
Locating Functional
Errors in Logic Circuits

Kensaburo Alfred0 Tamura

NEC Corp.

C&C Systems Research Laboratories

Kawasaki, Japan

Abstract

In the verification phase of the design of logic circuits using
the top-down approach, it is necessary not only to detect but also
to locate the source of any inconsistencies that may exist between
the functional-level description and its gate-level implementation.
In this paper we present a method that deter-mm es the areas,
within the gate-level circuit, that contain the functional errors.
The indicated areas are shown to have sufficient resolution to
allow the designer to quickly find the cause of the inconsistency
and, therefore, reduce the time required for debugging.

1. Introduction

In the design of large digital systems, such as main-
frame computers, a complete specification at the register-
transfer level (the functional level) is written for the simula-
tion of the entire system-a simulation of the whole system
at the gate level is impractical in many cases. When this
description is found to be correct, via simulation, a gate-
level circuit is designed based upon this description. Al-
though many advances have been made in logic synthesis,
this design is still mostly manual, particularly for circuits
in which the timing is critical. Consequently, it becomes
necessary to detect, locate, and correct any inconsistencies
that may exist between the functional-level representation
and the gate-level representation. A major portion of the
total logic design time is spent at this stage.

There are two approaches used in practice at this stage
of the design process. The first and most common approach
is simulation [SASA84, ABAD88]. In this approach the
functional-level circuit and the gate-level circuit are both
simulated with the same input patterns, and the outputs of
these circuits are then compared to check for any inconsis-
tencies. Although this approach is the quickest and most
efficient, it has the disadvantage that the verification is not
complete because of the impracticality of simulating the cir-
cuits with all possible input combinations. Therefore, it is
possible that a logic error will not be detected until after the
hardware has been made-a costly affair. In addition, the
generation of the input test patterns is very time-consuming.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

The second approach is Boolean comparison. The
functional-level description is converted into a Boolean ex-
pression and then this is compared, using formal verifica-
tion techniques, with the Boolean equation that corresponds
to the manually-designed gate-level circuit. The two func-
tions are tested for equivalence by proving the graph isomor-
phism of binary decision diagrams [AKERSO, BRYA86], or
by proving the tautology of the exclusive-or of the two func-
tions [SMIT82, ODAW86]. Other techniques are described
in [HACH88].

Both of the above approaches give a yes/no answer to
equivalency but no useful information on the location of the
logic error. By logic error or functional error we mean those
errors that can not be detected just by checking the struc-
ture. To detect these errors it is necessary to analyze the
function of the circuit. A logic error would occur, for exam-
ple, when an inverter is missing or when there is an AND
gate instead of an OR gate. There are tools and techniques
for aiding the design engineer in finding the error, but it
still remains mostly a manual process requiring considerable
amounts of the engineer’s valuable time.

The need to locate the source of the inconsistencies
between the functional-level description and its gate-level
implementation occurs frequently. The implementation of
the gate-level circuit usually goes through several iterations.

During each iteration the circuit needs to be verified, and
if there are any inconsistencies then the errors need to be
found and corrected. This search for the location of the
errors will also occur during technology re-mapping.

To shorten the design cycle, this paper addresses the
above problem of finding the location of functional errors
within logic circuits. A method for finding such errors, to
be of any practical use, must have resolution and be deter-

ministic. By resolution we me mean that the area specified
as containing the error must be small enough so that the

designer can quickly determine the exact cause and proceed
to make the proper corrections. It must also be determin-
istic because it is not of much use to say that “maybe” the
error is contained in a specified area.

