
Exploiting Prescriptive Aspects: A Design Time Capability*
John A. Stankovic Prashant Nagaraddi Zhendong Yu Zhimin He

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

{stankovic, pnn7f, zy2x, zh5f}@cs.virginia.edu
Brian Ellis

Boeing
8901 Airport Road

Berkeley, MO 63134

brian.j.ellis@boeing.com

ABSTRACT
Aspect oriented programming (AOP), when used well, has many
advantages. Aspects are however, programming-time constructs,
i.e., they relate to source code. Previously, we developed a tool
called VEST that extended aspects to design time for embedded
systems. Two types of design time aspects were identified which
we labeled aspect checks and prescriptive aspects. In the original
VEST tool several keys aspect checks and a simple form of
prescriptive aspects were implemented. Prescriptive aspects are
extremely powerful and result in many design time advantages
and uses. This paper enhances and exploits the concept of
prescriptive aspects well beyond its original purpose and results.
A new prescriptive language is developed and implemented in
the VEST tool. We also use prescriptive aspects in a case study
for an avionics application and evaluate its benefits. The result is
a tool with significant and new features for building distributed
real-time embedded systems. It is shown in the case study that
design time is shortened by 69%.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;
D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms: Design, Languages.

Keywordss: Aspects, prescriptive aspects, component-based
design.

1. INTRODUCTION
Aspects [12] are defined as those issues that cannot be cleanly
encapsulated in a generalized procedure. For example, in a real-

time embedded system, changing the code in one component may
affect the overall end-to-end response time of an application task.
Aspects, as defined in the literature, are at the programming
language level. For example, AspectJ [12] provides syntax that
permits the specification of aspects and a weaver that weaves the
code specified in the aspect into the base Java code. In our work,
as embodied in the VEST tool, we apply the concept of aspects as
support for crosscutting dependencies at design time. This results
in language independent aspects with many benefits. We have
discovered that there are, at least, two types of language
independent aspects. The first type we call aspect checks. Aspect
checks address specific crosscutting dependencies, which are
sometimes hidden from designers or are difficult to assess. For
example, end-to-end real-time scheduling is one type of aspect
check. The second type of aspect we call prescriptive aspects. In
prescriptive aspects, a general set of advice is written and applied
to the entire design. Note that this advice is applied to the design,
not the source code. The application of this advice changes the
reflective information associated with the affected components
and their interactions. Prescriptive aspects, if deemed general
enough, can be retained in a prescriptive aspect library for use in
other similar projects. Compared with aspect oriented languages,
language independent aspects reduce errors in the early stages of
software design.

This paper briefly presents an overview of VEST [26] to set the
context of this work (Section 2). Section 3 presents the significant
benefits of prescriptive aspects in two major areas: for system
design modifications and when used for expert advice. Section 4
describes the new prescriptive aspect language (VPAL) that was
implemented in the VEST tool. Evaluations of the key benefits of
prescriptive aspects are performed on an avionics case study
(Section 5). The results show the value of prescriptive aspects
both qualitatively and quantitatively. Section 6 presents the state
of art including comparisons to component-based composition
tools, aspect-based tools and AspectJ. Section 7 summarizes the
main results.

2. OVERVIEW OF VEST
Building distributed embedded system software is time-
consuming and costly. The use of software components for
constructing and tailoring these systems has promise. What are
needed are tools to support program composition and analysis of

*This work was supported, in part, by the DARPA PCES program under
grant F33615-00-C-3048.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.

165

component-based embedded systems. In these systems designs are
instantiated largely by choosing pre-written components from
libraries rather than by implementing the design from scratch. One
major difficulty of embedded system composition is the
crosscutting dependencies among components that are often
hidden from the composers. Composition tools should support
dependency checks across components boundaries and expose
potential composition errors due to the crosscutting dependencies.

VEST provides an environment for constructing and analyzing
component-based distributed real-time embedded systems. VEST
helps designers select or create passive software components,
compose them into a product, map the passive components onto
active structures such as threads, map threads onto specific
hardware, and perform dependency checks and non-functional
analyses to offer as many guarantees as possible along many
dimensions including real-time performance. Distributed
embedded systems issues are explicitly addressed via the mapping
of components to active threads and to hardware, the ability to
include middleware as components, and the specification of a
network and distributed nodes.

The VEST environment is composed of various domain specific
component libraries, a prescriptive aspect language and library, an
extensible set of aspect checks, and a GUI-based environment
(shown in Figure 1) for composing and analyzing embedded
products. VEST has been fully implemented and delivered to the
Boeing corporation for further test and evaluation.

Figure 1

2.1.1 Component Libraries
Because VEST supports real-time distributed embedded systems,
the VEST component libraries contain both software and
descriptions of hardware components and networks. Sets of
reflective information exist for each of these component types.
The reflective information of a component includes its interface,
requirements such as security, linking information, location of
source code, worst-case execution time, memory footprint, and
other reflective information needed to analyze crosscutting
dependencies. The extent of the reflective information is one of
the key features that distinguish VEST from other tools. To
support the whole design process of embedded systems, VEST
implements four domain specific component libraries: the

application library, middleware library, OS library and a hardware
library.

2.1.2 Prescriptive Aspects Language and Library
Prescriptive aspects (written in VPAL) are reusable programming
language independent advice that may be applied to a design. For
example, a designer can invoke a set of prescriptive aspects in the
library to add a certain security mechanism en masse to an
avionics product.

