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Abstract 
MAHA is a program which implements an algorithm 

for register level synthesis of data paths from a data flow 
specification. The algorithm is based on a linear hardware 
assignment to critical path nodes, followed by a cost-based 
assignment using the concept of the freedom of a node to 
be scheduled. Functions with the least scheduling freedom 
are scheduled first. The program either minimizes cost, 
subject to a time constraint, or maximizes speed subject to 
a cost constraint. The implementation of this algorithm is 
presented using examples from the literature. 

MAHA is written in Franz LISP, and executes within 
minutes for problems of practical size on a VAX 11/780. 

1 Introduction 

Register-level synthesis is composed of several tasks, in- 
cluding allocation of values to registers and operations to 
operators, scheduling when operations can or must occur, 
composition or construction of operators and registers 
from primitive components, and optimization by applica- 
tion of transformations and exploration of alternative 
designs. There are several different constraints associated 
with synthesis involving area, power and time minimiza- 
tion. For each operator, allocated area includes not only 
functional area, but also the associated interconnect, 
power and ground routing, control hardware and routing 
of control signals. Another important consideration in 
many cases is the amount of power available for the 
design. Finally, the overall delay allowable for completion 
of the operations may be highly constrained. 

Flexibility is important for synthesis programs to be 
practical. Such programs must adapt to changing con- 
straints as applications change, and must meet either cost 
or speed constraints, or sometimes both, depending on the 
application. Since most synthesis problems are NF’- 
complete, programs cannot investigate all alternatives. 
Thus, they must either make decisions in the ‘best* order, 
or must be able to backtrack or restart. 

Current datapath synthesis programs are experimental 
- they each meet some requirements, but no one existing 

program meets all of the above. Two related approaches 
which have been taken to design synthesis are EMUCS by 
Hitchcock [3] and an ADA to standard cell algorithm by 
Girczyc [I]. EMUCS is based on an algorithm by McFar- 
land [S] . It starts with a Value Trace representation from 
which tables reflecting the need to use, create, or modify a 
processing element in order to bind an operation to that 
element are created. EMUCS selects a binding which will 
have the smallest impact on the nodes which have not 
been chosen for hardware asssignment. EMUCS does not 
consider the critical path, and has as a single, fixed goal; 
the minimization of cost. The approach by Girczyc takes 
an ADA control/data flow graph (similar to the Value 
Trace) which has been functionally optimized and makes 
hardware assignments by adding cells composed of a 
register, mult.iplexer and operator. This approach does 
consider t.he critical path, but always attempts t.o minimize 
cost, subject to timing constraints. Thus, both of these 
approach the problem by using cost-based greedy al- 
gorithms. 

The work described in this paper is similar in intent to 
t,he algorithm designed by McFarland, but actually has its 
roots in a control synthesis algorithm developed by Nagle 
171. Nagle’s notion of freedoms (attraction weights) has 

been directly applied to this research. 
In order for a program to meet the requirements on 

flexibility, a program has to make decisions in some order 
such that earlier decisions do not overly constrain later 
decisions. It must also have some method for computing 
the effect of a single design decision on the overall cost 
and speed of the resulting hardware. 

Thus, the synthesis problem we describe is as follows: 
The program must input a data flow description of the 
hardware behavior, and must output a datapath structure, 
consisting of registers, operators, and required interconnec- 
tions, along with a time schedule giving the ordering of 
operations. The program must make the most constrained 
decisions first, so that the ordering of decisions does not 
greatly affect the optimality of the resulting design. The 
program should adjust either to cost or speed constraints, 
and it should be able to measure the impact of each design 
decision, to avoid large amounts of searching of the design 
space. Finally, the program should be able to restart or 
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backtrack when it is clear that constraints will not be met bound on the total cost. Thus, the approach used in our 
with the current strat,egy. algorithm allows us to partition the problem. 

The next section of this paper describes the operation 
of the Modified Automatic Hardware Allocator (MAHA). 
MAHA is part of the ADAii (Advanced Design 
Aut.oMation) system [2]. The detailed algorithm is then 
described, followed by two small examples MAHA has syn- 
thesized. Finally, conclusions are drawn. 

The method for computing the critical path is a 
program by N. Park called the Clocking Scheme Synthesis 
Package (CSSP) [8] . This program takes a set of nodes 
and edges and computes optimal clocking schemes, the 
critical path, and clock cycle times for single and multi- 
phase clocks. Given this information, hardware can be as- 
signed to clock periods; specifically, critical path nodes are 
assigned to slots and bound to hardware modules for that 
clock cycle. Nodes which are not on the critical path 
could share this hardware during other clock cycles. 