Although extensive research has been done in the area
of verification, very little has been reported on how to locate
the errors once the circuit has been shown to be incorrect.
The technique described in [ODAW86] uses the patterns
that yield an inconsistency. The circuit is simulated with
each of these patterns to find the values of all the internal
nets. The circuit is then traced from the output back to the

26th ACM/IEEE Design Automation Conference@

Paper 12.3

0 1989 ACM O-89791-31 O-8/89/0006/01 85 $1.50 185

inputs along the paths that yield an incorrect value. The

backtracking continues until a gate is reached in which it

is no longer possible to determine a faulty path. The error
is, thus, said to be found somewhere between this gate and

the inputs. Often such a gate is reached close to the out-
puts, and, as a consequence, the area that is said to contain

the errors occupies a large portion of the circuit; i.e., this

method does not have resolution.

The method presented in this paper satisfies the above

conditions of being deterministic and having resolution. It

achieves this by partioning the functional description of the

circuit into sub-functions, and then verifying the sub-circuits

corresponding to these sub-functions to determine the loca-

tion of the functional errors. In this procedure, no assump-

tions are made on the type of functional errors that may

occur.

2. Verification

To be able to find deterministically the location of logic

errors, it is first necessary to prove that the descriptions at

the functional and gate levels are consistent for all regions

not containing logic errors. This means that formal verifica-

tion techniques need to be used. The Boolean comparison

method described above is used at this stage of the lfocation

method, but not in the traditional manner. Because of the

NP-complete nature of the the Boolean comparison problem

[GARE79], it is not efficient to apply these methods directly

to the verification of logic circuits.

The computation time required for comparing two

Boolean functions, in the worst case, grows exponentially

with the number of variables. In the proposed method, to

reduce the number of variables contained in the functions

that need to be compared, each statement in the functional-

level description is partitioned into sub-functions. The cor-

responding sub-functions of the circuit are extracted by per-

forming a hybrid symbolic simulation in which symbols as
well as Boolean values can be processed [BARR84, SRIN86].
This partitioning, as described in section 3, also serves as the

basis for locating the functional errors.

2.1 Partitioning of Functional Descriptions

The functional-level description language used within

NEC, is a low-level register-transfer language called FDL

[KAT083](an example of an FDL description is shown in

Fig. 1 and the corresponding gate-level circuit is shown in

Fig. 2). It is a non-procedural language that describes hard-
ware by dividing it into functional blocks, each one contain-

ing combinational logic and a register. Each statement de-

scribes one of these functional blocks by defining the next
state of the register (NOC stands for “No Change”). If, for the

signal names of the primary inputs, primary outputs, and
registers, there is a one-to-one correspondence between those
of the FDL description and those of the gate-level circuit,

then each of these statements can be analyzed separately.

The problem is then reduced to verifying and debugging
combinational circuits.

FDL statements use basically two structures to de-

scribe behavior: the IF.. . THEN.. . ELSE.. . and CASE.. . OF.. .

structures (both of which can be used recursively). These

statements can, therefore, be thought of as having input

data signals, input control signals and output data signals.

Those signals appearing in the conditional parts (the IF and

Paper 12.3

186

REG MATON =: IF TMRST

THEN 0

ELSE IF HCK .UP.
THEN CASE TSMC OF

/O/ IF TSC8ET’
THEN NOiC

ELSE IF MTRCRT

TIEEN 0
EL13E IF MTRCST

THEN NNSNOT

ELSE NOC,
/I/ NNSNOT

ELSE NOC;

Figure 1: Example of Circuit Description in FDL

Figure 2: Gate-level Circuit

CASE parts) represent the control signals. The THEN, ELSE

and OF parts consist of expressions that describe specific sub-
functions in terms of the input data signals. For example,

in t.he following expression

Z = IF G THEN T.0R.U

ELSE IF H THEN V

ELSE W;

Example 1

the control signals are G and H, the input data signals are T,

U, V, and W, the output signal is Z, and the sub-functions are

T.OR.U, V, and W. Likewise, in the following expression

K = CASE M-N OF

/O O/ P.AND.Q

/o 1/ 1

/l O/ R
/I 1/ P

Example 2

the control signals are M and N (the u-n denotes concatena-
tion), the input data signals P, Q and R, and the sub-functions

P.AND.Q, 1, R, and P.