2.1.3 Aspect Checks
VEST implements both a set of simple intra- and inter-component
aspect checks that crosscut component boundaries. A designer can
apply these checks to a system design to discover errors caused by
dependencies among components. One aspect check in VEST is
the real-time schedulability analysis for both single-node and
distributed embedded systems. See [26] for other aspect checks.

2.1.4 GUI Composition Environment
 VEST provides a GUI-based environment that lets designers
compose distributed embedded systems from components,
perform dependency checks, and invoke prescriptive aspects on a
design. For more details on VEST and its GUI which is based on
GME [14], see [26].

3. PRESCRIPTIVE ASPECTS
The initial idea for prescriptive aspects was presented in [26].
However, only a brief description was given and limited
evaluation of the concept was presented. This paper expands the
prescriptive aspect concept, discusses important implications of
prescriptive aspects, presents a new VPAL language, and
evaluates prescriptive aspects on an avionics case study.

Prescriptive aspects have two major roles: as a system design
modification tool, and as an application of expert advice obtained
on previous domain specific implementations. In this section we
consider each of these in turn. We then discuss the concept of
hierarchies of prescriptive aspects which are useful for both types
of prescriptive aspects.

3.1 System Design Modifications
Prescriptive aspects are advice that may be applied to a basic
functional design. This encourages a designer to design in a
functional manner and then consider the non-functional aspects.
This separation of concerns makes design easier. For example, a
designer might create the functional modules for navigation of an
aircraft and then apply advice to support real-time performance
and security. Overall, prescriptive aspects support a widespread
global change in the design in a complete and consistent manner
by simply defining new advice or using pre-declared advice and
applying it to your design. This prevents bugs where (without this
support) the changes required are only made in some of the
requisite places. Also implied by this advantage is that re-applying
different advice can be done simply and aspect checks and
schedulability analysis can be re-run automatically. This facilitates
looking at multiple competing design options, thereby resulting in
more effective final designs.

To change the system design, prescriptive aspects can adjust
properties in the reflective information (e.g., change the priorities

166

of a task or the replication levels of a software component). It can
also add/delete components or interactions between components.
When the properties of a component are changed, the associated
code of this component is marked as inconsistent until it is
changed to match the design.

To better understand the qualitative benefits of prescriptive
aspects consider the following examples which are easy to
implement with prescriptive aspects. After designing the basic
system, one step towards achieving fault tolerance can be
addressed by a prescriptive aspect that makes 2 copies of all data
of type waypoint_data and assigns those copies to different
processors. A designer might also want all data of type
pilot_actions to be logged. In addition, it is easy to specify that all
data of type Y (no matter where it is in the system) should be
encrypted with a particular encryption scheme. Many other
examples can be given for non-functional categories of
modifications relating to security, persistence, locking, real-time
and reliability.

Normally, prescriptive aspects are used to modify the basic
design. However, since the prescriptive aspect language has a
create statement, prescriptive aspects can, by themselves,
implement the entire basic design plus changes to it. While we
have not yet investigated this feature in detail, building a system
this way would be very flexible since even the basic design would
be easily re-done. With this feature it is also possible to construct
a subsystem or infrastructure with the prescriptive aspect language
and then import that subsystem or infrastructure. For example,
the design of an OS for a set top box can be designed using
prescriptive aspects, then that OS infrastructure could be added to
a product simply by executing the prescriptive aspect.

3.2 Expert Advice
When advice is deemed important and potentially usable on more
than one project, then that advice can be generalized and placed in
a global (for a given application domain, e.g., avionics)
prescriptive aspect library. VEST supports reusing such
prescriptive aspects by organizing them into a prescriptive aspect
library. Prescriptive aspects are not permitted into the prescriptive
aspect library unless they meet with the approval of the library
administrator. The requirements include that they are sufficiently
general, can be parameterized, include a complete English
description, meaningful constraints specified, and they relate to
non-functional properties.

One way to use the expert advice is as a collection of ideas from
previous projects that might be applicable. For example, a
designer can walk through all the library advice and determine if
they are appropriate. After designing a functional avionics product
a designer may browse through these expert prescriptive aspects
for security, real-time performance, fault tolerance, and
persistence. For each category they can determine if any of the
advice should be applied directly or that they need to create
similar advice for their particular project. This browsing can aid in
producing a more complete and tailored design and when specific
advice is already in the library it is easy to apply.

Also, advice can be grouped in such a way to support
implementing a wide reaching concept, such as improved
computer security. For example, for general security advice there
might exist a group of prescriptive aspects that relate to denial of

service, encryption, and authentication. Applying the high level
advice, applies the entire group.

3.3 Hierarchies of Advice
Regardless of how prescriptive aspects are added to a design there
can be a need for hierarchies of advice. In some cases it may be
necessary to apply to a design a set of seemingly “unrelated”
aspects in some order. To support this feature, the designer has
the capability to describe precedence constraints among the
aspects. More importantly, the same mechanisms can be applied
to create a “related” set of changes to effect a global change to the
system (as described above for the security example). In order to
make high level changes to a design (e.g., in regard to security,
fault tolerance, reliability, and performance) it is usually necessary
to make a set of “related” and more specific changes. For
example, there can be a group of advice in the prescriptive library
that supports a secure avionics system. This advice may
encompass a collection of changes that includes encrypting certain
types of communication, adding intrusion detection changes,
adding modifications that prevent or minimize denial of service.
The mechanisms in VEST support this type of design where the
root of the hierarchy can imply changes needed for security, and
the rest of the tree contains the specific modifications required.

