
MAHA: A Program for Datapath Synthesis

Alice C. Parker Jorge .T’ Pizarro Mitch Mlinar

Department of Electrical Engineering-Systems
University of Southern California

Abstract
MAHA is a program which implements an algorithm

for register level synthesis of data paths from a data flow
specification. The algorithm is based on a linear hardware
assignment to critical path nodes, followed by a cost-based
assignment using the concept of the freedom of a node to
be scheduled. Functions with the least scheduling freedom
are scheduled first. The program either minimizes cost,
subject to a time constraint, or maximizes speed subject to
a cost constraint. The implementation of this algorithm is
presented using examples from the literature.

MAHA is written in Franz LISP, and executes within
minutes for problems of practical size on a VAX 11/780.

1 Introduction

Register-level synthesis is composed of several tasks, in-
cluding allocation of values to registers and operations to
operators, scheduling when operations can or must occur,
composition or construction of operators and registers
from primitive components, and optimization by applica-
tion of transformations and exploration of alternative
designs. There are several different constraints associated
with synthesis involving area, power and time minimiza-
tion. For each operator, allocated area includes not only
functional area, but also the associated interconnect,
power and ground routing, control hardware and routing
of control signals. Another important consideration in
many cases is the amount of power available for the
design. Finally, the overall delay allowable for completion
of the operations may be highly constrained.

Flexibility is important for synthesis programs to be
practical. Such programs must adapt to changing con-
straints as applications change, and must meet either cost
or speed constraints, or sometimes both, depending on the
application. Since most synthesis problems are NF’-
complete, programs cannot investigate all alternatives.
Thus, they must either make decisions in the ‘best* order,
or must be able to backtrack or restart.

Current datapath synthesis programs are experimental
- they each meet some requirements, but no one existing

program meets all of the above. Two related approaches
which have been taken to design synthesis are EMUCS by
Hitchcock [3] and an ADA to standard cell algorithm by
Girczyc [I]. EMUCS is based on an algorithm by McFar-
land [S] . It starts with a Value Trace representation from
which tables reflecting the need to use, create, or modify a
processing element in order to bind an operation to that
element are created. EMUCS selects a binding which will
have the smallest impact on the nodes which have not
been chosen for hardware asssignment. EMUCS does not
consider the critical path, and has as a single, fixed goal;
the minimization of cost. The approach by Girczyc takes
an ADA control/data flow graph (similar to the Value
Trace) which has been functionally optimized and makes
hardware assignments by adding cells composed of a
register, mult.iplexer and operator. This approach does
consider t.he critical path, but always attempts t.o minimize
cost, subject to timing constraints. Thus, both of these
approach the problem by using cost-based greedy al-
gorithms.

The work described in this paper is similar in intent to
t,he algorithm designed by McFarland, but actually has its
roots in a control synthesis algorithm developed by Nagle
171. Nagle’s notion of freedoms (attraction weights) has

been directly applied to this research.
In order for a program to meet the requirements on

flexibility, a program has to make decisions in some order
such that earlier decisions do not overly constrain later
decisions. It must also have some method for computing
the effect of a single design decision on the overall cost
and speed of the resulting hardware.

Thus, the synthesis problem we describe is as follows:
The program must input a data flow description of the
hardware behavior, and must output a datapath structure,
consisting of registers, operators, and required interconnec-
tions, along with a time schedule giving the ordering of
operations. The program must make the most constrained
decisions first, so that the ordering of decisions does not
greatly affect the optimality of the resulting design. The
program should adjust either to cost or speed constraints,
and it should be able to measure the impact of each design
decision, to avoid large amounts of searching of the design
space. Finally, the program should be able to restart or

23rd Design Automation Conference

0738-100X/88/0000/0481$01.00 01988 IEEE
Paper 27.2

461

backtrack when it is clear that constraints will not be met bound on the total cost. Thus, the approach used in our
with the current strat,egy. algorithm allows us to partition the problem.

