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Abstract 

In the verification phase of the design of logic circuits using 
the top-down approach, it is necessary not only to detect but also 
to locate the source of any inconsistencies that may exist between 
the functional-level description and its gate-level implementation. 
In this paper we present a method that deter-mm es the areas, 
within the gate-level circuit, that contain the functional errors. 
The indicated areas are shown to have sufficient resolution to 
allow the designer to quickly find the cause of the inconsistency 
and, therefore, reduce the time required for debugging. 

1. Introduction 

In the design of large digital systems, such as main- 
frame computers, a complete specification at the register- 
transfer level (the functional level) is written for the simula- 
tion of the entire system-a simulation of the whole system 
at the gate level is impractical in many cases. When this 
description is found to be correct, via simulation, a gate- 
level circuit is designed based upon this description. Al- 
though many advances have been made in logic synthesis, 
this design is still mostly manual, particularly for circuits 
in which the timing is critical. Consequently, it becomes 
necessary to detect, locate, and correct any inconsistencies 
that may exist between the functional-level representation 
and the gate-level representation. A major portion of the 
total logic design time is spent at this stage. 

There are two approaches used in practice at this stage 
of the design process. The first and most common approach 
is simulation [SASA84, ABAD88]. In this approach the 
functional-level circuit and the gate-level circuit are both 
simulated with the same input patterns, and the outputs of 
these circuits are then compared to check for any inconsis- 
tencies. Although this approach is the quickest and most 
efficient, it has the disadvantage that the verification is not 
complete because of the impracticality of simulating the cir- 
cuits with all possible input combinations. Therefore, it is 
possible that a logic error will not be detected until after the 
hardware has been made-a costly affair. In addition, the 
generation of the input test patterns is very time-consuming. 
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The second approach is Boolean comparison. The 
functional-level description is converted into a Boolean ex- 
pression and then this is compared, using formal verifica- 
tion techniques, with the Boolean equation that corresponds 
to the manually-designed gate-level circuit. The two func- 
tions are tested for equivalence by proving the graph isomor- 
phism of binary decision diagrams [AKERSO, BRYA86], or 
by proving the tautology of the exclusive-or of the two func- 
tions [SMIT82, ODAW86]. Other techniques are described 
in [HACH88]. 

Both of the above approaches give a yes/no answer to 
equivalency but no useful information on the location of the 
logic error. By logic error or functional error we mean those 
errors that can not be detected just by checking the struc- 
ture. To detect these errors it is necessary to analyze the 
function of the circuit. A logic error would occur, for exam- 
ple, when an inverter is missing or when there is an AND 
gate instead of an OR gate. There are tools and techniques 
for aiding the design engineer in finding the error, but it 
still remains mostly a manual process requiring considerable 
amounts of the engineer’s valuable time. 

The need to locate the source of the inconsistencies 
between the functional-level description and its gate-level 
implementation occurs frequently. The implementation of 
the gate-level circuit usually goes through several iterations. 

During each iteration the circuit needs to be verified, and 
if there are any inconsistencies then the errors need to be 
found and corrected. This search for the location of the 
errors will also occur during technology re-mapping. 

To shorten the design cycle, this paper addresses the 
above problem of finding the location of functional errors 
within logic circuits. A method for finding such errors, to 
be of any practical use, must have resolution and be deter- 

ministic. By resolution we me mean that the area specified 
as containing the error must be small enough so that the 

designer can quickly determine the exact cause and proceed 
to make the proper corrections. It must also be determin- 
istic because it is not of much use to say that “maybe” the 
error is contained in a specified area. 

Although extensive research has been done in the area 
of verification, very little has been reported on how to locate 
the errors once the circuit has been shown to be incorrect. 
The technique described in [ODAW86] uses the patterns 
that yield an inconsistency. The circuit is simulated with 
each of these patterns to find the values of all the internal 
nets. The circuit is then traced from the output back to the 
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inputs along the paths that yield an incorrect value. The 

backtracking continues until a gate is reached in which it 

is no longer possible to determine a faulty path. The error 
is, thus, said to be found somewhere between this gate and 

the inputs. Often such a gate is reached close to the out- 
puts, and, as a consequence, the area that is said to contain 

the errors occupies a large portion of the circuit; i.e., this 

method does not have resolution. 