4. VEST PRESCRIPTIVE ASPECT
LANGUAGE

4.1 Design Philosophy
VPAL enables users of VEST to specify their prescriptive aspects.
The syntax of VPAL is specific to the VEST entities that specify
components, their attributes, and interactions between
components. Ease-of-use and modification power are the driving
forces behind VPAL’s design. VPAL allows the specification of
modifications using a simple yet powerful syntax. Consequently,
VPAL is a language with no data type declarations, procedures,
control flow, loops and classes. VPAL’s syntax consists of just
four key statements. It would take a few minutes for a novice
programmer to understand VPAL and be able to write prescriptive
aspects. The power of VPAL’s syntax can only be fully realized
through its use. The evaluation section presents concrete examples
of the time saved by designers using prescriptive aspects written
in VPAL.

VPAL is similar to SQL except that the data set being operated on
is sets of components rather than sets of rows from a table. It is
not a procedural, functional, object-oriented or even aspect-
oriented programming language. It is intended to be specifically
used in the VEST tool for easily creating prescriptive aspects.

4.2 Separation of Concerns
As mentioned earlier, prescriptive aspects change a design by
adjusting properties in the reflective information of components
and/or by adding/removing components from the design. VPAL
explicitly separates the concerns of collection, operation, addition
and removal of components. Four key statements in the language,
Get, Set, Create and Delete enable this separation of concerns.
Each of these concerns plays an important role in fulfilling the
objective of prescriptive aspects and they are described in detail
below. The full BNF specification of the VPAL syntax is
available in [27].

167

4.1.1 Collection
A Collection is defined as a set of components from a system
design. A collection enables a designer to represent a cross section
of the design based on the properties of components or the
relationships between them. This is essentially the value of
collection as it enables a designer to quickly and easily identify
components to be modified which would have otherwise taken
much manual search time. The Get statement in VPAL
implements this feature. It assigns the collection to a variable for
later use. For example, the GET statement

GET SWComps = (CT == SoftwareComponent);

finds all components whose component type (CT) is
“SoftwareComponent” in the design and assigns this set to a
variable called “SWComps”. The right side of the statement
specifies the search criteria. In this case, we used the component
property of type as our search criteria, but in general, it can be any
component property such as type, name or any of the extensive
list of attribute values found in the reflective information of a
component. Search criteria can also be combined into compound
statements with boolean operations AND, OR and NOT.

4.1.2 Operation
An Operation involves changing a design on previously gathered
collections. An operation enables the weaving of user-defined
changes into a design. Operations on collections are performed
with the Set statement that adjusts the properties in the reflective
information of the collection. For example, the SET statement

SET SWComps.(PN = MemoryNeeded, PV = 0);

initializes the property (attribute) name (PN) “MemoryNeeded” of
all components in the “SWComps” collection to a property value
(PV) of zero.

4.1.3 Addition and Deletion
Addition and removal of components are self-explanatory. These
commands enable users to weave changes into a design. Addition
of components could also potentially be used to create large
designs from scratch. The Create statement in VPAL adds a set of
components to the design and assigns this set to a variable for
later use. For example, the CREATE statement

CREATE DispComp = ($SW, Software,
 CT = SoftwareComponent,
 CN = MyDisplayComponent);

creates a software component in the parent model called
“Software” in the software folder ($SW) with a component name
(CN) of “MyDisplayComponent” and assigns it to variable
“DispComp”.

The Delete statement removes previously defined collections from
the design. For example, the DELETE statement

DELETE DispComp;

deletes from the design the components defined in the
“DispComp” collection.

4.3 Multi-line Semantics
VPAL supports multi-line semantics. This means that each
prescriptive aspect can contain multiple lines of instructions. Each

instruction is one of the four statements that were described
above. The multi-line semantics of VPAL allows a user to define
and operate on multiple collections within the same prescriptive
aspect.

For example, suppose we wanted to apply the following
prescriptive aspect to a distributed avionics system being designed
in VEST:

Double the memory needed for all device software components
- and -

change all display software components to use double buffering

Using the multi-line semantics of VPAL, we could specify this
prescriptive aspect as

[1] GET SwComp = (CT == SoftwareComponent);
[2] GET DevComp = SWComp.(
 PN == componentType,

PV == BM__DEVICE_COMPONENT);
[3] GET DispComp = SWComp.(
 PN == componentType,

PV == BM__DISPLAY_COMPONENT);
[4] SET DevComp.(PN == MemoryNeeded,
 PV = PV * 2);
[5] SET DispComp.(PN == DoubleBuffered,
 PV = 1);

This prescriptive aspect contains two different cross-sections of
the design of interest to the designer. One contains all device
components (line 2) and the other contains all display components
(line 3). The designer then modifies each set according to the
change desired (lines 4 and 5).

While VPAL is simple, the downside of simplicity is that the
expressive power of the language is limited sometimes resulting in
redundant code. For example, consider a design with a large
number of software components that are sub-classified into many
software component types. Suppose we wanted to write a
prescriptive aspect to initialize several of the attributes of these
software components to different values by type. The code would
contain redundancy for a design with a large number of software
component types. This redundancy could be eliminated with loops
in VPAL. VPAL can be extended to allow loops and other
programming language concepts such as control flow, procedures,
inheritance, overriding, and so on but we have not found it
necessary for embedded systems of small or moderate size.

