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ABSTRACT
The Simulink/Stateflow toolset is an integrated suite en-
abling model-based design and has become popular in the
automotive and aeronautics industries. We have previously
developed a translator called s2l from Simulink to the syn-
chronous language Lustre and we build upon that work by
encompassing Stateflow as well. Stateflow is problemati-
cal for synchronous languages because of its unbounded be-
haviour so we propose analysis techniques to define a subset
of Stateflow for which we can define a synchronous seman-
tics. We go further and define a “safe” subset of Stateflow
which elides features which are potential sources of errors in
Stateflow designs. We give an informal presentation of the
Stateflow to Lustre translation process and show how our
model-checking tool Lesar can be used to verify some of the
semantical checks we have proposed. Finally, we present a
small case-study.

Categories and Subject Descriptors: D.2.2 [Design
Tools and Techniques]: Computer-aided software engineer-
ing (CASE)

General Terms: Design, Languages, Reliability, Verifica-
tion

Keywords: Embedded software, Simulink, Lustre, Auto-
matic translation

1. INTRODUCTION
Embedded and real-time systems are often safety-critical

and require high-quality design and guaranteed properties.
Model-based design has been advocated as the method of
choice for dealing with systems such as these. The design
process consists of building models on which the required
system properties are carefully checked and assessed and
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then deriving implementations such that these properties
are preserved. This allows high quality to be achieved at a
lower cost.

Simulink/Stateflow1 is a very popular tool-chain in this
setting and is considered a de facto standard in many do-
mains such as control systems and the automotive and air-
craft industries. Simulink is a block-diagram based formal-
ism while Stateflow provides hierarchical and parallel state
machine notations borrowed from StateCharts [10]. In many
cases, designers need to use both models and a strength of
Simulink/Stateflow is the integration of these complemen-
tary formalisms within the same tool-chain. However, the
tool-chain was originally designed for simulation purposes
and, as such, it lacks many desirable features when it comes
to model-based design, such as static checks, formal seman-
tics and associated formal methods such as formal analysis
and synthesis techniques (for example, verification, testing
and code generation).

In previous work [4], we have shown how to translate
a subset of Simulink into Lustre [7], a synchronous data-
flow language which, as opposed to Simulink, is formally
based and endowed with several formal tools such as the
Lesar model-checker [8] and the Prover Plug-in from Prover
Technology2 [17]. Moreover, the industrial version of Lus-
tre, SCADE, commercialized by Esterel-Technologies3 is
equipped with a DO178-B Level A qualified code genera-
tor, which makes it well-adapted to be used in safety-critical
projects. Thus, the intended use of our translator is quite
clear: after a system is designed using Simulink, the Lustre
translation can be used to guarantee the formal status of the
model, formally check properties of this model and, finally,
generate code which preserves the semantics of the original
model.

This work aims at extending the previous work by includ-
ing support for Stateflow. This is compulsory because, as
said above, Simulink/Stateflow is an integrated tool-chain
and many applications use both complementary tools.

However, Stateflow raises many more semantic problems
than Simulink and the task of identifying a “clean” subset of

1Trademarks of the MathWorks company
2http://www.prover.com
3http://www.esterel-technologies.com
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Stateflow is much harder than it was for Simulink4. This is
why many Stateflow users have guidelines restricting the use
of unsafe constructs [6]. The problem with these guidelines
is that:

• there is no common agreement between the various
guidelines in use,

• in the absence of automated checking tools they may
appear too restrictive to designers and

• many legacy Stateflow models predate the existence of
guidelines and bringing them into conformance with
these guidelines would require considerable effort.

The contributions of this paper are two-fold. Firstly, we
list the semantic problems associated with Stateflow (Sec-
tion 2) and propose light-weight static checking algorithms
which ensure that a model is free of such problems and can
therefore be considered “safe” (Section 2.3). This may be
useful for designing less restrictive guidelines. Secondly, we
show how to translate Stateflow into Lustre (Section 3) and
also show how properties that may not be checked by the
algorithms of Section 2.3 can be checked on the Lustre trans-
lation by means of model-checking (Section 4). This allows
us to further enhance our notion of a “safe” subset. Finally,
we discuss a prototype implementation and a simple case
study (Section 5).

