
Communicating Scala Objects

Bernard Sufrin

CPA, York, September 2008

[cpa2008-cso-talk]

Communicating Scala Objects – why bother?

� The dogma “Component ≡ Object” is no longer sustainable

� Can “Component ≡ Process” be rehabilitated?

� occam-style (stream-oriented) programming

◦ a powerful conceptual/analytical tool ... still!
◦ increasingly becoming efficiently realizeable ... again!
◦ neglected in mainstream curriculum ... somewhat!

� occam model not integrated into a mainstream language ... JCSP notwithstanding.

Communicating Scala Objects 1 CPA, York, September 2008

Scala

� Conventional object-oriented language very loosely based on (Generic) Java

� More directly (i.e. without transliteration) expressive for our purposes than Java

◦ no artificial distinction between primitive and reference types
◦ by-name as well as by-value parameters
◦ functions/methods are first-class values
◦ multiple (mixin) inheritance
◦ concrete notation somewhat “plastic”

� Type system more expressive than Java’s

� “Open” compiler ... well, nearly!

� Translates to JVM and to .NET

Communicating Scala Objects 2 CPA, York, September 2008

Natural number circuit component (adapted from JCSP Plug’N’Play)

zero out
{(0)}------>|\ nats /|---------->

| }------>{ |
+-->|/ \|----------+
| succs mid |
+-----------[+1]<----------+

def nats (out : ! [long]) =
{ val mid , nats , succs , zero = OneOne [long]

(merge (zero , succs) (nats)
| | de l t a (nats) (out , mid)
| | map { n => n+1 } (mid , succs)
| | proc { zero !0 }
)

}

� nats(someChannel)

◦ Declares four internal point-to-point synchronous channels
◦ Yields a process that when started outputs numbers along someChannel
◦ Terminates when all its components terminate ... after someChannel is closed.

Communicating Scala Objects 3 CPA, York, September 2008

def merge [T] (l : ? [T] , r : ? [T]) (out : ! [T]) = proc
{

repeat { a l t (l −−> { out ! (l ?) } | r −−> { out ! (r ?) }) }

out . c loseout
l . c l ose in
r . c l ose in

}

merge(l, r)(out) yields a process that when started merges l and r onto out

� It terminates when both l , r have been closed, or when out refuses

� Refusal is implemented by closing

� As written it prioritizes input from l

� This is because the alt ’s internal data structure is rebuilt on each cycle

NB: alt notation changed since the paper; revised paper on my website

Communicating Scala Objects 4 CPA, York, September 2008

� Events may have boolean guards

� A false guard excludes its channel from the readiness scan

var lnum , rnum = 0
repeat { a l t (l (! r . isOpen | | rnum−lnum>4) −−> { out ! (l ?) ; lnum++ }

| r (! l . isOpen | | lnum−rnum>4) −−> { out ! (r ?) ; rnum++ }
)

}

� Here neither channel can get too far ahead of the other

Communicating Scala Objects 5 CPA, York, September 2008

� A more general, and fair(er), merge, that outputs SOMETHING at least every 30ms

def merge [T] (i n p o r t s : ? [T] ∗) (out : ! [T]) = proc
{ repeata l t (a f te r (30) −−> { out ! nul l }

| for (in<−i n p o r t s) yie ld i n −−> { out ! (i n ?) }
)

out . c loseout
for (in<−i n p o r t s) i n . c l ose in

}

� An alt structure is built from the event collection after ... | for ... yield ...

� Its guard-selection method is invoked repeatedly

� “Fairness” implemented by “round-robin” turn-taking in the port-readiness scan

� repeatalt-loop terminates when all inports are closed or when out refuses

Communicating Scala Objects 6 CPA, York, September 2008

def de l t a [T] (i n p o r t : ? [T]) (ou tpo r t s : ! [T] ∗) = proc
{ var buf : T = nul l

val out = | | (for (por t<−ou tpo r t s) yie ld proc { po r t ! buf })

repeat { buf = i n p o r t ? ; out () }

i n p o r t . c l ose in
for (por t<−ou tpo r t s) po r t . c loseout

}

delta(in)(outs) yields a process that when started copies from in to all of outs

� out is a process that is started anew after every input

... outputs v in parallel to each outport

... terminates when all the outports have either accepted v or refused it

� Copying stops when inport refuses, or when any outport refuses

� Refusal is implemented by closing

Communicating Scala Objects 7 CPA, York, September 2008

� (Distributed) termination: the building blocks

◦ Closing a channel: “Henceforth nobody will communicate from either end”
◦ Closing a port: “I will never communicate via your channel from this end”
◦ For “point-to-point” (OneOne) channels these mean the same thing

◦ An attempt to communicate via a closed channel throws a (form of) Stop
... in the communicating (not the closing) peer
... even if the communication (! or ?) has started in the communicating peer

◦ An alt whose input ports are (or become) closed throws a (form of) Stop

◦ An (uncaught) Stop means “terminate the closest repeat”