5. CASE STUDY
In this section, we demonstrate the benefits of prescriptive aspects
through a case study. We apply prescriptive aspects to the design
of an avionics system, which is based on the Boeing Bold Stroke
platform. We show how prescriptive aspects support system
modification, provide expert advice, and save 69% of design time.

The baseline toolset for comparison includes Rational Rose [19]
and Quantify which are both currently used in Boeing’s product
development. The UML models of all Bold Stroke components
were available in Rational Rose before experimentation started.
The worst-case execution times (WCET) of all components used
were also available before experimentation began.

168

5.1 Design of an Avionics System
Appendix A shows the UML diagram of the software architecture
of a typical avionics system on the Bold Stroke platform. This
system corresponds to a navigation type function on an aircraft.
The aircraft maintains a list of waypoints (points to fly the aircraft
to). Waypoints are selected in groups to form routes (a series of
points to fly the aircraft to, one after the other). The pilot can
modify the waypoints to change the current route of the aircraft.
In addition, GPS sends location information to the system
periodically. The current waypoint and current aircraft position
are displayed periodically.

This navigation system is a typical example of a distributed real-
time embedded system with many crosscutting concerns. Such
concerns include real-time schedulability as well as event channel,
memory and buffer requirements. These and many other concerns
are critical to the overall system. We use aspect checks to identify
them and prescriptive aspects to modify them if they do not meet
the system requirements.

5.1.1 Aspect Checks
Aspect checks verify certain properties of a real-time embedded
system design. Aspect checks are explicit checks across
components in a system. Usually an aspect check looks for hidden
dependencies among components that are hard to directly identify
by a designer. There are various kinds of “global” hidden
dependencies in a system design. We focus on the most
interesting checks to designers in this avionics application. In the
domain of avionics systems, our aspect checks include a memory
footprint check, an event channel check, a buffer size check, and
schedulability analysis.

Figure 2

Aspect checks and prescriptive aspects work in a complementary
way. Aspect checks examine the system for hidden crosscutting
dependencies while prescriptive aspects are applied to modify the
system as directed by the designer, e.g., if the aspect check
determines a deficiency. Their relationship is described in Figure
2. Both aspect checks and prescriptive aspects are implemented as
interpreters in VEST.

5.1.1.1 Memory Footprint Check
The memory footprint check is used to verify whether there is
enough physical memory to support the system software.
Insufficient memory can cause serious problems when the system
is deployed. There are two parts to the check. The first part of the
check is concerned with main memory. Here, a sum is done of the
memory needed by all the software components, and the available
physical memory (RAM) provided by the hardware. The check
verifies whether there is enough physical memory in the system
for the software components defined. The second part of the
memory footprint check involves non-volatile memory (NVM).
Similar to the first check, this check verifies that there is enough
NVM available in hardware as needed by the software
components of the system.

5.1.1.2 Event Check
In this particular avionics system, components communicate with
each other by sending events through event channels or paths. The
event check iterates through all components and makes sure that
every event supplier has an event consumer corresponding to it
and every event consumer has an event supplier corresponding to
it. Mismatches in the event channel are automatically identified.
Also, circular event dependencies can be checked by going
through the event channel.

5.1.1.3 Buffer size check
The buffer size check is used to make sure that there are no buffer
overflows during communication between software components.
In our design, every component has a buffer to temporarily hold
event messages received from other components before they are
processed. The size of a buffer needed by a component to avoid
overflow is based on four parameters – the number of event
suppliers, event supplier’s supply rate, event consumer’s consume
rate and the size of the event message. The event supply and
consume rate vary among different components in the system.
Also, different events have different message sizes. We can
calculate the size of the buffer needed by a particular component
by summing of the sizes of the buffers needed for the event
messages it receives from each of its event suppliers. Each event
buffer size is calculated as follows

geSizeEventMessa
RateentConsumeConsumerEv
ateentSupplyRSupplierEv ×

5.1.1.4 Schedulability
An avionics system is a typical distributed real-time system. In
such a system, every task is executed periodically, and it must
complete its execution before its deadline. A system is
schedulable if all of its tasks can meet their deadlines.
Schedulability is an aspect check that crosscuts the system. A
detailed explanation of schedulability checks in VEST can be
found in a previous VEST paper [26]. In brief, VEST supports the
standard rate monotonic and EDF scheduling policies. More
importantly it also supports distributed real-time scheduling of
various types and distributed robust scheduling. In robust
scheduling designers are informed not only of schedulability, but
also how close the system is to missing deadlines.

169

5.1.1.5 Correctness
VEST does not support formal proof of correctness. Formal
verification tools, while valuable, are not always used for various
reasons. Rather, VEST aims to provide an extensible collection of
key embedded and real-time systems checks to avoid many typical
and difficult to find errors. The result is a practical tool that
improves system design and analysis as demonstrated by various
case studies in [26] and in Section 5.2. For a discussion of the
underlying semantics of VEST see [26].