Related work
StateCharts [10] are sometimes compared with Stateflow
since both are visual representations of state machines.
There has been much work into formalization of StateCharts
either by translating into a known system such as hierarchi-
cal automata [15] or by deriving a semantics for a suitable
subset [12]. The two systems have a very different seman-
tics, however, for example Stateflow has no notion of true
concurrency so work in this area would be difficult to adapt
for Stateflow directly.

One attempt includes Tiwari [18] who describes analy-
ses for Simulink/Stateflow models by translating into com-
municating pushdown automata. These automata are rep-
resented in SAL [2] which allows formal methods such as
model-checking and theorem proving techniques to be ap-
plied to these models. Essentially, the system is treated
as a special hybrid automata and algebraic loops involving
Stateflow charts are not considered.

Hamon and Rushby have developed a structural opera-
tional semantics for Stateflow [9] for which they have an in-
terpreter to allow comparison with Stateflow. Their subset
of Stateflow seems to have been inspired by the Ford guide-
lines [6], for instance loops are forbidden in event broadcast-
ing and local events can only be sent to parallel states. They
have other restrictions as well, such as forbidding transitions
out of parallel states but in general support most of the
Stateflow definition including inter-level transitions. They
also have a translator into the SAL system which allows var-
ious model-checking techniques to be applied to Stateflow.

4The reason for this state of affairs may come from the fact
that the field of hierarchical and parallel state machines is
much younger than that of block-diagrams. Furthermore,
the problem of communicating parallel state machines is an
intricate one and, despite several interesting approaches [10,
3, 14] does not seem to have yet reached a satisfactory solu-
tion.

Banphawatthanarak et al. describe a translator from
Stateflow into the SMV model checker [1]. As for our trans-
lator they do not work from a formal semantics for Stateflow
and the main issue seems to be the ordering of actions.

Finally, Reactive Systems Inc.5 have a tool called Re-
actis for automated test generation for Simulink/Stateflow
models.

Our work differs from these in that we provide a set of
simple static checks which are much “lighter” than model-
checking. We are also able to use the generated Lustre pro-
gram not only for model-checking but for C code generation
while preserving the original semantics. Note that genera-
tion of C code from Lustre is now well-understood and we
do not need to elaborate upon it here.

2. A SAFE SUBSET OF STATEFLOW
Before we can attempt to define which features of State-

flow are suitable for translation into Lustre, we have to il-
lustrate some of the semantical issues with Stateflow, which
are also likely to cause problems with our translator. These
issues range from “serious” ones, such as non-termination of
a simulation step or stack overflow, to more “minor” ones,
such as dependence of the semantics upon the positions of
objects in the Stateflow diagram. First, we briefly describe
the Stateflow language and informally explain its semantics
(for a formal semantics, see [9]).

2.1 A short description of Stateflow
Stateflow is a graphical language resembling Statecharts

[10]. The semantics of Stateflow are embodied in the inter-
pretation algorithm of the Stateflow simulator, documented
in a 900-page long User’s Guide (terminology is borrowed
from that guide). A Stateflow chart has a hierarchical struc-
ture, where states can be refined into either exclusive (OR)
states connected with transitions or parallel (AND) states,
which are not connected6. The following model has exam-
ples of both:

B 2 A 1

A1

A2

B1 B2

B1a

B1b

B2a

B2b

E/J E/I
H

F/E F/EG/E G/E

H

A and B are parallel states (with parent the root state),
while all their child states are exclusive. A transition can
be a complex (possibly cyclic) flow graph made of segments
joining connective junctions. Each segment can bear a com-
plex label with the following syntax (all fields are optional):

E[C]{Ac}/At

where E is an event, C is the condition (i.e., guard), Ac is
the condition action and At is the transition action. Ac and

5http://www.reactive-systems.com
6The term “parallel” is misleading since such states are ac-
tually considered in sequential order.
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At are written in the action language of Stateflow, which
contains assignments, emissions of events, and so on. Ac-
tions written in the action language can also annotate states.
A state can have an entry action, a during action, an exit
action and on event E actions, where E is an event.