2.2 Extraction of Sub-Functions

To extract the corresponding sub-functions from the

gate-level circuit, the combinational circuit is modeled as a

black box that has the same input data signals, input con-

trol signals, and output data signals as the functional-level

description. Depending on the input pattern of the control
signals, the black box will have a specific sub-function-
similar to a complex ALU. If a hybrid symbolic simulation
(in which symbols as well as Boolean values are allowed)
is performed by applying Boolean values at the control in-
puts and signal names at, the data inputs, the respective
sub-function will appear at the output (Fig. 3). The equiv-
alence problem is then reduced to determining if each of the
sub-functions that are described in the functional-level de-
scription is equivalent to the corresponding sub-functions of

the gate-level circuit.

F= IF G THEN H. OR. I
ELSE 0 ;

G-l G-O

Figure 3: Hybrid Symbolic Simulation

Although it may not be immediately apparent, parti-
tioning the-functional description reduces the computation
time. Earlier systems [SMIT82] applied the Boolean com-
parison method to the whole function describing the combi-
national circuits between the latches. In other words, each
statement in the functional description was converted into
a Boolean expression, and this was compared to the logic
function corresponding to the combinational circuit. For
Example 2, the Boolean expression would be as follows:

K=MNPQ+xN+MFR+MNP

The computation time required, however, for comparing two
boolean functions grows, in the worst case, exponentially in
the number of variables. Therefore, the computation time
can be reduced considerably by decreasing the variables that
appear in the functions to be compared. In most statements
in functional-level descriptions, each input data signal ap-
pears only in some of the sub-functions. Therefore, parti-
tioning the statement reduces the number of variables. Let’s
consider the same CASE example. The sub-functions are as
follows:

K= PQ when M = 0, N = 0

K= 1 when M = 0, N = 1
K= R when M = 1, N = 0
K= P when M= l,N= 1

In this case three Boolean comparisons, each with at most
two variables, would be required instead of one comparison
with five variables. In order to get an idea of how these
two approaches compare, let’s assume that this description
is to be verified using a truth table. Without partitioning,
the table would have 32 (= 25) entries. With partitioning,
the table would have 8 (= 2’ + 2 + 2) entries. Of course,
if each of the input data signals P, Q, and R appeared in
each of the four sub-functions, then the table would have 32
(= 23 + 23 + 23 + 23) entries. The partioning would then
be meaningless, but such cases are rare. Even if, on the
average, only one input data signal does not appear in each
of the sub-functions of a given statement, the computation
would still be reduced by half (= 2’ + 2’ + 2’ f 2’ = 16).

The computation is further reduced by the fact that
often there are fewer than 2” sub-functions, where n is the
number of control bits. This occurs whenever one of the con-
trol variables is a udon’t care” for a sub-function. For exam-
ple, in the nested IF-THEN-ELSE structure shown in Example
1, H is a “don’t care” for obtaining the sub-function T.0R.U.
As a consequence, there are in total three sub-functions in-
stead of the four sub-functions that could possibly be ob-
tained from the two control variables G and H.

By partitioning the statements in the functional-level
description, however, an overhead is incurred; i.e., it is
necessary to determine the values of the conditional vari-
ables for each of the sub-functions. This is straightforward
for a sub-function inside a CASE statement, but for a sub-
function in a nested IF-THEN-ELSE structure it is necessary
to take the intersection of all the conditions in the outer
IF-THEN-ELSE structures and then minimize this expression.
In the following example,

Y = IF condition1

THEN sub-function1

ELSE IF condition2

THEN sub-function&

ELSE sub-function3

the conditions for obtaining sub-junction2 are when

(conditionl) - (condition2) = 1

It was found that this minimization could be efficiently com-
puted because the control signals constitute only a fraction
of all the input signals, and because each of the conditional
variables tend to appear only in one of the conditions.