5.2 Experiment
Throughout our experiment, prescriptive aspects are used for two
primary purposes: system modification and expert advice.

ification

This prescriptive aspect collected the event supplier components
that are contained in software components and are connected to
event consumer components, and set their WCETs to 10ms. After
making this modification, the schedulability test passed. Of
course, these modified components must be reprogrammed to
meet this new WCET. If this is not possible, then faster or more

GET SW = (CT == SoftwareComponent);

GET ES = (CT == EventSupplied);

GET EC = (CT == EventConsumable);

GET ContES = SW[$ONEONE,$DR=$CONT]$ES;

GET ContEC = SW[$ONEONE,$DR=$CONT]$EC;

GET MappedES = $ES[$MANYONE,$DR=$CONN] EC;

SET MappedES.(PN=WCET, PV=10);
5.2.1.1 System Mod

First in this experiment, the designer started to design an avionics
system in VEST based on product scenario 3.3 provided by
Boeing. He composed the system using the components from the
VEST component library. Afterward, he assigned different values
to attributes such as memory size, buffer size, WCET, and period
to the components accordingly.

After running the memory footprint aspect check however, the
designer found out that the amount of memory allocated in
hardware was smaller than required by the software components.
Instead of modifying the attribute values (named MemoryNeeded)
of the components manually, the designer decided to use a
prescriptive aspect. He executed the following prescriptive aspect,
which reduces by half the memory allocated to software
components of type BM__DISPLAY_COMPONENT.

Then he re-ran the memory footprint check and it passed. This
saves time over modifying the system parameters manually and is
more accurate.

After checking the memory allocation, the designer checked the
schedulability of the system design by running the schedulability
aspect check. The check failed because in this case, event
suppliers in the system were specified to have too high a WCET
value that caused tasks in the system to miss their deadlines. In
general, there can be several factors that cause a schedulability
test to fail such as insufficient task period or high WCET value.
Again, instead of modifying all these parameters manually, the
designer modified the system design automatically by executing
the following prescriptive aspect.

cpus must be added to the system and re-analyzed.

5.2.1.2 Expert Advice
Prescriptive aspect can be used to provide expert advice on the
design of a system. Expert advice in this context is generic advice
that applies to various scenarios sharing the same meta-model.
Usually expert advice is stored in a library. Designers can retrieve
the expert advice from the library and reuse the advice by
applying them to every relevant scenario conforming to the same
meta-model.

In this case study, we used assigning locking strategies to
components as an example of expert advice. There are three kinds
of locking strategies used by components in the Bold Stroke
platform: internal, external and synchronous proxy. The internal
locking strategy requires a component to lock itself when data is
modified. An external locking strategy requires the user to
explicitly acquire a component’s lock before accessing its data
and release the lock when finished. The synchronous proxy
strategy requires the use of cached states. Knowledge of such
locking strategies is generic and applies to all Boeing OEP
product scenarios. Therefore, we put this particular prescriptive
aspect into the general expert advice library. When a designer
wants to apply this set of locking strategies to his design, he can
choose the prescriptive aspect from the library and execute it.

The internal locking strategy:

The external locking strategy:

GET SW = (CT == SoftwareComponent);

SET SW.(PN=lockingMode, PV=INTERNAL);

GET PushPull =(CT==SoftwareComponent)
 AND (PN==componentType,
 PV==BM__PUSH_PULL_COMPONENT);

GET EC = (CT == EventConsumable);

GET PushPullMappedEC = $PushPull
 [$ONEMANY,$DR=$CONT] EC;

SET PushPullMappedEC.
 (PN=lockingMode,PV=EXTERNAL);

GET A = (CT == SoftwareComponent) AND
 (PN == componentType,
 PV == BM__DISPLAY_COMPONENT);

SET A.(PN=MemoryNeeded, PV=PV/2);

170

The synchronous-proxy locking strategy:

By default, we assume every software component uses internal
locking. A “PushPull” software component is defined as one that
updates its values (by pulling or getting data from its suppliers)
when it receives an indication (through a push or set). According
to our application rules, any PushPull software component that
has one or more data suppliers must use external locking. This is
what is coded in the external locking prescriptive aspect. Finally,
any component that receives data from more than event channel,
each running on different timers in the system should use
synchronous-proxy locking as indicated by the last prescriptive
aspect.

By applying this expert advice, we assign different locking
strategies to all the software components in the system. This
prescriptive aspect is stored as expert advice in the library. Using
prescriptive aspects for expert advice saves the designer a lot of
time by automating decision-making. This is especially useful
when used in designs with a large number of components and
where there are many interactions among the components.

5.2.1.3 Hierarchical Prescriptive Aspects
A simple prescriptive aspect is a self-contained entity of one or
more VPAL statements. The previous sections illustrated some
simple prescriptive aspects. In addition, VEST provides support
for hierarchical prescriptive aspects.

Hierarchical prescriptive aspects are comprised of one or more
simple prescriptive aspects with precedence constraint rules. This
enables a designer to define several independent simple
prescriptive aspects that can later be combined into a single
compound prescriptive aspect. In addition, the designer can
ensure that when the compound prescriptive aspect is executed,
there is a guarantee over the order of execution of the constituent
simple prescriptive aspects.

We used a hierarchical prescriptive aspect to perform system
initiation in our experiment. We defined independent prescriptive
aspects to initialize the memory requirements of the system, the
buffer size allocation, real-time properties of components such as
WCET and the locking strategies to be used by different
components of the system. In the interest of space, we do not
show these prescriptive aspects here. By combining these
prescriptive aspects into a single hierarchical prescriptive aspect,

we were able to precisely define how our design should be
initialized before being deployed.