The interpretation algorithm is triggered every time an
event arrives from Simulink or from within the Stateflow
model itself7. The algorithm then executes the following
steps:

Search for active states: this search is performed hi-
erarchically, from top to bottom. At each level of hierarchy,
when there are parallel states, the search order is a graphical
two dimensional one: states are searched from top to bottom
and from left to right, in order to impose determinism upon
the Stateflow semantics.

Search for valid transitions: once an active state is
found, its transitions are searched based on several enabling
criteria: the event of the transition must be present and its
condition must be true. The goal is to find a transition which
is valid all the way from the source state to the destination
state. In particular, when the transition is multi-segment,
the condition actions of each segment are executed while
searching and traversing the transition graph. The search
order is again deterministic: transitions are searched accord-
ing to the 12 o’clock rule8.

Execute a valid transition: once a valid transition is
found, Stateflow follows these steps: execute the exit action
of the source state, set the source state to inactive, execute
the transition actions of the transition path, set the desti-
nation state to active and finally execute the entry action of
the destination state.

Idling: when an active state has no valid output transi-
tions an active state performs its during action and the state
remains active.

Termination: occurs when there are no active states.
It should be emphasized that each of the executions runs

to completion and this makes the behaviour of the overall
algorithm very complex. In particular, when any of the ac-
tions consists of broadcasting an event, the interpretation
algorithm for that event is also run to completion before ex-
ecution proceeds. This means that the interpretation algo-
rithm is recursive and uses a stack. However, as we will see,
the stack does not store the full state, which leads to prob-
lems of side effect (Section 2.2.2). Also, without care, the
stack may overflow (Section 2.2.1).

2.2 Semantical issues with Stateflow

2.2.1 Non-termination and stack overflow
As already mentioned, a transition in Stateflow can be

multi-segment and the segment graph can have cycles. Such
a cycle can lead to non-termination of the interpretation
algorithm during the search for valid transition step.

Another source of potential problems is the “run to com-
pletion” semantics of event broadcast. Every time an event
is emitted the interpretation algorithm is called recursively,
runs to completion, then execution resumes from the action

7The Simulink event is often a Simulink trigger, although
it can also be the simulation step of the global Simulink-
Stateflow model.
8Notice that this is considered harmful even in the State-
flow documentation: “Do not design your Stateflow diagram
based on the expected execution order of transitions.”

statement immediately after the emission of the event. This
can lead, semantically, to infinite recursion and in practice
(i.e., during simulation) to stack overflow9 as shown in the
following model:

A/
en: E

BE { E }

When the default state A is entered event E is emitted
in the entry action of A. E results in a recursive call of the
interpretation algorithm and since A is active its outgoing
transition is tested. Since the current event E matches the
transition event (and because of the absence of condition)
the condition action is executed, emitting E again. This
results in a new call of the interpretation algorithm which
repeats the same sequence of steps until stack overflow.

2.2.2 Backtracking without “undo”
While searching for a valid transition, Stateflow explores

the segment/junction graph, until a destination state is
reached. If, during this search, a junction is reached without
any enabled outgoing segments, the search backtracks to the
previous junction (or state) and looks for another segment.
This backtrack, however, does not restore the values of vari-
ables which might have been modified by a condition action.
Thus, the search for valid transitions can have side effects
on the values of variables. An example of such a behavior is
generated by the following model:

A

C

B
{a=0}

[false] {a+=100}

[true] {a+=10}[true] {a+=1}

[true] {a+=1000}

The final value of variable a when state C is entered will
be 1011 and not 1001 as might be expected. This is because
when the segment with condition “false” is reached, the al-
gorithm backtracks without “undoing” the action “a+=10”.

2.2.3 Dependence of semantics on graphical layout
In order to enforce determinism in the search order for

active states and valid transitions (thus ensuring that the
interpretation algorithm is deterministic) Stateflow uses two
rules: the “top-to-bottom, left-to-right” rule for states and
the “12 o’clock” rule for transitions. These rules imply that
the semantics of a model depend on its graphical layout.
For example, in the following model, parallel state A will be
explored before B because it is to its left. But if B was drawn
slightly higher, then it would be explored first. (Notice that
Stateflow annotates parallel states with numbers indicating
their execution order in the top right-hand corner.)