The next section of this paper describes the operation
of the Modified Automatic Hardware Allocator (MAHA).
MAHA is part of the ADAii (Advanced Design
Aut.oMation) system [2]. The detailed algorithm is then
described, followed by two small examples MAHA has syn-
thesized. Finally, conclusions are drawn.

The method for computing the critical path is a
program by N. Park called the Clocking Scheme Synthesis
Package (CSSP) [8] . This program takes a set of nodes
and edges and computes optimal clocking schemes, the
critical path, and clock cycle times for single and multi-
phase clocks. Given this information, hardware can be as-
signed to clock periods; specifically, critical path nodes are
assigned to slots and bound to hardware modules for that
clock cycle. Nodes which are not on the critical path
could share this hardware during other clock cycles.

A complete description of the algorithm follows:

2 Overview of the MAHA Algorithm

MAHA carries out the synthesis tasks described above
in the following manner: First a list of the nodes is read
by MAHA, followed by a list of edges connecting those
nodes. It locates the critical path and divides the path
into n time steps of equal duration. Each time step now
represents one minor cycle or register transfer. MAHA al-
locates operators for the critical path in a first-come first-
served fashion, with multiple operations sharing resources
as long as the operations do not occur in the same time-
step partition.

1. Take the data flow graph and assign delay
values to each node (operator).

2. Use CSSP t,o find the critical path.

3. Given the overall timing constraints, use CSSP
to find the optimal number of steps in the criti-
cal path.

For the off-critical-path nodes, we introduce the notion
of freedom. The freedom of a node is defined as the dif-
ference between the time when the input values are
needed by a given operator, and the time when the result
of that operation is required, less the propagation delay of
the hardware. Once the critical path has been assigned,
the remaining nodes are assigned by computing the
freedoms of each node and assigning the node with the
least freedom.

Thus, the first operations scheduled, which may have
scheduling difficulties, get the first chance to share
resources. Operations scheduled later may find most
resources fully utilized; however they have the greatest
scheduling flexibility, and thus are more likely to find a
free resource in some time slot. MAHA adds resources as
necessary when it schedules the operations.

At some point, MAHA may run out of resources due to
a cost constraint. At this point, it repartitions the critical
path into more time steps, and begins allocation over. Ad-
ding more time steps allows scheduling the resources for
more operations than before; thus fewer resources may be
required. As time steps are added, the timing constraint is
checked to insure that it is being met. If cost is to be min-
imized, MAHA will add time steps as long as it can with-
out violating the timing constraint; if speed is to be max-
imized, MAHA will add resources as long as it can without
violating the cost constraint.

Each node represents an operation to be performed by
a piece of hardware. The critical path nodes, which in-
cludes the nodes on multiple critical paths, are removed
from the set of all nodes and are assigned to hardware
first. Since the critical path nodes are sequential, there
are no timing conflicts. Also, since the critical path deter-
mines the overall speed, doing the critical path assignment
first ensures the fastest possible resulting design. Further,
once the critical path has been assigned, we have a lower

4. Allocate and bind hardware resources to each
critical path operation.

5. If there are no more nodes to be assigned, the
algorithm terminates.

6. Compute the freedoms of all non-critical path
nodes.

7. Assign the node with the smallest freedom.

l If hardware can be shared, we allocate
the hardware t,o that node and go to step
5.

l If there is no hardware that can be
shared, we determine whether to add
another hardware resource and go to step
5, or add another time slot and go to step
n
3.

l If both constraints have been exceeded,
we start over at step 1 with a new set of
constraints.

Several advantages are apparent in this algorithm.
First it ensures that the hardware for the critical path has
priority, which will improve the speed of the design. Next,
the critical path assignment is completed in linear time.
This removes a subset of the total nodes from the com-
putationally more expensive parts of the algorithm. The

assignment of off-critical-path nodes is done in n 4 time in
the worst case, but on a smaller set of nodes since the
critical path nodes have already been assigned.