◦ Convention: components close their communication ports on termination

Communicating Scala Objects 8 CPA, York, September 2008

� Parallel compositions must “do the right thing” with uncaught exceptions

◦ Principle: no component should fail silently, save by design
◦ Consequence: an (uncaught) exception must cause termination
◦ Consequence: an (uncaught) exception must be propagated from a composition

◦ A parallel composition terminates when all its components have terminated
· If all components terminate without an exception,

the composition just terminates
· If any components terminate with an exception,

the composition terminates by re-throwing the ⋃ of all the exceptions

Stop ⋃ Stop = Stop
Stop ⋃ non-Stop = non-Stop
non-Stop ⋃ Stop = non-Stop
non-Stop ⋃ non-Stop = non-Stop

Communicating Scala Objects 9 CPA, York, September 2008

� Synchronous channels performance: Actors, CSO and JCSP (Avg. µs per cycle)

ParDelta: val v=a?;(c!v||d!v)() SeqDelta: val v=a?;c!v;d!v

Host JVM Actors
CSO
Seq

JCSP
Seq

CSO
Par

JCSP
Par

4 × 2.66GHz Xeon, OS/X 10.4 1.5 28-32 31-34 44-45 59-66 54-56
2 × 2.4GHz Athlon 64X2 Linux 1.6 25-32 26-39 32-41 24-46 27-46
1 × 1.83GHz Core Duo, OS/X 1.5 62-71 64-66 66-69 90-94 80-89
1 × 1.4GHz Centrino, Linux 1.6 42-46 30-31 28-32 49-58 36-40

Communicating Scala Objects 10 CPA, York, September 2008

� Buffered Channels Actors vs CSO (Range of Avg. µs per cycle)

Host JVM Actors CSO
4 × 2.66 GHz Xeon, OS/X 10.4 1.5 10-13 10-14
2 × 2.4 GHz Athlon 64X2 Linux 1.6 16-27 4-11

1 × 1.83 GHz Core Duo, OS/X 10.4 1.5 27-32 14-21
1 × 1.4 Ghz Centrino, Linux 1.6 42-45 17-19

� Inter-JVM round-trip medium-size message time on a TCP connection:

“no more than 20% more than ping-time on a LAN/WAN”

Communicating Scala Objects 11 CPA, York, September 2008

� CSO Under the hood

◦ A process is a template for a thread
◦ When a process is started a thread is acquired for it (from a self-expanding pool)
◦ When processes terminate, their threads are returned to the pool
◦ Pool is parameterized by keep-alive time for “resting” threads
◦ Communication implementation straightforward

� Actors under the hood

◦ Not necessarily a 1-1 correspondence between Actors and Threads
◦ Actions following message receipt may be performed in sending Thread
◦ Efficient scaleability depends on programming style!
◦ Cyclic networks of actors are not efficiently scaleable.
◦ Communication implementation “ingenious”

Communicating Scala Objects 12 CPA, York, September 2008

Challenges

� Technical

◦ Liberate CSO from the status of tutorial toy – construct a useful component base

� Pedagogical

◦ (Re)habilitate the ideas of occam within mainstream programming

� Technical (for everyone who cares)

◦ Liberate threads from the awful weight of the “standard model”
◦ Make local communication as efficient as method call in JVM/.NET/OWHY

Communicating Scala Objects 13 CPA, York, September 2008

Notes

Note 1 (Page 1)
It is no longer possible to preserve the illusion that OOP is “mostly” about assembling sequential
programs to run in “mostly” sequential contexts.

Note 2 (Page 1)
The widespread acceptance of “design by contract” may have served to prolong its lifespan somewhat,
but the overall weakness of the idea of a contract imposes serious limitations on compositionality.

I am interested in rehabilitating the idea of Component as Communicating Process

Note 3 (Page 1)
Just what integration into a mainstream language might be would be the subject of another conference!

occam itself occupied an interesting ecological niche at an interesting moment in the evolution of
computing technology. The restrictions on expressive power that led to its being very efficiently
implementable with little or no “kernel” support didn’t constitute an enormous step back from too many
of the languages then widely accepted in the mainstream.

I am very excited at the prospect of seeing a functioning operating system kernel written in one of the
modernized dialects of occam.

I fear that I am very ignorant of the progress that the pi calculus and join calculus have been making
into the mainstream. I am aware of a number of toy languages and libraries, and of Polyphonic C] but
have not explored their potential.

Note 4 (Page 2)
Communicating Scala Objects i CPA, York, September 2008

Notes

whose class libraries may be exploited

Note 5 (Page 3)

� Formal parameter of nat is an integer output port

� Actual parameter of nat (likely to be) an integer channel

� A OneOne[T] is a Chan[T], so its type is a subtype of both ![T] and ?[T]

Communicating Scala Objects ii CPA, York, September 2008

	Foil 1
	Foil 2
	Foil 3
	Foil 4
	Foil 5
	Foil 6
	Foil 7
	Foil 8
	Foil 9
	Foil 10
	Foil 11
	Foil 12
	Foil 13
	Notes