9This is recognized in the official documentation: “Broad-
casting an event in the action language is most useful as
a means of synchronization among AND (parallel) states.
Recursive event broadcasts can lead to definition of cyclic
behavior. Cyclic behavior can be detected only during simu-
lation.”
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B 1
A 2 B1A1

B2 B3A2

E2E1
E1 { E2 }

The order of exploration is important since it may lead
to different results. In the case of “12 o’clock” rule, for
example, if the top-most transition of the model in Sec-
tion 2.2.2 emanated from the 11 o’clock position instead of
the 1 o’clock position, then the final value of a would be
1001 instead of 1011.

Exploration order also influences the semantics in the case
of parallel states, even in the absence of variables and as-
signments. An example is given by the model in this section.
A and B are parallel states. When event E1 arrives, if A is
explored first, then E2 will be emitted and the final global
state will be (A2, B3). But if B is explored first then the
final global state will be (A2, B2). Thus, parallel states in
Stateflow do not enjoy the property of confluence.

2.2.4 Other problems
Due to lack of space, we cannot cover all semantical issues

with Stateflow. We end this part by briefly mentioning two
more potential problems. The first is the possibility of hav-
ing so-called super-transitions crossing different levels of the
state hierarchy. This is a feature of Statecharts as well, but
is generally considered harmful in the Statecharts commu-
nity [10]. Many proposals disallow such transitions for the
sake of simpler semantics [12].

The second problem is termed early return logic in the
Stateflow manual. This problem is illustrated in the model
below. When event E is emitted, the interpretation algo-
rithm is called recursively. Parent state A is active, thus, its
outgoing transition is explored and, since event E is present,
the transition is taken. This makes A inactive, and B active.
When the stack is popped and execution of the previous in-
stance of the interpretation algorithm resumes, state A1 is
not active anymore, since its parent is no longer active.

A

B
A1 A2

E

{ E }

2.3 Simple conditions identifying a “safe”
subset of Stateflow

In this section we present a sufficient number of simple
conditions for avoiding error-prone models such as those dis-
cussed previously. The conditions can be statically checked
using mostly light-weight techniques. The conditions iden-
tify a preliminary, albeit strict, “safe” subset of Stateflow.
A larger subset can be identified through “heavier” checks
such as model-checking, as discussed in Section 4.

2.3.1 Absence of multi-segment loops
If no graph of junctions and transition segments contains

a loop (a condition which can easily be checked statically)

then the model will not suffer from non-termination prob-
lems referred to in Section 2.2.1. This condition is quite
strict and is hard to loosen, since termination is undecid-
able for programs with counters and loops.

2.3.2 Acyclicity of triggering and emitted events
An event E is said to be triggering a state s if the state

has an “on event E: A” action or an outgoing transition
which can be triggered by E (i.e., E appears in the event
field of the transition label or the event field is empty). E
is said to be emitted in s if it appears in the entry, during,
exit or on-event action of s, or in the condition or transition
action10 of one of the outgoing transitions of s. Given a
Stateflow model, we construct the following graph. Nodes
of the graph are all states in the model. For each pair of
nodes v and v′, we add an edge v → v′ iff the following two
conditions hold:

1. An event E is emitted in v which triggers v′.

2. Either v = v′ or the first common parent state of v
and v′ is a parallel state.

The idea is that v can emit event E which can then trigger
v′, but only if v and v′ can be active at the same time. If
the graph above has no directed cycle then the model will
not suffer from stack overflow problems.

2.3.3 No assignments in intermediate segments
In order to avoid side effects due to lack of “undo”, we

can simply check that all variable assignments in a multi-
segment transition appear either in transition actions (which
are executed only once a destination state has been reached)
or in the condition action of the last segment (whose desti-
nation is a state and not a junction). This ensures that even
in case the algorithm backtracks, no variable has been mod-
ified. An alternative is to avoid backtracking altogether, as
is done with the following check.