What the above partitioning method is doing, in ef-
fect, is to substitute logic values for some of the variables
to reduce the complexity of the Boolean comparison of two
functions. The variables selected for this substitution were
the control signals, but it is possible that a different selec-
tion would give more effective results. However, searching
for a better selection would be inefficient if the total num-
ber of variables (for control and data signals) is large. The
effectiveness, of the proposed approach can be explained by
the fact that designers tend to describe the circuit functions
as simply as possible. In other words they prefer to use the
expressions such as

Y = IF A THEN B
ELSE C;

to describe the function of a two-input multiplexor instead
of

Y = IF C THEN A’.OR.B
ELSE A.AND.B;

(A’ denotes the negation of A). The first expression would
benefit from partioning but not the second.

The proposed partitioning method has a dual purpose.
In addition to reducing the computation time, the partition-
ing of the circuit is used for searching efficiently for the logic
errors. The reasons are described in the next section.

3. Locating Errors

When debugging, determining which statements are in-
consistent with the corresponding -combinational circuit is
only half the problem. The other half is to find the location

Paper 12.3

187

of the error and then to make the appropriate corrections.
Presently, searching for the error is done manually. What
designers commonly do is to visually inspect the circuit di-
agrams and trace each path that exists between the inputs
and the outputs that give an inconsistent result. As the
designer traces each path he does a “mental” simulation to
try to determine if the path is correct or not. This can be
a time-consuming and error-prone task especially if several
IF-THEN-ELSE structures are nested. If the circuit is compli-
cated the designer may resort to simulation and set “probe”
points within the circuit. But doing so, requires that the
designer determine beforehand the expected values at the
probe points for a set of input patterns.

Verified
Circuit

Figure 4: Approach for Locating Functional Errors

Figure 4 shows the general flow of the method that will
indicate which sub-functions of a statement in a functional-
level description are inconsistent with the circuit and which
parts of the circuit contain the errors. After it has been
determined that an error exists, the combinational circuit
is divided into two regions: the data-path circuit and the

control circuit. The data-path circuit is defined as that por-
tion of the combinational circuit that depends on the input
data signals. In other words, it is the area that includes all
the paths between the input data signals and the output.
The remaining portion is referred to as the control circuit.
(It should be noted that these definitions are not the usual
definitions for these two terms, and in this paper they refer
only to parts within a combinational circuit.)

Figure 5 shows this partioning. The triangular shape of
the data-path circuit indicates that there are several input
data signals, but only one output data signal (the thick lines
denote data signals that may be several bits wide). The
small open circles in the boundary between the data-path
circuit and the control circuit denote the lines that connect
these two circuits, and will be referred to as the “connection
points” of the combinational circuit.

The combinational circuits could be partitioned in

Input Control

Signals

Data-Path Circuit

Input Control

Signals

Figure 5: Division of Combinational Circuits

other ways, but the above partioning method has several
advantages. As mentioned earlier, this partitioning reduces
the computation time required in the verification phase. In
addition, during this phase the functional-level description
is partitioned into sub-functions and the conditions required
for obtaining them are computed. This information is re-
used in the locating phase, where only the corresponding
sub-circuits need to be extracted and compared with the
sub-functions. This partitioning also separates naturally
two types of logic primitives: gates in the data path tend to
be complex function blocks such as multiplexors and adders
while gates in the control circuit tend to be low-level gates
such as AND’s and OR’s. This separation makes it easier
to find and correct the logic errors.

To illustrate how the location of functional errors are
found, a simple example will be described using the circuit
shown in Fig. 6a. To verify this circuit, the FDL statement
is first partitioned into sub-functions and the corresponding
conditions for the control signal are determined as shown
below:

Z = X when A = 1
z= Y when A = 0

The circuit is then simulated with symbolic values at the
X and Y inputs and logic values at the A input. The first
sub-function X is verified by applying a 1 at the A input.
The output of this simulation, instead of being X, is 0 and,
therefore, an error exists within the circuit. To search for
the error the circuit is partitioned into a data-path circuit
and a contro1 circuit. Since X and Y are the input data
signals, the two AND gates and the OR gate constitute the

data-path circuit (Fig. 6b). The remaining circuit shown in
Fig. 6c is the control circuit.