A complete description of the algorithm follows: 

2 Overview of the MAHA Algorithm 

MAHA carries out the synthesis tasks described above 
in the following manner: First a list of the nodes is read 
by MAHA, followed by a list of edges connecting those 
nodes. It locates the critical path and divides the path 
into n time steps of equal duration. Each time step now 
represents one minor cycle or register transfer. MAHA al- 
locates operators for the critical path in a first-come first- 
served fashion, with multiple operations sharing resources 
as long as the operations do not occur in the same time- 
step partition. 

1. Take the data flow graph and assign delay 
values to each node (operator). 

2. Use CSSP t,o find the critical path. 

3. Given the overall timing constraints, use CSSP 
to find the optimal number of steps in the criti- 
cal path. 

For the off-critical-path nodes, we introduce the notion 
of freedom. The freedom of a node is defined as the dif- 
ference between the time when the input values are 
needed by a given operator, and the time when the result 
of that operation is required, less the propagation delay of 
the hardware. Once the critical path has been assigned, 
the remaining nodes are assigned by computing the 
freedoms of each node and assigning the node with the 
least freedom. 

Thus, the first operations scheduled, which may have 
scheduling difficulties, get the first chance to share 
resources. Operations scheduled later may find most 
resources fully utilized; however they have the greatest 
scheduling flexibility, and thus are more likely to find a 
free resource in some time slot. MAHA adds resources as 
necessary when it schedules the operations. 

At some point, MAHA may run out of resources due to 
a cost constraint. At this point, it repartitions the critical 
path into more time steps, and begins allocation over. Ad- 
ding more time steps allows scheduling the resources for 
more operations than before; thus fewer resources may be 
required. As time steps are added, the timing constraint is 
checked to insure that it is being met. If cost is to be min- 
imized, MAHA will add time steps as long as it can with- 
out violating the timing constraint; if speed is to be max- 
imized, MAHA will add resources as long as it can without 
violating the cost constraint. 

Each node represents an operation to be performed by 
a piece of hardware. The critical path nodes, which in- 
cludes the nodes on multiple critical paths, are removed 
from the set of all nodes and are assigned to hardware 
first. Since the critical path nodes are sequential, there 
are no timing conflicts. Also, since the critical path deter- 
mines the overall speed, doing the critical path assignment 
first ensures the fastest possible resulting design. Further, 
once the critical path has been assigned, we have a lower 

4. Allocate and bind hardware resources to each 
critical path operation. 

5. If there are no more nodes to be assigned, the 
algorithm terminates. 

6. Compute the freedoms of all non-critical path 
nodes. 

7. Assign the node with the smallest freedom. 

l If hardware can be shared, we allocate 
the hardware t,o that node and go to step 
5. 

l If there is no hardware that can be 
shared, we determine whether to add 
another hardware resource and go to step 
5, or add another time slot and go to step 
n 
3. 

l If both constraints have been exceeded, 
we start over at step 1 with a new set of 
constraints. 

Several advantages are apparent in this algorithm. 
First it ensures that the hardware for the critical path has 
priority, which will improve the speed of the design. Next, 
the critical path assignment is completed in linear time. 
This removes a subset of the total nodes from the com- 
putationally more expensive parts of the algorithm. The 

assignment of off-critical-path nodes is done in n 4 time in 
the worst case, but on a smaller set of nodes since the 
critical path nodes have already been assigned. 
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3 The MAHA Program Structure 

The MAHA program is written in Franz LISP. MAHA 
is divided into four sections: library generation, data flow 
graph partitioner, critical path analyzer and allocator, and 
off-critical path analyzer and allocator. The database 
MAHA uses is the node-list and edge-list description of the 
data flow graph as well as the hardware library selected by 
the user. Allocation is bounded by maximum time and/or 
area (cost) for the data flow graph entered by the user; if 
both are given, the user must choose which of time and 
area is higher priority. 

The first task MAHA performs is generating a list of 
“average component parameters”. After selecting the 
hardware library, MAHA analyzes each type of operation 
performed at a node and generates a list of all components 
in the library which can perform it. During synthesis, 
there is no checking for either cost or speed of individual 
components; rat!ler, each list is reduced to one entry which 
has as its properties the average speed and cost of all com- 
ponents in the original list which perform the same opera- 
tion. Having an average library simplifies hardware as- 
signment as each node has only a single component in the 
library which can implement its function. It also allows us 
to center the design at the chosen point in the design 
space. 