The method presented in this paper satisfies the above 

conditions of being deterministic and having resolution. It 

achieves this by partioning the functional description of the 

circuit into sub-functions, and then verifying the sub-circuits 

corresponding to these sub-functions to determine the loca- 

tion of the functional errors. In this procedure, no assump- 

tions are made on the type of functional errors that may 

occur. 

2. Verification 

To be able to find deterministically the location of logic 

errors, it is first necessary to prove that the descriptions at 

the functional and gate levels are consistent for all regions 

not containing logic errors. This means that formal verifica- 

tion techniques need to be used. The Boolean comparison 

method described above is used at this stage of the lfocation 

method, but not in the traditional manner. Because of the 

NP-complete nature of the the Boolean comparison problem 

[GARE79], it is not efficient to apply these methods directly 

to the verification of logic circuits. 

The computation time required for comparing two 

Boolean functions, in the worst case, grows exponentially 

with the number of variables. In the proposed method, to 

reduce the number of variables contained in the functions 

that need to be compared, each statement in the functional- 

level description is partitioned into sub-functions. The cor- 

responding sub-functions of the circuit are extracted by per- 

forming a hybrid symbolic simulation in which symbols as 
well as Boolean values can be processed [BARR84, SRIN86]. 
This partitioning, as described in section 3, also serves as the 

basis for locating the functional errors. 

2.1 Partitioning of Functional Descriptions 

The functional-level description language used within 

NEC, is a low-level register-transfer language called FDL 

[KAT083](an example of an FDL description is shown in 

Fig. 1 and the corresponding gate-level circuit is shown in 

Fig. 2). It is a non-procedural language that describes hard- 
ware by dividing it into functional blocks, each one contain- 

ing combinational logic and a register. Each statement de- 

scribes one of these functional blocks by defining the next 
state of the register (NOC stands for “No Change”). If, for the 

signal names of the primary inputs, primary outputs, and 
registers, there is a one-to-one correspondence between those 
of the FDL description and those of the gate-level circuit, 

then each of these statements can be analyzed separately. 

The problem is then reduced to verifying and debugging 
combinational circuits. 

FDL statements use basically two structures to de- 

scribe behavior: the IF.. . THEN.. . ELSE.. . and CASE.. . OF.. . 

structures (both of which can be used recursively). These 

statements can, therefore, be thought of as having input 

data signals, input control signals and output data signals. 

Those signals appearing in the conditional parts (the IF and 
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REG MATON =: IF TMRST 

THEN 0 

ELSE IF HCK .UP. 
THEN CASE TSMC OF 

/O/ IF TSC8ET’ 
THEN NOiC 

ELSE IF MTRCRT 

TIEEN 0 
EL13E IF MTRCST 

THEN NNSNOT 

ELSE NOC, 
/I/ NNSNOT 

ELSE NOC; 

Figure 1: Example of Circuit Description in FDL 

Figure 2: Gate-level Circuit 

CASE parts) represent the control signals. The THEN, ELSE 

and OF parts consist of expressions that describe specific sub- 
functions in terms of the input data signals. For example, 

in t.he following expression 

Z = IF G THEN T.0R.U 

ELSE IF H THEN V 

ELSE W; 

Example 1 

the control signals are G and H, the input data signals are T, 

U, V, and W, the output signal is Z, and the sub-functions are 

T.OR.U, V, and W. Likewise, in the following expression 

K = CASE M-N OF 

/O O/ P.AND.Q 

/o 1/ 1 

/l O/ R 
/I 1/ P 

Example 2 

the control signals are M and N (the u-n denotes concatena- 
tion), the input data signals P, Q and R, and the sub-functions 

P.AND.Q, 1, R, and P. 

2.2 Extraction of Sub-Functions 

To extract the corresponding sub-functions from the 

gate-level circuit, the combinational circuit is modeled as a 

black box that has the same input data signals, input con- 

trol signals, and output data signals as the functional-level 



description. Depending on the input pattern of the control 
signals, the black box will have a specific sub-function- 
similar to a complex ALU. If a hybrid symbolic simulation 
(in which symbols as well as Boolean values are allowed) 
is performed by applying Boolean values at the control in- 
puts and signal names at, the data inputs, the respective 
sub-function will appear at the output (Fig. 3). The equiv- 
alence problem is then reduced to determining if each of the 
sub-functions that are described in the functional-level de- 
scription is equivalent to the corresponding sub-functions of 

the gate-level circuit. 