After partitioning the circuit the general approach for
finding the location of the errors is to first make a data-flow
analysis to verify the data-path circuit (Fig. 4). If any logic
errors exist, these are located and corrected. The whole
circuit is then verified once more. If any inconsistencies are
still detected, the data-path is verified once more to make
sure no errors remain. If there are no logic errors in the

data-path circuit, the control circuitry is then examined to
locate and correct any errors that may remain. Since the
corrections are manual, the whole circuil; is verified once

Paper 12.3

188

A

X

Y 2iiw
a

J-L-L.+ z

b.

A

Z=IF A

Z

THEN X
ELSE ‘f

d. e.

Figure 6: Example

more to make sure the circuit was properly corrected. If no
inconsistencies are detected, then the final result will be a
fully verified and correct circuit.

This process for locating the errors within the data-
path circuit and the control circuit will be described in more
detail in the next two sections.

3.1 Data-Path Circuit

The same techniques (symbolic simulation and Boolean
comparison) used for verifying the entire combinational cir-
cuit are used for verifying the data-path circuit. The hybrid
symbolic simulation is performed by applying Boolean val-
ues at the connection points (sl and S2 in Fig. 6b) and
signal names at the input data signals. The output (shown
in the table in Fig. 6b) is all the sub-functions that can be
obtained from the data-path circuit. The sub-functions (X
and Y) that appear in the functional-level description are
then compared with these sub-functions. If all of the sub-
functions, that appear in the functional-level description,
can be obtained from the data-path circuit, this implies that
the logic errors are located within the control circuit. Oth-
erwise, an error exists within the data-path circuit. (In Fig.
6b, sub-function X is obtained with Sl = 0 and S2 = 1,
and sub-function Y is obtained with Sl = 1 and S2 = 0;
therefore, the data-path is said to be error-free.)

To determine the location within the data-path circuit
that contains the logic error, a data-flow tree is made (Fig.
7). The root represents the output, the nodes represent
gates, and the leaves represent input data signals (A, B, C,
D, and E in the Figure). From the sub-functions that were

unobtainable from the data-path circuit, a list is made of all
the input data signals that appear in these sub-functions.
The error is said to be located somewhere along the paths
leading from these signals to the output. If, for example, C
and E are on this list, then the error would be located in
the area indicated in Fig. 7.

output Data
Signal

Input Data Signals

Figure 7: Data-Path Tree

3.2 Control Circuit

After the data-path circuit is found to be correct, but
not the overall circuit, the control circuit is then examined.
From the verification of the data-path circuit, the required
values at the connection points are known for each of the
sub-functions. A simulation is then performed of the con-
trol circuit by applying at the control inputs the conditions
that are necessary to obtain each of the sub-functions. The
outputs at the connection points are then checked. For each
of the connection points that give an inconsistent output,
a list is made of all the gates that have outputs that lead
to those points. If any of the gates have outputs leading to
any of the correct connection points, then they are elimi-
nated from the list. The error is, thus, said to be located
somewhere in the gates that appear on the list.