Next, h4AHA determines the critical path or paths 
through the data flow graph by using CSSP [9] Using 
the average library, each node is assigned a propagation 
delay equal to its component delay. All possible paths 
from the root node(s) to the output(s) are followed and the 
ma.ximum delay at each node is retained. Each node is 
marked as it is visited to prevent traversing any portion of 
the graph more than once except to propagate the new 
maximum delay. Hence, the critical path is found in linear 
time. 

After finding the critical path(s), the clock-cycle time is 
chosen. The maximum delay of any node in the critical 
path(s) is usually chosen as the cycle time. The data flow 
graph is then optimally partitioned into n stages where n 
is less than or equal to t,he number of nodes in the critical 
path, using the optimal clocking synthesis algorithm 
(CSSP) developed by N. Park [S] . After partitioning the 
data flow graph into n stages, the total path delay is 
analyzed. If the crit.ical path delay exceeds the time 
bound set by the user, an attempt is made to partition 
using n-l stages. When the trivial case of one stage is 
reached, MAHA exits with the appropriate message: 

Number of stages equals 1. 

Re-partitioning continues until either a partition is found 
which meets the maximum time constraint or the trivial 
case where the number of stages equals one occurs. 

Allocation of the critical path can now be ac- 
complished. MAHA sequentially assigns hardware to each 
node in the critical path, keeping track of hardware usage 
and cost. An “assigned hardware” list is generated which 
contains all *purchased* hardware and the time range(s) 

currently assigned. Since each node has only a single 
average component type which can be used, allocating 
hardware to a node operation only requires analyzing the 
usage of previously allocated hardware. If an average 
component of the right type has been previously assigned, 
the corresponding time ranges are examined to determine 
if that particular instantiation can be reused. If previously 
purchased hardware can not be shared, a new piece of 
hardware is purchased (a new average component is 
instantiated). This maximal sharing algorithm is per- 
formed on the data flow graph in linear time. 

If the maximal cost is exceeded during critical path al- 
location, MAHA checks if partitioning the data flow graph 
into more stages is allowed. The decision is based upon 
the partitioning history. If MAHA had not previously re- 
partitioned with less stages to meet the time constraint, 
partitioning is performed with more stages and the critical 
path delay is checked against the constraint. If MAI-I.4 
had previously partitioned with less st.ages, partitioning 
into more stages will occur only if the cost constraint has 
priority over the time constraint. In either case, a message 
is sent to the user allowing him/her to make the decision 
instead. 

After completing the critical path allocation, off-critical 
path nodes are assigned hardware. Initially, each node 
which has not been allocated hardware is analyzed to 
determine its freedom. Essentially, freedom is the time 
range in which an operation can be performed without 
lengthening the critical path. All parents and children of 
the node being analyzed are analyzed and marked similiar 
to the critical path algorithm; the worst case parent and 
child delays are retained. A list of freedoms for all n:,n- 
allocated nodes is formed in linear time. 

The off-critical path node with the smallest freedom 
(tightest constraint) is chosen for allocation. If the freedom 
is so small that the operation must occur during one 
specific time stage, then that stage is assigned to the node. 
IIowever, it is more common to see freedoms which allow a 
node to be assigned to any one of a number of consecutive 
stages. In this case, the hardware allocated in the allowed 
stages is sequentially exa.mined and the first stage where 
hardware sharing can occur is assigned to the node. If 
none of the stages allows resource sharing, the earliest 
stage is arbitrarily assigned to the node. 

Once the &age has been assigned to the chosen off- 
critical path node, allocation occurs identical to that 
described for the critical path nodes. Exceeding the max- 
imum cost may result in re-partitioning of the data flow 
graph, forcing re-allocation of all hardware. After allocat- 
ing t,he chosen off-critical path node, MAHA starts again 
by calculnt.ing new freedoms for all remaining nodes. This 
process continues until all nodes have been allocated 
hardware. 

Upon completion, MAHA lists the component types 
used and all instantiations of them including the time 
ranges where they were utilized. In addition, MAHA com- 
putes the utilization factor for each element as well as the 
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overall hardware usage. As an aid to other portions of the 
ADAM system, MAHA generates a list of the time range 
assigned to each node. 

in1 in2 in3 in4 in5 in6 

ID41 - 

SUBS ADD8 

4;p 54 

output 

Figure 1: data flow graph for the first example 

4 Two examples 

To test the program, two examples were chosen from 
current lit,erature. The first example chosen is from Park 
[9] and is shown in Figure 1; it was selected due to its 

complexiby a.nd potent,ial for resource sharing. The overall 
constraint,s of cost a.nd speed determine the probable num- 
ber of clock cycles for partitioning the data flow graph. 

