
TwoWay Protocols
for occamπ

Adam T. Sampson

Computing Laboratory, University of Kent

2

Before we start...
● This is a proposal

– It hasn't yet been implemented

● It's a synthesis of several existing ideas
● It's applicable to a variety of process-oriented

languages and libraries
– so when I say “occam”, read “occam or JCSP or CHP

or PyCSP or ...”

3

The problem

4

Processes and channels
● In occam, we build programs by composing

processes connected by synchronous,
unidirectional channels

read.file decode display

5

Protocols
● The messages that may be sent over a channel

are defined by a protocol
● The compiler checks that the program follows the

protocol

PROTOCOL POSITION IS INT; INT:

PROTOCOL VIDEO.STREAM
 CASE
 frame; TIME; [][]PIXEL
 end.of.stream
:

6

Clients and servers
● A common design

pattern: server
processes answer
requests from client
processes

● Design rules can be
used to construct
complex client-server
networks safely

server

client

requests responses

7

Conversations
● Each interaction between a client and server is a

conversation, and may contain any number of
messages

● For example, the loan pattern:
– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– Client: “Right, I'm done; you can have it back now.”

8

Clientserver in occam
● Request and response channels have separate

protocols

PROTOCOL LOAN.REQ
 CASE
 borrow
 return; MOBILE DATA
:

PROTOCOL LOAN.RESP
 CASE
 lend; MOBILE DATA
:

9

Safety assured?
● We can check the protocol on each individual

channel
● But:

– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– (Client gets distracted and wanders off.)

– Client: “Let me borrow your big data structure.”

– (Boom!)

10

What went wrong?
● Each channel's protocol is checked, but the

overall conversation is not checked
– ... so it's possible for the client and server to get into an

inconsistent state

● We need a way of describing the two-way
protocol that the client and server follow
– This is useful for documentation too!

11

Some existing approaches

12

Honeysuckle (Ian East)
● Language for engineering client-server systems
● A compound service defines the interface to a

server using simplified code

sequence
 receive command
 if command
 write
 acquire String
 read
 transfer String

13

Session types (Kohei Honda)
● A formal way of describing two-way

communication protocols in terms of the
communications that may occur

INT! . INT!

(write! . STRING!) | (read! . STRING?)

borrow! . lend? . DATA? . return! . DATA!

14

Session types (Honda)
● Originally proposed for use with the pi-calculus
● Several implementations in various languages

– For concurrency

– For network protocols

15

State machines
● Session types can be statically checked by

translation into finite state machines
● Session type is a (state machine, state ID) pair
● Communications update the state ID

16

Proposal

17

Twoway channels
● Add two-way channels to occam-pi
● Can support communication in either direction

– ... provided both ends agree on the direction
● You can't ALT between c! and c?

– Existing channel implementations (CCSP, JCSP et al.)
already support this

● Superset of existing channel facilities

18

Twoway protocols
● Message content and direction is specified using

two-way protocols
– These are session type declarations

● Conversations must always be started by the
same end...
– ... so we can always tell what direction the next

communication will be in

– This is already one of the client-server design rules:
the client must initiate conversation

19

Splitting up
● In classical occam, one input/output operation

performs the whole one-way protocol

CHAN POSITION c:

c ! 42; 13 POSITION protocol

20

Splitting up
● Now, a two-way protocol may describe several

operations

CHAN LEND c:
MOBILE DATA thing:

SEQ

 c ! borrow
 c ? lend; thing

 -- do something with thing

 c ! return; thing

LEND protocol

21

Checking the protocol
● The occam compiler can check this by attaching

a session type to each channel end
– ... which is updated on each communication

-- c has session type:
-- lend? . DATA? . return! . DATA!

c ? lend; thing

-- c has session type:
-- return! . DATA!

22

Delegation's what you need
● Since the compiler tracks the session type of

each channel end, you can manipulate them
safely in the middle of a conversation
– Abbreviate them

– Pass them to a procedure

– For mobile channel ends, communicate them to
another process

● Can also split a one-way communication across
multiple lines

23

Multiple uses
● Can use this to build client-server systems (as in

Honeysuckle)
● But it's not tied to the client-server design rules,

so it's useful for other types of process network
too

● This can replace several existing uses of channel
bundles – reduces overhead a bit!

24

Syntax

25

Session types in occam
● You'll notice I haven't shown how you define a

two-way protocol in occam yet
● There are several possible syntaxes we could

consider
● I want to get this right – suggestions appreciated!

26

One approach

PROTOCOL LOAN IS borrow!;
 lend?; MOBILE DATA?;
 return!; MOBILE DATA!:

PROTOCOL STORE IS (read!; STRING?)
 OR (write!; STRING!):

● Adapt session types notation into occam syntax
– This is what most session types implementations do

– Similar to existing one-way protocol syntax

27

Another way
● Use simplified occam code

– ... like Honeysuckle does

– More verbose, but clearer for complex protocols

PROTOCOL LOAN
 SEQ
 ! borrow
 ? lend; MOBILE DATA
 ! return; MOBILE DATA
:

28

The problems
● Both approaches have strengths and

weaknesses...
– Describe the lifetime of the channel, or just a single

transaction?

– Reusing and extending protocols

– Describing a particular state: LOAN[lend]

– Elegance and similarity to existing syntax

● See the paper for more details

29

Thanks!
● Any questions?