F= IF G THEN H. OR. I 
ELSE 0 ; 

G-l G-O 

Figure 3: Hybrid Symbolic Simulation 

Although it may not be immediately apparent, parti- 
tioning the-functional description reduces the computation 
time. Earlier systems [SMIT82] applied the Boolean com- 
parison method to the whole function describing the combi- 
national circuits between the latches. In other words, each 
statement in the functional description was converted into 
a Boolean expression, and this was compared to the logic 
function corresponding to the combinational circuit. For 
Example 2, the Boolean expression would be as follows: 

K=MNPQ+xN+MFR+MNP 

The computation time required, however, for comparing two 
boolean functions grows, in the worst case, exponentially in 
the number of variables. Therefore, the computation time 
can be reduced considerably by decreasing the variables that 
appear in the functions to be compared. In most statements 
in functional-level descriptions, each input data signal ap- 
pears only in some of the sub-functions. Therefore, parti- 
tioning the statement reduces the number of variables. Let’s 
consider the same CASE example. The sub-functions are as 
follows: 

K= PQ when M = 0, N = 0 

K= 1 when M = 0, N = 1 
K= R when M = 1, N = 0 
K= P when M= l,N= 1 

In this case three Boolean comparisons, each with at most 
two variables, would be required instead of one comparison 
with five variables. In order to get an idea of how these 
two approaches compare, let’s assume that this description 
is to be verified using a truth table. Without partitioning, 
the table would have 32 (= 25) entries. With partitioning, 
the table would have 8 (= 2’ + 2 + 2) entries. Of course, 
if each of the input data signals P, Q, and R appeared in 
each of the four sub-functions, then the table would have 32 
(= 23 + 23 + 23 + 23) entries. The partioning would then 
be meaningless, but such cases are rare. Even if, on the 
average, only one input data signal does not appear in each 
of the sub-functions of a given statement, the computation 
would still be reduced by half (= 2’ + 2’ + 2’ f 2’ = 16). 

The computation is further reduced by the fact that 
often there are fewer than 2” sub-functions, where n is the 
number of control bits. This occurs whenever one of the con- 
trol variables is a udon’t care” for a sub-function. For exam- 
ple, in the nested IF-THEN-ELSE structure shown in Example 
1, H is a “don’t care” for obtaining the sub-function T.0R.U. 
As a consequence, there are in total three sub-functions in- 
stead of the four sub-functions that could possibly be ob- 
tained from the two control variables G and H. 

By partitioning the statements in the functional-level 
description, however, an overhead is incurred; i.e., it is 
necessary to determine the values of the conditional vari- 
ables for each of the sub-functions. This is straightforward 
for a sub-function inside a CASE statement, but for a sub- 
function in a nested IF-THEN-ELSE structure it is necessary 
to take the intersection of all the conditions in the outer 
IF-THEN-ELSE structures and then minimize this expression. 
In the following example, 

Y = IF condition1 

THEN sub-function1 

ELSE IF condition2 

THEN sub-function& 

ELSE sub-function3 

the conditions for obtaining sub-junction2 are when 

(conditionl) - (condition2) = 1 

It was found that this minimization could be efficiently com- 
puted because the control signals constitute only a fraction 
of all the input signals, and because each of the conditional 
variables tend to appear only in one of the conditions. 

What the above partitioning method is doing, in ef- 
fect, is to substitute logic values for some of the variables 
to reduce the complexity of the Boolean comparison of two 
functions. The variables selected for this substitution were 
the control signals, but it is possible that a different selec- 
tion would give more effective results. However, searching 
for a better selection would be inefficient if the total num- 
ber of variables (for control and data signals) is large. The 
effectiveness, of the proposed approach can be explained by 
the fact that designers tend to describe the circuit functions 
as simply as possible. In other words they prefer to use the 
expressions such as 

Y = IF A THEN B 
ELSE C; 

to describe the function of a two-input multiplexor instead 
of 

Y = IF C THEN A’.OR.B 
ELSE A.AND.B; 

(A’ denotes the negation of A). The first expression would 
benefit from partioning but not the second. 

