choice
- Know the network state
- Store the network state
- Update the network state
- Solution: Transfer Request Broker (TRB)
- Relation matrix, an efficient way to store and update the network state
- Compact representation
- The size of the relation matrix is known during design time \rightarrow no infinite buffers required
- Realisation: formal model
- Matrix operation support for CSPM
- Classical CSP model for specification and implementation

Agenda

This session is structured as follows:

- Problem specification
- Problem statement
- CSP SPECIFICATION model
- Refinement from specification to implementation
- Matrix based network topology
- CSP IMPLEMENTATION model
- Discussion of the CSP models
- Sequential nature of the search algorithm.
- Model checking.
- Conclusions

Water Risk Management Europe

The project was sponsored by the EC:

- EC FP6 IST - Water Risk Management EuRope (WARMER)
- EC no. 034472 FP6-2005-IST-5

The aims of the WARMER project are:
(1) Sensor development;
(2) In-situ Monitoring Station development;
(3) In-situ Sensing Data Collection and Presentation;
(3) Remote Sensing Data Collection and Presentation;
(5) Fusion and Presentation of In-situ and Remote Sensing Data.

Problem statement

Two conflicting facts:

- The CSP process algebra explicitly allows resolving input and output guards.
- Symmetry
- Choice over input and output ensures that every parallel command can be translated into a sequential equivalent.
- Programming languages which offer CSP primitives resolve only input choice (alternation).
- Computational complexity
- Code size

Refine a system which uses input and output choice into a system which uses only input choice.

SPECIFICATION process network

CSP model

Define the individual processes:

$$
\begin{aligned}
& P_{-} S P E C(i)=i n . i ? x \rightarrow \square_{j \in \mathrm{p} _ \text {set }(i)} \underbrace{\text { net_channel.i.j!x }}_{\text {output guards }} \rightarrow P_{-} \text {SPEC }(i) \\
& C _S P E C(j)=\square_{i \in \mathrm{c} _ \text {set }(j)} \underbrace{\text { net_channel.i.j?x}}_{\text {input guards }} \rightarrow \text { out.j!x } \rightarrow C _S P E C(j)
\end{aligned}
$$

Define producer and consumer groups:

$$
\begin{aligned}
& \text { PRODUCER_SPEC }=\| \|_{i \in\{0 . . n-1\}} P _S P E C(i) \\
& \text { CONSUMER_SPEC }=\| \|_{j \in\{0 . . m-1\}} C _S P E C(j)
\end{aligned}
$$

Make producer and consumer communicate over the net_channels:
SPECIFICATION $=$ CONSUMER_SPEC PRODUCER_SPEC
$\{\mid$ net_channel $\mid\}$

Link signals

(1) net_channel .0 .0 connects $P_{-} S P E C(0)$ to $C_{-} S P E C(0)$;
(3) net_channel. 0.1 connects $P _S P E C(0)$ to $C-S P E C(1)$;

- net_channel .0 .2 connects $P_{-} S P E C(0)$ to $C _S P E C(2)$;
- net_channel. 1.0 connects $P_{-} S P E C(1)$ to $C _S P E C(0)$;
- net_channel.1.2 connects P_SPEC(1) to C_SPEC(2).

Relation matrix

	C_SPEC(0)	C_SPEC(1)	C_SPEC(2)
$P _S P E C(0)$	1	1	1
$P _S P E C(1)$	1	0	1

Solution

One independent entity which resolves input and output choice.
This entity must have the following properties:

- It needs to know (get informed) about the network state.
- Efficiency of the choice resolution algorithm.
- Efficiency in storing and updating the network state.
- It needs to communicate the choice result.

IMPLEMENTATION process network

Example

The mathematics are in the paper and not in the presentation.
This motto leads to a visual example which explains the TRB functionality. The following list sets the goals for the example:

- The individual channel transactions are shown.
- The change of the relation matrix in response to these transactions is shown.

Example: initial setup

Example: $C(1)$ communicates with the $T R B$

$$
\text { p_array }=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\text { c_array }=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example: update c_array

Example: $P(1)$ communicates with the $T R B$

Example: update p_array

Example: $C(2)$ communicates with the $T R B$

$$
\text { p_array }=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

$$
\text { c_array }=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example: update c_array

Example: reset $P(1)$ row vector in p _array

Example: the $T R B$ communicates with $P(1)$

Example: reset $C(2)$ column vector in c_array

Example: the $T R B$ communicates with $C(2)$
p_array $=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\text { c_array }=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example: data transfer

Model checking

- Setup:
- SPECIFICATION model
- IMPLEMENTATION model
- Checks:
- Deadlock
- Divergence
- Deterministic
- Trace refinement

IMPLEMENTATION process network with the communication to and from the TRB hidden

Model checking results

FDR output:

\checkmark SPECIFICATION deadlock free [F]
/ SPECIFICATION livelock free
\checkmark IMPLEMENTATION deadlock free [F]
IMPLEMENTATION livelock free
SPECIFICATION deterministic [FD]
$X \cdot \operatorname{IMPLEMENTATION}$ deterministic [FD]
$\checkmark \mathbb{M P}$ deterministic [FD]
SPECIFICATION $[T=\mathbb{M P L E M E N T A T I O N}$
IMPLEMENTATION $[$ = SPECIFICATION

Absent checks:

- Failure refinement
- Failure divergence refinement

Conclusions

Summary:

- Problem: resolving input and output choice
- Solution: Transfer Request Broker (TRB)
- Realisation: formal model

Main ideas presented:

- An external / independent which controls the network.
- Represent the network with a relation matrix.
- Extend CSP $_{M}$ with matrix operations.

Further work

There are only two points for future work:
(1) Scalability:

- Remove the single point of failure.
- Remove the bottle neck.
(2) Priority
(3) Mobility

Question and Answers

- An external / independent which controls the network.
- Represent the network with a relation matrix.
- Extend CSP_{M} with matrix operations.