Paper 27.2
462

3 The MAHA Program Structure

The MAHA program is written in Franz LISP. MAHA
is divided into four sections: library generation, data flow
graph partitioner, critical path analyzer and allocator, and
off-critical path analyzer and allocator. The database
MAHA uses is the node-list and edge-list description of the
data flow graph as well as the hardware library selected by
the user. Allocation is bounded by maximum time and/or
area (cost) for the data flow graph entered by the user; if
both are given, the user must choose which of time and
area is higher priority.

The first task MAHA performs is generating a list of
“average component parameters”. After selecting the
hardware library, MAHA analyzes each type of operation
performed at a node and generates a list of all components
in the library which can perform it. During synthesis,
there is no checking for either cost or speed of individual
components; rat!ler, each list is reduced to one entry which
has as its properties the average speed and cost of all com-
ponents in the original list which perform the same opera-
tion. Having an average library simplifies hardware as-
signment as each node has only a single component in the
library which can implement its function. It also allows us
to center the design at the chosen point in the design
space.

Next, h4AHA determines the critical path or paths
through the data flow graph by using CSSP [9] Using
the average library, each node is assigned a propagation
delay equal to its component delay. All possible paths
from the root node(s) to the output(s) are followed and the
ma.ximum delay at each node is retained. Each node is
marked as it is visited to prevent traversing any portion of
the graph more than once except to propagate the new
maximum delay. Hence, the critical path is found in linear
time.

After finding the critical path(s), the clock-cycle time is
chosen. The maximum delay of any node in the critical
path(s) is usually chosen as the cycle time. The data flow
graph is then optimally partitioned into n stages where n
is less than or equal to t,he number of nodes in the critical
path, using the optimal clocking synthesis algorithm
(CSSP) developed by N. Park [S] . After partitioning the
data flow graph into n stages, the total path delay is
analyzed. If the crit.ical path delay exceeds the time
bound set by the user, an attempt is made to partition
using n-l stages. When the trivial case of one stage is
reached, MAHA exits with the appropriate message:

Number of stages equals 1.

Re-partitioning continues until either a partition is found
which meets the maximum time constraint or the trivial
case where the number of stages equals one occurs.

Allocation of the critical path can now be ac-
complished. MAHA sequentially assigns hardware to each
node in the critical path, keeping track of hardware usage
and cost. An “assigned hardware” list is generated which
contains all *purchased* hardware and the time range(s)

currently assigned. Since each node has only a single
average component type which can be used, allocating
hardware to a node operation only requires analyzing the
usage of previously allocated hardware. If an average
component of the right type has been previously assigned,
the corresponding time ranges are examined to determine
if that particular instantiation can be reused. If previously
purchased hardware can not be shared, a new piece of
hardware is purchased (a new average component is
instantiated). This maximal sharing algorithm is per-
formed on the data flow graph in linear time.

If the maximal cost is exceeded during critical path al-
location, MAHA checks if partitioning the data flow graph
into more stages is allowed. The decision is based upon
the partitioning history. If MAHA had not previously re-
partitioned with less stages to meet the time constraint,
partitioning is performed with more stages and the critical
path delay is checked against the constraint. If MAI-I.4
had previously partitioned with less st.ages, partitioning
into more stages will occur only if the cost constraint has
priority over the time constraint. In either case, a message
is sent to the user allowing him/her to make the decision
instead.

After completing the critical path allocation, off-critical
path nodes are assigned hardware. Initially, each node
which has not been allocated hardware is analyzed to
determine its freedom. Essentially, freedom is the time
range in which an operation can be performed without
lengthening the critical path. All parents and children of
the node being analyzed are analyzed and marked similiar
to the critical path algorithm; the worst case parent and
child delays are retained. A list of freedoms for all n:,n-
allocated nodes is formed in linear time.