The proposed partitioning method has a dual purpose. 
In addition to reducing the computation time, the partition- 
ing of the circuit is used for searching efficiently for the logic 
errors. The reasons are described in the next section. 

3. Locating Errors 

When debugging, determining which statements are in- 
consistent with the corresponding -combinational circuit is 
only half the problem. The other half is to find the location 
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of the error and then to make the appropriate corrections. 
Presently, searching for the error is done manually. What 
designers commonly do is to visually inspect the circuit di- 
agrams and trace each path that exists between the inputs 
and the outputs that give an inconsistent result. As the 
designer traces each path he does a “mental” simulation to 
try to determine if the path is correct or not. This can be 
a time-consuming and error-prone task especially if several 
IF-THEN-ELSE structures are nested. If the circuit is compli- 
cated the designer may resort to simulation and set “probe” 
points within the circuit. But doing so, requires that the 
designer determine beforehand the expected values at the 
probe points for a set of input patterns. 

Verified 
Circuit 

Figure 4: Approach for Locating Functional Errors 

Figure 4 shows the general flow of the method that will 
indicate which sub-functions of a statement in a functional- 
level description are inconsistent with the circuit and which 
parts of the circuit contain the errors. After it has been 
determined that an error exists, the combinational circuit 
is divided into two regions: the data-path circuit and the 

control circuit. The data-path circuit is defined as that por- 
tion of the combinational circuit that depends on the input 
data signals. In other words, it is the area that includes all 
the paths between the input data signals and the output. 
The remaining portion is referred to as the control circuit. 
(It should be noted that these definitions are not the usual 
definitions for these two terms, and in this paper they refer 
only to parts within a combinational circuit.) 

Figure 5 shows this partioning. The triangular shape of 
the data-path circuit indicates that there are several input 
data signals, but only one output data signal (the thick lines 
denote data signals that may be several bits wide). The 
small open circles in the boundary between the data-path 
circuit and the control circuit denote the lines that connect 
these two circuits, and will be referred to as the “connection 
points” of the combinational circuit. 

The combinational circuits could be partitioned in 

Input Control 

Signals 

Data-Path Circuit 

Input Control 

Signals 

Figure 5: Division of Combinational Circuits 

other ways, but the above partioning method has several 
advantages. As mentioned earlier, this partitioning reduces 
the computation time required in the verification phase. In 
addition, during this phase the functional-level description 
is partitioned into sub-functions and the conditions required 
for obtaining them are computed. This information is re- 
used in the locating phase, where only the corresponding 
sub-circuits need to be extracted and compared with the 
sub-functions. This partitioning also separates naturally 
two types of logic primitives: gates in the data path tend to 
be complex function blocks such as multiplexors and adders 
while gates in the control circuit tend to be low-level gates 
such as AND’s and OR’s. This separation makes it easier 
to find and correct the logic errors. 

To illustrate how the location of functional errors are 
found, a simple example will be described using the circuit 
shown in Fig. 6a. To verify this circuit, the FDL statement 
is first partitioned into sub-functions and the corresponding 
conditions for the control signal are determined as shown 
below: 

Z = X when A = 1 
z= Y when A = 0 

The circuit is then simulated with symbolic values at the 
X and Y inputs and logic values at the A input. The first 
sub-function X is verified by applying a 1 at the A input. 
The output of this simulation, instead of being X, is 0 and, 
therefore, an error exists within the circuit. To search for 
the error the circuit is partitioned into a data-path circuit 
and a contro1 circuit. Since X and Y are the input data 
signals, the two AND gates and the OR gate constitute the 

data-path circuit (Fig. 6b). The remaining circuit shown in 
Fig. 6c is the control circuit. 