For this example, two extremes were forced: minimum 
delay and then minimum cost. The D and J nodes in- 
dicate parallel branches. 

The minimum delay is forced by decrementing the 
number of clock cycles (stages) allowed and determining 
the clock cycle time required for each stage count. An 
overall delay is calculated and the fastest is chosen. If two 
different stage counts produce the same delay, the alter- 
native with the highest cost is rejected. Similiarly, the 
stage count with the minimum cost can be found where 
equal cost alternatives differ in their maximum propaga- 
tion delay (the fastest being chosen). 

The cheapest design occurs with the maximum number 
of stages possible (8) since extensive resource sharing is 
possible. Eight is the upper limit for this example since the 
critical path, which is shaded in Figure 1, has only eight 
operation nodes. (Distribute and join nodes are ignored.) 
Only a single adder and subtracter were purchased for this 
design. Two fast designs were computed (stage counts of 2 
and 4) which had the same overall delay; the stage count 
of 4 was chosen since it required 37% less hardware (2 ver- 
sus 4 adders and 3 versus 4 subtracters). The allocation of 
resources performed by MAHA is shown in Tables 1 and 2. 

Table 1: The Fastest Allocation for the First Example 

. 
Time 

Resource 
1 2 3 4 

add add1 add4 add2 add5 
sub sub2 sub3 sub5 sub6 

c 

Table 2: The Cheapest Allocation for the First Example 

The second example chosen is the temperature con- 
troller described in 111 and shown in Figure 2. To 
demonstrate the power of MAHA, an average cost and 
speed design wa.s synthesized initially. From this middle 
point, the cost was increasingly constrained, producing a 
range of cost-efficient designs. A second set of fast designs 
was produced by reducing the overall delay allowed for 
completion. The results from a design with four stages is 
depicted in Figure 2 with both the critical path and stages 
delineated; a summary of all results is plotted in Figure 3. 
This example clearly shows an underlying problem of 
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design synthesis: although the cost and delay curve has a 
somewhat .linear” shape, the space is discrete rather than 
continuous and a chosen point on the “line” may not be 
near a feasible design. 

For the example above, MAHA allocated 4 adders, 2 
subtracters, 2 comparators, 3 buffers (outl-3) and a single 
divider. 

MAHA was written in LISP and executed on a VAX 
11/750. For both examples, the initializer and critical 
path finder took 13 seconds (real-time, not CPU seconds). 
Re-partitioning of the first example averaged 2.7 minutes; 

in4 In1 In2 In3 

out1 out2 out3 

Figure 2: data flow graph for the second example 

the second, 2.2 minutes. Allocation of hardware to the 
critical path and off-critical path took approximately 30 
seconds in both cases. 

5 Conclusions 

In conjunction with CSSP, this program does an as- 
signment of operations in a data flow representation to 
hardware operators. The resulting bindings can then be 

passed to a placement and routing program to produce 
silicon. As an exampIe, using the MPBD cell library [IO] as 
the hardware module library, a data flow representation 
can be taken to silicon using CSSP and MAHA to generate 
the module descriptions for the data flow nodes, which are 
then fed to MPSD to produce the final design. Module 
binding must still be performed manually, however, and 
multiplexers have not yet been allocated. 

MAHA illustrates a flexibility not found with other 
synthesizers, including its adaptability to either cost or 
speed constraints, depending on the application. MAIIA 
currently assigns operations to operators, schedules when 
the operations should or must occur, and allows explora- 
tion of the design space given the constraints of the user. 

. 

. 
. 
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Figure 3: Cost speed curve for the second example 

J 

CSSP assigns registers, as necessary, to the data paths, but 
does not attempt to share registers during free clock 
cycles. Currently, multiplexers are indicated where 
needed, with no consideration of when it would be advan- 
tageous to use a bus or other types of control for signal 
paths. MAIL4 currently does not consider sharing ALUs 
or sharing different bit-width operators. These problems 
are being addressed, and solutions are being added to the 
basic MAHA program. 

One of the most powerful features which can be easily 
added to MAHA is the capability of backtracking since the 
bindings to hardware can be broken [4] and/or modified at 
any point in the program. This will allow MAHA to make 
assignments, determine approximate area using an area es- 
timator [5] and backtrack when it becomes apparent that 
some design constraint will be violated. Along with 
hardware/software tradeoffs and allocation of busses and 
register arrays to conserve area, these are features that 
will be added to MAHA to make the system a powerful 
tool for design synthesis. 
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