2.3.4 Outgoing junction conditions form a cover
In order to ensure absence of back-tracking when multi-

segment transitions are explored, we can check that for each
junction, the disjunction of all conditions in outgoing seg-
ments is the condition true. If segments also carry triggering
events, we must ensure that all possible events are covered
as well.

2.3.5 Outgoing junction conditions are disjoint
In order to ensure that the Stateflow model does not de-

pend on the 12 o’clock rule, we must check that for each
state or junction, the conditions of its outgoing transitions
are pair-wise disjoint. This implies at most one transition
is enabled at any given time. In the presence of triggering
events, we can relax this by performing the check for each
group of transitions associated with a single event E (or
having no triggering event).

It should be noted that checking whether Stateflow condi-
tions are disjoint or form a cover is an undecidable problem,
because of the generality of these conditions. From a State-
flow design, we can extract very easily the logical properties

10In fact, transition action events can probably be omitted
from the set of emitted events of s, resulting in a less strict
check. We are currently investigating the correctness of this
modification.
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expressing that a set of conditions are disjoint and form a
cover. These logical properties can be submitted as a proof
obligation to some external tool such as a theorem prover.
However, for most practical cases, recognizing common sub-
expressions is sufficient for establishing that some conditions
are disjoint and form a cover.

2.3.6 Checks for confluence
In order to ensure that the semantics of a given State-

flow model does not depend on the order of exploring two
parallel states A and B, we must check two things. First,
that variables shared between A and B are not assigned by
either of these states. But this is not sufficient, as shown
in Section 2.2.3, because event broadcasting alone can cause
problems. A simple solution is to check that in the afore-
mentioned graph of triggering and emitted events, there is
no edge v → v′ such that v belongs to A and v′ to B or
vice-versa.

2.3.7 Checks for “early return logic”
To ensure that our model is free of “early return logic”

problems, we can check that for every state s and each of
its outgoing transitions having a triggering event, this event
is not emitted somewhere in s. Note that if a transition has
no triggering event then this transition is enabled for any
event, thus, we must check that no event is emitted in s.

3. TRANSLATION INTO LUSTRE
The above checks on Stateflow models define a subset

which is more likely to be correct according to the sys-
tem designer’s intentions than using the full Stateflow def-
inition. However, it is restrictive since it disallows some
of Stateflow’s features which designers have become used
to. We therefore extend our subset by employing analysis
with sound theoretical underpinnings. One such framework
is model-checking and we have access to Lesar [8], a well-
established model-checker which takes Lustre as its input. A
translation of Stateflow into Lustre thus opens up the possi-
bility of allowing some of the “unsafe” features of Stateflow
to be used with confidence provided we can verify the in-
tended properties of the model using Lesar.

We have to be clear, however, about the difference be-
tween the subset of Stateflow which is “safe” in the sense of
the previous discussion and that which is translatable into
Lustre. We can copy the behaviour of Stateflow as precisely
as required (given sufficient effort in building the translator)
and can even implement loops and recursion provided we
can prove that the behaviour is bounded. The generated pro-
gram, however, does not have any guaranteed safety prop-
erties since all the previous discussion about the semantical
problems with Stateflow are carried over into the Lustre
translation. This is where model-checking and other for-
mal methods can be applied. In this section we describe the
translation process informally and in Section 4 we show how
some of the previously mentioned properties can be verified
and our subset extended using the Lesar model-checker.

Needless to say, the goal of the translation is not simply
to provide a way to model-check Stateflow models. It is
also to allow for semantics-preserving code generation and
implementation on uni-processor or multi-processor archi-
tectures [5].

Lustre is a synchronous language where variables are
flows, i.e. a notionally infinite stream of values. Each value

of a flow is its instantaneous value in a particular reaction
and for each time instant, outputs can only depend on cur-
rent or previous inputs. The previous value of a flow is
accessed by the pre operator and initialization is performed
by the “followed by” operator ->. In the translator these
are the only temporal operators used. In particular, the
when and current Lustre operators are not used, because
Stateflow models are single-clock.