After partitioning the circuit the general approach for 
finding the location of the errors is to first make a data-flow 
analysis to verify the data-path circuit (Fig. 4). If any logic 
errors exist, these are located and corrected. The whole 
circuit is then verified once more. If any inconsistencies are 
still detected, the data-path is verified once more to make 
sure no errors remain. If there are no logic errors in the 

data-path circuit, the control circuitry is then examined to 
locate and correct any errors that may remain. Since the 
corrections are manual, the whole circuil; is verified once 
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A 

X 

Y 2iiw 
a 

J-L-L.+ z 

b. 

A 

Z=IF A 

Z 

THEN X 
ELSE ‘f 

d. e. 

Figure 6: Example 

more to make sure the circuit was properly corrected. If no 
inconsistencies are detected, then the final result will be a 
fully verified and correct circuit. 

This process for locating the errors within the data- 
path circuit and the control circuit will be described in more 
detail in the next two sections. 

3.1 Data-Path Circuit 

The same techniques (symbolic simulation and Boolean 
comparison) used for verifying the entire combinational cir- 
cuit are used for verifying the data-path circuit. The hybrid 
symbolic simulation is performed by applying Boolean val- 
ues at the connection points (sl and S2 in Fig. 6b) and 
signal names at the input data signals. The output (shown 
in the table in Fig. 6b) is all the sub-functions that can be 
obtained from the data-path circuit. The sub-functions (X 
and Y) that appear in the functional-level description are 
then compared with these sub-functions. If all of the sub- 
functions, that appear in the functional-level description, 
can be obtained from the data-path circuit, this implies that 
the logic errors are located within the control circuit. Oth- 
erwise, an error exists within the data-path circuit. (In Fig. 
6b, sub-function X is obtained with Sl = 0 and S2 = 1, 
and sub-function Y is obtained with Sl = 1 and S2 = 0; 
therefore, the data-path is said to be error-free.) 

To determine the location within the data-path circuit 
that contains the logic error, a data-flow tree is made (Fig. 
7). The root represents the output, the nodes represent 
gates, and the leaves represent input data signals (A, B, C, 
D, and E in the Figure). From the sub-functions that were 

unobtainable from the data-path circuit, a list is made of all 
the input data signals that appear in these sub-functions. 
The error is said to be located somewhere along the paths 
leading from these signals to the output. If, for example, C 
and E are on this list, then the error would be located in 
the area indicated in Fig. 7. 

output Data 
Signal 

Input Data Signals 

Figure 7: Data-Path Tree 

3.2 Control Circuit 

After the data-path circuit is found to be correct, but 
not the overall circuit, the control circuit is then examined. 
From the verification of the data-path circuit, the required 
values at the connection points are known for each of the 
sub-functions. A simulation is then performed of the con- 
trol circuit by applying at the control inputs the conditions 
that are necessary to obtain each of the sub-functions. The 
outputs at the connection points are then checked. For each 
of the connection points that give an inconsistent output, 
a list is made of all the gates that have outputs that lead 
to those points. If any of the gates have outputs leading to 
any of the correct connection points, then they are elimi- 
nated from the list. The error is, thus, said to be located 
somewhere in the gates that appear on the list. 

For the example in Figure 6, the data-path circuit was 
shown in section 3.1 to be correct. From the FDL descrip- 
tion in Fig. 6a we know that sub-functions X and Y are 
obtained when A is 1 and 0, respectively. We also know 
from the table in Fig. 6b that these sub-functions can be 
obtained from the data-path circuit by having Sl = 0, S2 
= 1 and Sl = 1, S2 = 0, respectively. Putting this together 
means that when A = 1, the expected function of the cir- 
cuit is X, and, therefore Sl must be 0 and S2 must be 1. 
Likewise, when A = 0, the expected function of the circuit 
is Y, and, therefore, the value of Sl must be 1 and S2 must 
be 0. Simulating the control circuit under the conditions A 
= 0 and A = 1, we get the results shown in the table in 
Fig. 6c. We immediately see that Sl is correct and S2 is 
not. This implies that the circuitry between the inputs and 
S2 (the area within the dashed-line box in Fig. 6d) is faulty. 
However, the fact that the values at Sl are correct implies 
that the path between the input A and Sl is correct. Con- 
sequently, the error is actually located within the shaded 
area. A properly designed circuit would either have another 
inverter between the inverter and the AND gate, or a direct 
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connection from the A input to the AND gate as shown in 
Fig. 6e. 