5.2.1.4 Experimental results
We performed an evaluation to measure the benefits of
prescriptive aspects in composing distributed avionics systems.
The performance metric is the time it takes to compose (including
design, implementation via composition, and testing or analysis)
an avionics product scenario to achieve end-to-end distributed
real-time schedulability, memory allocation, buffer size
assignment and locking strategy assignment. This experiment was
accomplished in a very limited situation. An expert from Boeing
performed the experiment using their current approach, and a
researcher from the University of Virginia (UVa) performed the
experiment using prescriptive aspects in VEST. For each person
we timed the various steps involved with the experiment. Since
this is a single experiment with many potential issues, the results
are not definitive. However, we believe that the results are
representative and are consistent with other tests performed earlier
on other product scenarios [26].

The baseline comes from the time estimates for Boeing to build,
analyze and validate an avionics system conforming to product
scenario 3.3, while VEST uses prescriptive aspects to do the same
work. A comparison between UVa and Boeing data is shown in
Table 1.

Table 1

VEST Baseline

Step Time
(min) Step Time

(min)
V.1.1 Design: 128 B.1.1 Design 280

 Memory check 1 B.1.2 Memory check 20

Fixing memory
problem using
VPAL

20 Fixing memory
problem 80

V.1.2 Scheduling
check: 1 B.1.3 Timing Test 30

 Fixing scheduling
using VPAL 15 Fixing scheduling 110

 Scheduling check 1 Timing Test 20

Scheduling
analysis:
distributed

1 Test: distributed 20

Assign locking
strategies using
VPAL

1 Assign locking
strategies 30

 Implementation: 320 Implementation 960
Total Composition Time 488 Total Composition Time 1550

From the Table above all steps in the design process are faster
with VEST. In particular, the time saved for the steps using VPAL
show the value of prescriptive aspects. For example, using VPAL
to fix the memory problem reduced the time from 80 to 20
minutes. Overall, the VEST approach saved 69% of the time
needed to design and implement a (representative) distributed
avionics system. Since the memory and real-time scheduling
analysis are automatic, the VEST tool should save even more time

GET SW = (CT==SoftwareComponent);

GET EC = (CT==EventConsumable);

GET Timers = (CT==SWTimer);

GET SWMappedEC = $SW
 [$ONEMANY,$DR=$CONT] EC;

GET SWMappedTimer = $SW
 [$ONEONE,$DR=$CONT] Timers;

GET SynchProxy = $SWMappedEC
 [$ONEMANY,$DR=$CONN] SWMappedTimer;

SET SynchProxy.(PN=lockingMode,
 PV=SYNCH_PROXY_MASTER);

171

both (i) when used for larger systems, and (ii) when designers
wish to attempt multiple competing designs. For example,
suppose a particular design solution, shown to meet the
requirements, had 3 processors, 1 MB of memory and various
amounts of replication for different data types. The designer
might consider removing a processor and modifying some of the
replication and re-run the analysis. Re-running the analysis is very
fast and each tradeoff-analysis cycle improves the time gains of
using VEST. If the new system still meets the requirements, then
the designer has competing solutions to choose among.

6. STATE OF THE ART
The work described in this paper builds upon and integrates
research from three main areas: component based design tools,
aspect-based design tools and aspect oriented programming. In
section 6.1, we briefly discuss component based design and
compare VEST to other such design tools. In sections 6.2 and 6.3,
we more fully discuss the relationship of our work to other aspect-
based tools and aspect-oriented languages such as AspectJ.

6.1 Component Based Design Tools
The software engineering field has worked on component based
software development for a long time. Systems such as CORBA
[23], COM [15], and DCOM [16] exist to facilitate object or
component-based system development. These systems have many
advantages including reusability of software and higher reliability
since the components are written by domain experts [25].
However, none of these systems have adequate crosscutting
analysis capabilities. One exception to this is KNIT. KNIT [20] is
an interesting composition tool for general purpose operating
systems. This system addresses a number of crosscutting concerns
in composing operating systems. For example, it considers
linking, initialization, and a few other dependencies. To date, it
has not focused on real-time and embedded system concerns.

An excellent tool that matches our goals quite closely is MetaH
[30]. MetaH consists of a collection of tools for the layout of the
architecture of an embedded system and for its reliability and real-
time analysis. MetaH begins with active tasks as components,
assumes an underlying real-time OS, and has some dependency
checking. Their work uses fixed priority scheduling. The MetaH
work was done prior to aspect oriented languages. In contrast we
elevate aspects to the central theme of VEST and focus on
dependency checks. We also provide more general scheduling
analysis support: including automatically collecting the task set
characteristics and requirements from the design, matching the
requirements with assumptions of various scheduling analyses,
providing more than fixed priority scheduling, and supporting
access to a commercial real-time scheduling tool.

Cadena [9] is an integrated environment for building and
modeling CCM systems. It supports modeling of a system using
specifications attached to IDL. Similar to VEST, Cadena can
generate a configuration file for Boeing Bold Stroke configurator.
Compared to VEST, Cadena has fewer analysis routines although
it includes some simple analysis capabilities. In addition, Cadena
does not support system modification using aspects. Finally,
Cadena does not support GUI-based composition – the system
diagram is generated from the specifications.

Automatic Integration of Reusable Embedded Software (AIRES)
[7] is a tool to model and analyze embedded systems. In AIRES,
both the real-time behavior of software controllers and the
physical environment are modeled. AIRES focuses on the formal
system analysis based on Timed Petri-Net theory. Unlike VEST,
AIRES does not support the concept of aspects, nor does it
support final code generation.