3.1 Encoding of states
The most obvious method of encoding states into Lustre is

to represent each state as a boolean variable and a section
of code to update that variable according to the validity
of the input and output transitions. For example, one can
envisage a very simple and elegant encoding of the boolean
component (i.e. without the entry actions) of the following
simple chart:

On/
en: switch=1;

Off/
en: switch=0;

Set

Reset

in the Lustre code:

node SetReset0(Set,Reset: bool)
returns (Off,On: bool);
let
  Off=true->if pre Off and Set then false
            else if (pre On and Reset) then true
                 else pre Off;
  On=false->if pre On and Reset then false
            else if (pre Off and Set) then true
                 else pre On;
tel.

Here a state becomes true if any of its predecessor states
are true and there is a valid transition chain from that state.
It becomes false if it is currently true and there is a valid
transition chain to any of its successor states. Otherwise it
remains in the same state. The initial values of the states
are defined by the validity of the default transitions.

This code is semantically correct for a system consisting
only of states but it is difficult to incorporate the imperative
actions attached to both states and transitions in Stateflow.
For example, if the above code had included the entry ac-
tions in the states then all the values referenced by the ac-
tion code would have to be updated in each branch of the
if-then tree. This causes two problems. Firstly, for even
quite small charts the number of values being updated can
become large and this has to be multiplied by the complexity
introduced by the network of transitions each state partic-
ipates in. Secondly, the action language is an imperative
language for which it would be difficult to compile a single
expression for each sequence of actions. Note also that if
more than one state updates the same value then causality
loops and multiple definitions could arise.

A more practical approach, therefore, is to split the above
equations into their components and use explicit dependen-
cies to force their order of evaluation. Inspecting the Lustre
code above, the state update equation for each state con-
sists of; an initialization value computed from default tran-
sitions (true for sOff), an exit clause ((pre sOff and Set)

for sOff), an entry clause ((pre sOn and Reset) for sOff)
and a no-change value (pre sOff).

Explicitly separating these components allows us to insert
the action code at the correct point in the computation of a
reaction. This results in the rather dense encoding:
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node SetReset1(Set,Reset: bool)
returns (Off,On: bool; switch: int);
var Off1,On1: bool; switch1: int;
let
  Off1=true->if pre Off and Set then false else pre Off;
  On1=false->if pre On and Reset then false else pre On;
  Off=Off1->if pre On and Reset then true else Off1;
  On=On1->if pre Off and Set then true else On1;
  switch1=0->if Off and not pre Off then 0 else pre switch;
  switch=switch1->if On and not pre On then 1 else switch1;
tel.

Here, the state update code has been split into separate
entry and exit sections with the order set by the use of the
auxiliary variables sOff1 and sOn1. The entry actions can
then be inserted in the correct place. For this simple ex-
ample they could be placed anywhere in the Lustre node
but we would want transition actions to be evaluated be-
tween exiting the source state (exit actions) and entering
the destination state (entry actions) for compatibility with
Stateflow.

3.2 Compiling transition networks

A B[x<>0]{y++} [x<2]

[x==0]{y−−}

The above is a Stateflow chart which illustrates a junction.
Junctions in Stateflow do not have a physical state and can
be thought of as nodes in an if-then tree. This is thus the
most sensible encoding of junctions. One problem, however,
is that junction networks can be sourced from more than
one state and a single state can have more than one output
to the same junction. These can be handled quite easily if
one allows a certain amount of code duplication, the com-
mon subnetwork for two joining outgoing transitions being
compiled twice.

We could devise a very natural scheme for Lustre to han-
dle this but again it becomes difficult to insert the condition
and transition actions into the if-then tree in Lustre. The
actual code generated is as follows. Note that our code ex-
amples have been condensed for brevity and use abbreviated
variable names; cv means “condition valid”, lv “transition
valid”, ca “condition action” and su “state update”:

-- transition id=7 name=[x<>0]{y++}
node lv7_(x,y: int; lv8,lv7,exit: bool) 
returns(lv8o,lv7o: bool; yo: int; exito: bool);
var cv7,cv8,end,end_1,exit_1: bool;
let
  cv7,end_1,exit_1=
    if not exit then cv7_(x) else (false,false,exit);
  yo=if cv7 then ca7(y) else y;
  cv8,end,exito=
    if cv7 and not end_1
    then cv8_(x) else (false,end_1,exit_1);
  lv7o,lv8o=if cv8 and end then (true,true) else (lv7,lv8);
tel