The off-critical path node with the smallest freedom
(tightest constraint) is chosen for allocation. If the freedom
is so small that the operation must occur during one
specific time stage, then that stage is assigned to the node.
IIowever, it is more common to see freedoms which allow a
node to be assigned to any one of a number of consecutive
stages. In this case, the hardware allocated in the allowed
stages is sequentially exa.mined and the first stage where
hardware sharing can occur is assigned to the node. If
none of the stages allows resource sharing, the earliest
stage is arbitrarily assigned to the node.

Once the &age has been assigned to the chosen off-
critical path node, allocation occurs identical to that
described for the critical path nodes. Exceeding the max-
imum cost may result in re-partitioning of the data flow
graph, forcing re-allocation of all hardware. After allocat-
ing t,he chosen off-critical path node, MAHA starts again
by calculnt.ing new freedoms for all remaining nodes. This
process continues until all nodes have been allocated
hardware.

Upon completion, MAHA lists the component types
used and all instantiations of them including the time
ranges where they were utilized. In addition, MAHA com-
putes the utilization factor for each element as well as the

Paper 27.2
463

overall hardware usage. As an aid to other portions of the
ADAM system, MAHA generates a list of the time range
assigned to each node.

in1 in2 in3 in4 in5 in6

ID41 -

SUBS ADD8

4;p 54

output

Figure 1: data flow graph for the first example

4 Two examples

To test the program, two examples were chosen from
current lit,erature. The first example chosen is from Park
[9] and is shown in Figure 1; it was selected due to its

complexiby a.nd potent,ial for resource sharing. The overall
constraint,s of cost a.nd speed determine the probable num-
ber of clock cycles for partitioning the data flow graph.

For this example, two extremes were forced: minimum
delay and then minimum cost. The D and J nodes in-
dicate parallel branches.

The minimum delay is forced by decrementing the
number of clock cycles (stages) allowed and determining
the clock cycle time required for each stage count. An
overall delay is calculated and the fastest is chosen. If two
different stage counts produce the same delay, the alter-
native with the highest cost is rejected. Similiarly, the
stage count with the minimum cost can be found where
equal cost alternatives differ in their maximum propaga-
tion delay (the fastest being chosen).

The cheapest design occurs with the maximum number
of stages possible (8) since extensive resource sharing is
possible. Eight is the upper limit for this example since the
critical path, which is shaded in Figure 1, has only eight
operation nodes. (Distribute and join nodes are ignored.)
Only a single adder and subtracter were purchased for this
design. Two fast designs were computed (stage counts of 2
and 4) which had the same overall delay; the stage count
of 4 was chosen since it required 37% less hardware (2 ver-
sus 4 adders and 3 versus 4 subtracters). The allocation of
resources performed by MAHA is shown in Tables 1 and 2.

Table 1: The Fastest Allocation for the First Example

.
Time

Resource
1 2 3 4

add add1 add4 add2 add5
sub sub2 sub3 sub5 sub6

c

Table 2: The Cheapest Allocation for the First Example

The second example chosen is the temperature con-
troller described in 111 and shown in Figure 2. To
demonstrate the power of MAHA, an average cost and
speed design wa.s synthesized initially. From this middle
point, the cost was increasingly constrained, producing a
range of cost-efficient designs. A second set of fast designs
was produced by reducing the overall delay allowed for
completion. The results from a design with four stages is
depicted in Figure 2 with both the critical path and stages
delineated; a summary of all results is plotted in Figure 3.
This example clearly shows an underlying problem of

Paper 27.2
464

design synthesis: although the cost and delay curve has a
somewhat .linear” shape, the space is discrete rather than
continuous and a chosen point on the “line” may not be
near a feasible design.

For the example above, MAHA allocated 4 adders, 2
subtracters, 2 comparators, 3 buffers (outl-3) and a single
divider.

MAHA was written in LISP and executed on a VAX
11/750. For both examples, the initializer and critical
path finder took 13 seconds (real-time, not CPU seconds).
Re-partitioning of the first example averaged 2.7 minutes;

in4 In1 In2 In3

out1 out2 out3

Figure 2: data flow graph for the second example

the second, 2.2 minutes. Allocation of hardware to the
critical path and off-critical path took approximately 30
seconds in both cases.