6.2 Comparison with Aspect-based Design
Tools

In addition to general composition tools, there is much research
work going on in the field of aspect-based tools. Like the aspect
checks and VPAL in VEST, these aspect-based tools focus on the
crosscutting issues in a system design and approaches to modify
the system using aspects.

Time weaver [4] is a reusable component framework supporting
aspects. There exist two distinct design aspects in Time Weaver:
functional design and deployment design. Functional design deals
with the application-specific logic, while deployment design deals
with how various modules comprising the application-specific
logic communicate with each other. Time Weaver aims at
automating the deployment aspect, and thus improves software
productivity. It is similar to VEST in its way of modifying
systems. More specifically, the deployment aspect in Time
Weaver is very comparable to the expert advice in VEST, by
giving guidelines and advice to a specific non-functional concern
crosscutting the system. However, Time weaver does not have the
capability to do various analyses. All analyses are handled by
external programs.

Constrain-Specification Aspect Weaver (C-SAW) [6] is a
composition and analysis tool. Aspects used in it are quite similar
to those in VEST. A weaver is specified using ECL (Embedded
Constraints Language) formally, which is an extension to OCL.
The system design can be modified according to the specification
of the weaver. However, Aspect Weaver does not have a
corresponding analysis counterpart to aspect checks as found in
VEST.

6.3 Comparison with AspectJ
AspectJ is an aspect-oriented extension to the Java programming
language that supports the modular implementation of cross-
cutting concerns. The primary difference between VPAL and
AspectJ is that VPAL provides support for design-time aspects
whereas AspectJ provides support for run-time aspects. Thus, the
crosscutting advice and language-support features of the two vary
accordingly.

Both VPAL and AspectJ provide property-based crosscutting
which is cross-cutting based on the properties of a design or
program. However, only AspectJ provides language support for
control-flow based crosscutting that allows crosscutting based on
the control-flow relationships of a program. VPAL applies advice
at design-time by weaving it into system designs. Advice is
applied by changing the reflective information of components in a
design. AspectJ on the other hand, applies advice at run-time by
weaving it into the source code of Java programs. Here, advice is
applied by specifying that certain code execute before, after or
around each of the join points of a program. The design-time
application of advice makes VPAL a language-independent means

172

of creating and using aspects. AspectJ’s operation at the source
code level makes it a language-dependant framework for aspects.

Since VPAL and AspectJ operate at different stages in the
software development cycle, they consequently provide different
levels of language support for various features of aspect-based
system development. Precedence among aspects is supported both
in VPAL and AspectJ. Precedence in VPAL is not a language
supported feature but there is a way to specify this in a separate
aspect layer in a VEST design. AspectJ supports language-based
specification of precedence. Parameterized advice is supported in
AspectJ but not in VPAL. VPAL will provide support for this in
future versions of VEST. Also, AspectJ provides support for
inheritance and overriding among aspects whereas VPAL does
not. Greater language support of the aforementioned features in
AspectJ compared to VPAL can be attributed to the complexity of
advice that each language has to support. The complexity of a
system and its behavior increases when it moves from design to
source-code level. Since VPAL supports aspects for design-time
systems, its complexity is less than AspectJ. This is another reason
why design-time aspects are useful. It keeps the aspect language
simple to understand and implement.

7. CONCLUSION
When building embedded systems from components
[3][9][22][28], those components must interoperate, satisfy
various dependencies [6], and meet non-functional requirements.
The VEST toolkit can substantially improve the development,
implementation and evaluation of these systems as previously
shown [26]. In this paper we focus on the prescriptive aspects
capability of VEST. We have implemented a new prescriptive
aspect language and discussed its advantages and implications for
embedded systems. We evaluated prescriptive aspects on a case
study. The case study (i) qualitatively demonstrates the benefits of
prescriptive aspects and (ii) includes quantitative data that show a
savings of over 69% in design and analysis time. Currently, a
version of VEST has been delivered to Boeing.

8. REFERENCES
[1] Audsley, N. C. (1991) Optimal Priority Assignment and

Feasibility of Static Priority Tasks with Arbitrary Start
Times, Tech. Report YCS 164, University of York, York,
England.

[2] Bettati, R., (1994) End-to-End Scheduling to Meet
Deadlines in Distributed Systems, PhD Thesis,
Department of Computer Science, University of Illinois at
Urbana-Champaign.

[3] Booch G. (1987) Software Components with Ada:
Structures, Tools and Subsystems. Benjamin-Cummings,
Redwood City, CA.

[4] De Niz D., Rajkumar R., (2003) Time weaver: a software-
through-models framework for embedded real-time
systems, Proceedings of the 2003 ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems, San Diego, California, USA

[5] Gill, C., Levine, D. and Schmidt, D. (2000) The Design
and Performance of a Real-Time CORBA Scheduling
Service, Real-Time Systems, 20(2), Kluwer.

[6] Gray, J., Bapty, T., Neema, S., and Tuck, J. (2001),
Handling Crosscutting Constraints In Domain Specific
Modeling, CACM, Vol. 44, No. 10.

[7] Gu Z., and Shin K., (2003) An Integrated Approach to
Modeling and Analysis of Embedded Real-Time Systems
Based on Timed Petri Nets, International Conference on
Distributed Computing Systems, Providence, RI.

[8] Harrison T., Levine, D. and Schmidt, D. (1997), The
Design and Performance of a Real-time CORBA Event
Service, Proceedings of OOPSLA '97, ACM, Atlanta, GA.