For the example in Figure 6, the data-path circuit was
shown in section 3.1 to be correct. From the FDL descrip-
tion in Fig. 6a we know that sub-functions X and Y are
obtained when A is 1 and 0, respectively. We also know
from the table in Fig. 6b that these sub-functions can be
obtained from the data-path circuit by having Sl = 0, S2
= 1 and Sl = 1, S2 = 0, respectively. Putting this together
means that when A = 1, the expected function of the cir-
cuit is X, and, therefore Sl must be 0 and S2 must be 1.
Likewise, when A = 0, the expected function of the circuit
is Y, and, therefore, the value of Sl must be 1 and S2 must
be 0. Simulating the control circuit under the conditions A
= 0 and A = 1, we get the results shown in the table in
Fig. 6c. We immediately see that Sl is correct and S2 is
not. This implies that the circuitry between the inputs and
S2 (the area within the dashed-line box in Fig. 6d) is faulty.
However, the fact that the values at Sl are correct implies
that the path between the input A and Sl is correct. Con-
sequently, the error is actually located within the shaded
area. A properly designed circuit would either have another
inverter between the inverter and the AND gate, or a direct

Paper 12.3

189

connection from the A input to the AND gate as shown in
Fig. 6e.

The method described above for finding the location of
logic errors provides sufficient conditions, but not necessary
conditions, for correcting the circuit. It may be possible that
a data-path circuit, even though it was shown to be correct,
could be modified in such a way that it would work properly
with the existing control circuit. However, if this wa;s a pos-
sibility for a certain circuit, it is most likely that the circuit
that the designer intended to build was one that would be
obtained by modifying the control circuit. This is explained
by the fact that designers implement the functional-level de-
scriptions with efficient circuits that have only the essential
sub-functions, and therefore, if a given combinational circuit
has the required sub-functions, it is most probable lthat its
data-path circuit is correct and an error is located in the
control circuit.

4. Implementation and Experimental Results

A system, called Cchdor, based upon the method de-
scribed in this paper was implemented on an NEC EViS4800
workstation, a 68020-based Unix machine. The inputs to
this system are the FDL description, the net-list of th.e gate-
level implementation, and the library of primitives nsed by
the symbolic simulator. The net-list extraction program and
the translation program that converts the FDL descriptions
into a LISP-readable format were written in C (6K lines).
The verification and error locating programs were written
in LISP (3K lines).

The circuit in Fig. 2 actually contains an error. Fig-
ure 11 shows what the output of the C6ndor System looks
like for this case. The output shows the result for the sub-
function NNSNCIT. An inconsistency was detected and the er-
ror was found to be in the control circuit. The input S2 of
the Register was found to be incorrect, and therefore, all
the gates connected to this input were listed as being in the
area where the error is located. However, the input SO of
the register wa.s found to be correct. Consequently, those
gates connected to this input are correct and those that ap-
peared in the previous list are marked with and asterisk.
Even though six gates are listed, the actual area where the
error is said to be found is in the area that contains the gates
M207, M208, and M211.

Expected clrcuil function is

(I 'NNSNOT 0 I)

rheu
TMRST-O-I Is 0
UCK-O-I 1s I
TSYC-O-I Is 0
TSCtW-O-I Is 0
MTIICHT-O-I Is 0
MIRCST-O-I Is I

Actual circuit funcllon is:

..-=I> Equlvalcnt? NO IIll!

llug In CONTROL circull

(REG (! ‘MATON 0 1)
((!-OUT 'HATON 0 I '+)

(F674 '(2 M215 9 1)
I
(F091 '(2 M201 7 1)

1)
(!-IN 'NNSNOT 0 I '+)
(!-IN 'BCK 0 1 '-1
(F101 '(2 M205 3 1)

.i
I

(!-IN 'TMFtST 0 1 '+>.. .))>>

Figure 8: Extracted Circuit Function

The net-list information of the logic circuit is ex-
tracted from the output data files of an internally-developed
schematic-capture program. Included in this program is a
function that checks the logic circuit for any syntactic er-
rors, such as shorted lines, unconnected gate inputs, and
input/output signals without labels. Once a circuit passes
this check, it can be assumed that only logic errors remain
in the circuit.