The method described above for finding the location of 
logic errors provides sufficient conditions, but not necessary 
conditions, for correcting the circuit. It may be possible that 
a data-path circuit, even though it was shown to be correct, 
could be modified in such a way that it would work properly 
with the existing control circuit. However, if this wa;s a pos- 
sibility for a certain circuit, it is most likely that the circuit 
that the designer intended to build was one that would be 
obtained by modifying the control circuit. This is explained 
by the fact that designers implement the functional-level de- 
scriptions with efficient circuits that have only the essential 
sub-functions, and therefore, if a given combinational circuit 
has the required sub-functions, it is most probable lthat its 
data-path circuit is correct and an error is located in the 
control circuit. 

4. Implementation and Experimental Results 

A system, called Cchdor, based upon the method de- 
scribed in this paper was implemented on an NEC EViS4800 
workstation, a 68020-based Unix machine. The inputs to 
this system are the FDL description, the net-list of th.e gate- 
level implementation, and the library of primitives nsed by 
the symbolic simulator. The net-list extraction program and 
the translation program that converts the FDL descriptions 
into a LISP-readable format were written in C (6K lines). 
The verification and error locating programs were written 
in LISP (3K lines). 

The circuit in Fig. 2 actually contains an error. Fig- 
ure 11 shows what the output of the C6ndor System looks 
like for this case. The output shows the result for the sub- 
function NNSNCIT. An inconsistency was detected and the er- 
ror was found to be in the control circuit. The input S2 of 
the Register was found to be incorrect, and therefore, all 
the gates connected to this input were listed as being in the 
area where the error is located. However, the input SO of 
the register wa.s found to be correct. Consequently, those 
gates connected to this input are correct and those that ap- 
peared in the previous list are marked with and asterisk. 
Even though six gates are listed, the actual area where the 
error is said to be found is in the area that contains the gates 
M207, M208, and M211. 

Expected clrcuil function is 

(I 'NNSNOT 0 I) 

rheu 
TMRST-O-I Is 0 
UCK-O-I 1s I 
TSYC-O-I Is 0 
TSCtW-O-I Is 0 
MTIICHT-O-I Is 0 
MIRCST-O-I Is I 

Actual circuit funcllon is: 

..-=I> Equlvalcnt? NO IIll! 

llug In CONTROL circull 

(REG (! ‘MATON 0 1) 
((!-OUT 'HATON 0 I '+) 

(F674 '(2 M215 9 1) 
I 
(F091 '(2 M201 7 1) 

1) 
(!-IN 'NNSNOT 0 I '+) 
(!-IN 'BCK 0 1 '-1 
(F101 '(2 M205 3 1) 

.i 
I 

(!-IN 'TMFtST 0 1 '+>.. .))>> 

Figure 8: Extracted Circuit Function 

The net-list information of the logic circuit is ex- 
tracted from the output data files of an internally-developed 
schematic-capture program. Included in this program is a 
function that checks the logic circuit for any syntactic er- 
rors, such as shorted lines, unconnected gate inputs, and 
input/output signals without labels. Once a circuit passes 
this check, it can be assumed that only logic errors remain 
in the circuit. 

From the net-list, a LISP function describing the be- 
havior of the circuit is extracted. Figure 8 shows part of 
the function that would be extracted from the circuit shown 
in Fig. 2. This list is essentially a tree in which the root is 
the function for the gate at the output, in this case register 
F674, and the inputs to this function are the functions for 
other gates or input signals connected to the inputs. The 
definition of each gate function is kept in a library. To sim- 
ulate the circuit, values (symbolic or boolean) are assigned 
to the input-signal variables and the function is evaluated. 
The result will be the output of the circuit. 