[9] Hatcliff, J., et. al. (2003) Cadena: An Integrated
Development, Analysis, and Verification Environment for
Component-based Systems, ICSE 2003, Portland, Oregon.

[10] Humphrey, M. and Stankovic, J., (1996) CAISARTS: A
Tool for Real-Time Scheduling Assistance, IEEE Real-
Time Technology and Applications Symposium.

[11] Kao, B., and Garcia-Molina, H., (1994) Subtask Deadline
Assignment for Complex Distributed Soft Real-time
Tasks, IEEE International Conference on Distributed
Computing Systems.

[12] Kiczales, G., Hilsdale, E., Hugunin , J., Kersten , M.,
Palm , J., and Griswold, W. (2001) Getting Started With
AspectJ, CACM, 44(10).

[13] Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour, M.
G. (1993) A Practitioner's Handbook for Real-Time
Analysis – Guide to Rate Monotonic Analysis for Real-
Time Systems, Kluwer Academic Publishers.

[14] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J.,
Thomason IV C., Nordstrom G., Sprinkle J., Volgyesi P.
(2001) The Generic Modeling Environment, Workshop on
Intelligent Signal Processing, Budapest, Hungary.

[15] Microsoft Corporation and Digital Equipment Corporation
(1995) The Component Object Model Specification.
Redmond, Washington.

[16] Microsoft Corporation (1998) Distributed Component
Object Model Protocol, version 1.0. Redmond,
Washington.

[17] Object Management Group (1997) The Common Object
Request Broker: Architecture and Specification, Revision
2.0, formal document 97-02-25 (http://www.omg.org).

[18] Palencia, J. and Gonzlez Harbour, M. (1998)
Schedulability Analysis for Tasks with Static and Dynamic
Offsets, Real-Time Systems Symposium.

[19] Rational Software Corporation, Model Driven
Development Using UML: Rational Rose
http://www.rational.com/media/products/rose/D185F_Ros
e.pdf.

[20] Reid, A., M. Flatt, L. Stoller, J. Lepreau, and E. Eide.
(2000) Knit: Component Composition for Systems
Software. OSDI 2000, San Diego, Calif., pp. 347-360.

[21] Santarini, M, (2003) Cadence Says Platform Halves
Verification Time, EEdesign.

[22] Short K. (1997) Component Based Development and
Object Modeling. Sterling Software
(http://www.cool.sterling.com).

173

[23] Siegel J. (1998), OMG Overview: Corba and OMA in
Enterprise Computing, CACM, Vol. 41, No. 10.

[24] Schmidt, D., Levine, D., and Mungee, S. (1998) The
Design of the TAO Real-Time Object Request Broker,
Computer Communications, Special Issue on Building
Quality of Service into Distributed Systems, 21(4).

[25] Sharp, D. (1998) Reducing Avionics Software Cost
Through Component Based Product Line Development,
Software Technology Conference.

[26] Stankovic, J., Zhu, R., Poornalingham, R., Lu, C., Yu, Z.,
Humphrey, M., and Ellis, B., (2003) VEST: An Aspect-
Based Composition Tool for Real-Time Systems, Real-
Time Applications Symposium.

[27] Stankovic J., Nagaraddi P., Yu Z., He Z., (2004) VEST
User’s Manual, UVa Technical Report TR-CS-2004-10.

[28] Szyperski C. (1998) Component Software Beyond Object-
Oriented Programming. Addison-Wesley, ACM Press,
New York.

[29] Tindell, K. (1994) Adding Time-Offsets to Schedulability
Analysis, Technical Report YCS 221, Dept. of Computer
Science, University of York.

[30] Vestal, S. (1997) MetaH Support for Real-Time Multi-
Processor Avionics, Real-Time Systems Symposium.

9. APPENDIX A

GPS :
BM__DeviceComponent

Airframe :
BM__ClosedEDComponent

Routes : BM__PushPullComponent

Waypoints :
BM__OpenEDComponent

P2_Display :
BM__DisplayComponent

P2_Display_Device :
BM__DeviceComponent

Pilot :
BM__UserInputComponent

5 Hz Timeout

20 Hz Timeout - this
timeout exists only so
that the keyboard can
be polled.

Keyboard input

WaypointsProxy :
BM__OpenEDComponent

RoutesProxy :
BM__PushPullComponent

Frame Controller

Process 1

P1_Display : BM__DisplayComponent

P1_Display_Device :
BM__DeviceComponent

AirframeSynchProxy_5HZ :
BM__ClosedEDComponent

AirframeSynchProxy_20HZ :
BM__ClosedEDComponent

ORB

AF_Monitor :
BM__DisplayComponent

7: GuardExternalRegion
23: GuardExternalRegion

15: GuardExternalRegion

28: GuardExternalRegion

Frame controller receives a
40Hz Timeout. It then pushes
an event to all event ques at
their prescribed rates
(40,20,10,5,1).

Process 2

MC__3_3ConcurrencyMP Scenario
Internal locking
strategy

External locking
strategy

SynchronousProxy
locking strategy

2: Push

3: Get

4: Push

5: RetrieveState

22: Push

24: Get
21: Set

29: Get

27: Push

19: Set

20: Set

1: Push_20HZ

11: Push_5HZ

13: Push_5HZ

16: Get

14: Push

17: Push

12: RetrieveState

6: Push8: Get

9: ReplicateData
25: ReplicateData

10: ReplicateData
26: ReplicateData

18: Get

174