From the net-list, a LISP function describing the be-
havior of the circuit is extracted. Figure 8 shows part of
the function that would be extracted from the circuit shown
in Fig. 2. This list is essentially a tree in which the root is
the function for the gate at the output, in this case register
F674, and the inputs to this function are the functions for
other gates or input signals connected to the inputs. The
definition of each gate function is kept in a library. To sim-
ulate the circuit, values (symbolic or boolean) are assigned
to the input-signal variables and the function is evaluated.
The result will be the output of the circuit.

Page 2 Gale M206
Pago 2 Gale WI9 *
Paso 2 Gala MZ03 0
Page 2 Gale M206 t
Page 2 Gale MO7
Page 7. Gale U2LI

Figure 9: Partial Output of the Chdor System

The Ccjndor system was tested with circuits that were
actually used in CMOS gate-arrays. A fau.lt was introduced
artificially into the circuits by randomly ad.ding one inverter.
Table 1 shows the computation times that were required for
verifying these faulty circuits and for locating the fault ar-
eas that contained the extra inverter. The verification times
indicate the amount of time that was required in the verifica-
tion phase. This means that if the circuits had not contained
any errors, this would be the total time that would be re-
quired for verifying the circuits. The location time indicates
the additional time that was required for determining the
area where the extra inverter was located. For the largest
circuit, dagc, it took a total of 89 seconds to verify and to
locate the error within an area that contained 5 primitive
blocks.

Since each FDL statement is processed separately, the
computation time grows linearly with the number of state-
ments. However, the total computation time is heavily de-
pendent on how the circuit is described in FDL. For ex-
ample, by increasing the number of statements used to de-
scribe the same circuit, the computation time is generally
decreased. The number of statements can be increased by
using TERMINAL statements that describe internal signals not
connected to registers. If each statement describes a smaller
circuit, then fewer variables appear in the Hoolean functions

Paper 12.3

190

Table 1: Verification and Fault Location Times

that are to be compared. Since the computation time of this

comparison is highly dependent on the number of variables,

and since the total computation time is dominated by these

comparisons, the total computation time is reduced.

One important advantage of the method described in

this paper is that no assumptions need to be made as to the

type or number of functional errors that may exist within

the circuit. There are many types of errors that may occur

during the design of the circuit. For example, the type of

gate may be wrong, gates might be missing or superfluous,

wires may be exchanged, etc. But because of the fact that

sub-functions are extracted from the circuit and compared

to those in the functional-level description using formal veri-

fication techniques, it is guaranteed that all these errors will

be detected and located. Experiments were done with these

type of errors, and it was found that the type of error has an

effect only on the size of area specified to contain the error.

If multiple errors occur simultaneously, multiple areas are

specified or only one large area containing all the errors is

specified.

5. Summary and Conclusions

In the design of logic circuits, the time spent debugging

the circuit is comparable or greater than the time spent in

the actual design of the circuit. The purpose of the method

presented in this paper is to reduce the debugging time by

finding the locations of the logic errors. The method is de-
terministic in the sense that all errors are detected and the

circuit can be corrected if the indicated areas are modified

appropriately. The indicated areas were shown to have suf-

ficient resolution to allow the designer to quickly find the
cause of the inconsistency. In addition, information such

as the actual and expected input/output relationship of the

faulty area can facilitate the fixing of the circuit. The com-

putation time required during the verification phase was re-

duced by partitioning the functional-level into sub-functions.

This same partitioning is used for locating the logic errors.

The big advantage of this debugging approach is that no

input patterns need to be specified by the user.

The method described in this paper exploits the IF-

THEN-ELSE and CASE-OF structures for verification and lo-

cating errors. This method can also be applied to other

functional-level description languages, such as DDL and

CDL [DULE68, CHU65], that have these structures explic-

itly or implicitly. For example in DDL, for each terminal and
memory element all the “connections” and “transfers” as

well as their conditions can be gathered in a table. The sig-

nals appearing in the conditions would be the control signals
and the expression describing what is transferred would be

the sub-functions. It is necessary to have, however, Boolean
declarations defining all the states.