Page 2 Gale M206 
Pago 2 Gale WI9 * 
Paso 2 Gala MZ03 0 
Page 2 Gale M206 t 
Page 2 Gale MO7 
Page 7. Gale U2LI 

Figure 9: Partial Output of the Chdor System 

The Ccjndor system was tested with circuits that were 
actually used in CMOS gate-arrays. A fau.lt was introduced 
artificially into the circuits by randomly ad.ding one inverter. 
Table 1 shows the computation times that were required for 
verifying these faulty circuits and for locating the fault ar- 
eas that contained the extra inverter. The verification times 
indicate the amount of time that was required in the verifica- 
tion phase. This means that if the circuits had not contained 
any errors, this would be the total time that would be re- 
quired for verifying the circuits. The location time indicates 
the additional time that was required for determining the 
area where the extra inverter was located. For the largest 
circuit, dagc, it took a total of 89 seconds to verify and to 
locate the error within an area that contained 5 primitive 
blocks. 

Since each FDL statement is processed separately, the 
computation time grows linearly with the number of state- 
ments. However, the total computation time is heavily de- 
pendent on how the circuit is described in FDL. For ex- 
ample, by increasing the number of statements used to de- 
scribe the same circuit, the computation time is generally 
decreased. The number of statements can be increased by 
using TERMINAL statements that describe internal signals not 
connected to registers. If each statement describes a smaller 
circuit, then fewer variables appear in the Hoolean functions 
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Table 1: Verification and Fault Location Times 

that are to be compared. Since the computation time of this 

comparison is highly dependent on the number of variables, 

and since the total computation time is dominated by these 

comparisons, the total computation time is reduced. 

One important advantage of the method described in 

this paper is that no assumptions need to be made as to the 

type or number of functional errors that may exist within 

the circuit. There are many types of errors that may occur 

during the design of the circuit. For example, the type of 

gate may be wrong, gates might be missing or superfluous, 

wires may be exchanged, etc. But because of the fact that 

sub-functions are extracted from the circuit and compared 

to those in the functional-level description using formal veri- 

fication techniques, it is guaranteed that all these errors will 

be detected and located. Experiments were done with these 

type of errors, and it was found that the type of error has an 

effect only on the size of area specified to contain the error. 

If multiple errors occur simultaneously, multiple areas are 

specified or only one large area containing all the errors is 

specified. 

5. Summary and Conclusions 

In the design of logic circuits, the time spent debugging 

the circuit is comparable or greater than the time spent in 

the actual design of the circuit. The purpose of the method 

presented in this paper is to reduce the debugging time by 

finding the locations of the logic errors. The method is de- 
terministic in the sense that all errors are detected and the 

circuit can be corrected if the indicated areas are modified 

appropriately. The indicated areas were shown to have suf- 

ficient resolution to allow the designer to quickly find the 
cause of the inconsistency. In addition, information such 

as the actual and expected input/output relationship of the 

faulty area can facilitate the fixing of the circuit. The com- 

putation time required during the verification phase was re- 

duced by partitioning the functional-level into sub-functions. 

This same partitioning is used for locating the logic errors. 

The big advantage of this debugging approach is that no 

input patterns need to be specified by the user. 

The method described in this paper exploits the IF- 

THEN-ELSE and CASE-OF structures for verification and lo- 

cating errors. This method can also be applied to other 

functional-level description languages, such as DDL and 

CDL [DULE68, CHU65], that have these structures explic- 

itly or implicitly. For example in DDL, for each terminal and 
memory element all the “connections” and “transfers” as 

well as their conditions can be gathered in a table. The sig- 

nals appearing in the conditions would be the control signals 
and the expression describing what is transferred would be 

the sub-functions. It is necessary to have, however, Boolean 
declarations defining all the states. 

In this paper, it was assumed that the description at the 

functional level was correct and the errors were in the circuit. 

This assumption is really not necessary in the sense that 
the results will only indicate which parts of the functional- 

level description are inconsistent with specific regions in the 

circuit. In other words, if a circuit is known to be correct 

then the errors in the functional-level description can be 

located, as it would be necessary in a bottom-up design. 

A possibility exists for extending this research to actu- 

ally correcting the circuit. For some simple circuits, particu- 

larly in the control circuitry, this may not be too difficult. If 

a solution is not found, then a two-level circuit could be syn- 

thesized since sufficient information can be obtained about 

the input-output relations of the faulty areas. However, this 

approach may not be of much help for errors within the 

data-path where high-level primitives such as multiplexors 

and adders are frequently used. For such cases the issues 

involved are similar to those encountered in logic synthesis. 
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