5 Conclusions

In conjunction with CSSP, this program does an as-
signment of operations in a data flow representation to
hardware operators. The resulting bindings can then be

passed to a placement and routing program to produce
silicon. As an exampIe, using the MPBD cell library [IO] as
the hardware module library, a data flow representation
can be taken to silicon using CSSP and MAHA to generate
the module descriptions for the data flow nodes, which are
then fed to MPSD to produce the final design. Module
binding must still be performed manually, however, and
multiplexers have not yet been allocated.

MAHA illustrates a flexibility not found with other
synthesizers, including its adaptability to either cost or
speed constraints, depending on the application. MAIIA
currently assigns operations to operators, schedules when
the operations should or must occur, and allows explora-
tion of the design space given the constraints of the user.

.

.
.

c TLne
llcwA3 tBxk#3 13ooeto3 14akta3 tfcaeia tfmwm Lmb+a3

Figure 3: Cost speed curve for the second example

J

CSSP assigns registers, as necessary, to the data paths, but
does not attempt to share registers during free clock
cycles. Currently, multiplexers are indicated where
needed, with no consideration of when it would be advan-
tageous to use a bus or other types of control for signal
paths. MAIL4 currently does not consider sharing ALUs
or sharing different bit-width operators. These problems
are being addressed, and solutions are being added to the
basic MAHA program.

One of the most powerful features which can be easily
added to MAHA is the capability of backtracking since the
bindings to hardware can be broken [4] and/or modified at
any point in the program. This will allow MAHA to make
assignments, determine approximate area using an area es-
timator [5] and backtrack when it becomes apparent that
some design constraint will be violated. Along with
hardware/software tradeoffs and allocation of busses and
register arrays to conserve area, these are features that
will be added to MAHA to make the system a powerful
tool for design synthesis.

Paper 27.2
465

6 Acknowledgements

The authors wish to thank Nohbyung Park for his help
and assistance with CSSP. We also wish to thank Esther
Brotoatmodjo for her help with this paper.

References

1. Girczyc, E. F. and Knight, J. P. An ADA to Standard
Cell Hardware Compiler Based on Graph Grammers and
Scheduling. Proceedings of the ICCD ‘84, IEEE Computer
Society, October, 1984.

2. Granacki, J., Knapp, D., and Parker, A. The ADAM
Advanced Design Automation System: Overview, Planner
and Natural Language Interface. Proceedings of the 22nd
Design Automation Conference, ACM-IEEE, June, 11985.

3. Hitchcock, C.Y. Automated Synthesis of Data F’aths.
Master Th., Carnegie-Mellon University,l983.

4. Knapp, D. and Parker, A. A Data Structure for VLSI
Synthesis and Verification. Digital Integrated Systems
Center, Dept. of EE-Systems, University of Southern Cali-
fornia, October, 1983.

5. Kurdahi, F. and Parker, A. Area Estimation of VLSI
Integrated Circuits. CRI-85-05, EE-Systems Dept. IJSC,
1985.

6. McFarland, M.C. Allocating Registers, Processors and
Connections. Internal Carnegie-Mellon University Report.

7. Nagle, A., Cloutier, R., and Parker, A. “Synthesis of
Hardware for the Control of Digital Systems’. IEEE
Transactions on Computer-Aided Design CAD-l, 4
(1982), 201-212.

8. Park, N. and Parker, A. Synthesis of Optimal Clock-
ing Schemes. Proceedings of the 22nd Design Automation
Conference, ACM IEEE, June, 1985.

9. Park, N. and Parker, A. Synthesis of Optimal Pipeline
Clocking Schemes. DISC/85-1, Dept. of EE-Systems,
University of Southern California, January, 1985.

10. RCA. Integrated Computer Aided Design and Design
Automation System. Second edition, RCA, Advanced
Technology Labs., Moorestown,N.J., 1985. 3-Micron Stan-
dard Cell Library.

Paper 27.2
466