In this paper, it was assumed that the description at the

functional level was correct and the errors were in the circuit.

This assumption is really not necessary in the sense that
the results will only indicate which parts of the functional-

level description are inconsistent with specific regions in the

circuit. In other words, if a circuit is known to be correct

then the errors in the functional-level description can be

located, as it would be necessary in a bottom-up design.

A possibility exists for extending this research to actu-

ally correcting the circuit. For some simple circuits, particu-

larly in the control circuitry, this may not be too difficult. If

a solution is not found, then a two-level circuit could be syn-

thesized since sufficient information can be obtained about

the input-output relations of the faulty areas. However, this

approach may not be of much help for errors within the

data-path where high-level primitives such as multiplexors

and adders are frequently used. For such cases the issues

involved are similar to those encountered in logic synthesis.

6. Acknowledgements

The author wishes to thank Dr. Satoshi Goto, Mr.

Yoshihiro Nagai, Mr. Takeshi Yoshimura and Mr. To-

moyuki Fujita for their helpful comments and suggestions.

The author would also like to thank Mr. Hidetoshi Tanaka

and Mr. Hiroshi Ichiryu, both from the Computer Engineer-

ing Division, for providing the test circuits.

7. References

[ABAD88] M. S. Abadir, J. Ferguson, T. E. Kirkland, “Logic
Design Verification Via Test Generation,” IEEE Trans.
Comprter-Aided Design, vol. 7, no. 1, pp. 138-148, Jan.
1988.

[AKERSO] S. B. Akers, “A Procedure for Functional Design Ver-
ification,” Proc. 10th International Symposium on Fault-
Tolerant Cornpaling, pp. 65-67, 1980.

[BARR841 H. G. Barrow, “Verify: A Program for Proving Cor-
rectness of Digital Hardware Desim.” Artificial Znielli-
gence, vol. 24,pp. 437-491, Dec. 1384. -

[BRYA86] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. CompuLters, vol.
C-35, no. 8, pp. 677-691, Aug. 1986.

[CHUSS] Y. Chu, “An ALGOLIike Computer Design Lan-
guage,” Commun. ACM, vol. 8, no. 10, pp. 607-615,
Oct. 1965.

[DALE681 J. R. DuIey and D. L. Dietmeyer, “A Digital System
Design LannuaEe (DDL),” IEEE Trans. Computers. vol.
C-17; no. 9;ppy SiO-86i,’ Sept. 1968.

[GARE79] M. R. Garey and D. S. Johnson, CompateTs and In-
tractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

[HACHSS] G. D. Hachtel and R. M. Jacoby, “Verification AIgo-
rithms for VLSI Synthesis,” IEEE Trans. Computer-Added
Design, vol. 7, no. 5, pp. 616-640, May 1988.

[KAT083] S. Kate and T. Sasaki, “FDL: A Structural Behavior
Description Language,” CHDL 83, pp. 137-152, 1983.

[ODAW86] G. Odawara, M. Tomita, 0. Okuzawa, T. Ohta, and
Z. Zhuang, “A Logic Verifier Based on Boolean Compari-
son,” Proe. 23rd DAC, pp. 208-214, 1986.

ISASA841 T. Sasaki, S. Kato, N. Nomizu, and H. Tanaka, “Lonic
De&n Verifidation Using Automated Test Generation,”
PTOC. 1984 International Test Conference, pp. 88-94, __
1984.

[SMIT82] G. L. Smith, R. J. Bahnsen, and H. Ha&we&
“Boolean Comparison of Hardware and Flowcharts,” IBM
J. Res. Dev., vol. 26, no. 1, pp. 106-116, Jan. 1982.

[SRIN88] N. C. Srinivas and V. D. Agrawal, “Formal Veriflce
tion of Digital Circuits Using Hybrid Simulation,” IEEE
Circuits Device Mag., pp. 1%27, Jan. 1988.

Paper 12.3

191