-- transition id=6 name=[x==0]{y--}
-- Note: Code identical to lv7_ with "6" in place of "7"

-- node id=3 name=A
node suAex(x,y: int; sA,term,init,exit: bool) 
returns(sAo,lv6,lv8,lv7: bool; yo: int; exito: bool);
var exit_1,lv8_1: bool; y_1: int;
let
  lv6,lv8_1,y_1,exit_1=lv6_(x,y,false,false,exit);
  lv8,lv7,yo,exito=lv7_(x,y_1,lv8_1,false,exit_1);
  sAo=if exito and (lv7 or lv6) or term then false else sA;
tel.

The functions cv{678}_ not shown compute the condition
code for their respective transitions. Note how the cv8 call

is duplicated between lv6 and lv7 . Essentially, the junc-
tion tree is turned into a flattened representation with two
flags, “end” which signifies the termination of the tree (ei-
ther a destination state or a terminal junction) and “exit”
which is true if the terminal was a state. These two flags
correspond to the End, No and Fire transition values in [9],
the semantics of our junction processing is identical to the
semantics described therein.

A more serious problem is that junction networks can have
loops which results in unbounded recursion and therefore
a loss of synchronous semantics. To allow a synchronous
semantics for Stateflow we have to outlaw such constructs in
the general case. It is possible, however, to unroll such loops
without loss of generality, provided bounds can be proven
on the number of iterations. This means we can generate
proof obligations for external tools such as Nbac [11]. If a
bound exists and is feasible we can unroll loops individually
as required. This requires further investigation. Currently,
we detect all junction loops and reject models which have
them.

3.3 Hierarchy and parallel AND states
We initially make the assumption that inter-level transi-

tions are not allowed. This restriction could be removed in
future since there is no reason why they could not be imple-
mented but the analysis of hierarchical and parallel states is
greatly simplified by this assumption. In fact the entire hi-
erarchy boils down to simple function calls of nested states,
the only complication being the initialization and termina-
tion of the nested states.

For example, The model in Section 2.1 illustrates a sim-
ple model with both parallel and exclusive sub-states. For
both types of sub-state we insert the function calls to the
sub-states after computation of the local state variables, the
Lustre nodes generated for the top-level state (parallel) and
state B (exclusive) for this model are as follows:

-- State B (OR,[B1,B2])
node sf_7(F,G,H,E: event; sgB,sgB1in,sB1bin,sB1ain,sgB2in,
          sB2bin,sB2ain,term,init: bool)
returns(sgB1,sB1b,sB1a,sgB2,sB2b,sB2a: bool; Eo: event);
let
  sgB1t=sguB1en(sgB1_1,lv17,lv19,term,init,exit);
  sgB2t=sguB2en(sgB2_1,lv18,term,init,exit);
  sB1b,sB1a,E_1=
    sf_8(G,E,sgB1t,sB1bin,sB1ain,
         not sgB1t and sgB1in,sgB1t and not sgB1in);
  sB2b,sB2a,Eo=
    sf_9(F,E_1,sgB2t,sB2bin,sB2ain,
         not sgB2t and sgB2in,sgB2t and not sgB2in);
   sgB1=sgB1t; sgB2=sgB2t;
tel

-- Toplevel graph (AND,[A,B])
node sf_2(F,G,H: event) returns(I,J: event);
let
  sgA=sfs(init,term);
  sA2,sA1,I,J=sf_4(E_1,I_1,J_1,sgA,sA2_1,sA1_1,term,init);
  sgB=sfs(init,term);
  sgB1,sB1b,sB1a,sgB2,sB2b,sB2a,E=
    sf_7(F,G,H,E_1,sgB,sgB1_1,sB1b_1,sB1a_1,
         sgB2_1,sB2b_1,sB2a_1,term,init);
tel.

Initialization and termination are controlled by two vari-
ables, “init” and “term” which are passed down the hier-
archy. This is a standard method for implementing state
machines in synchronous languages [13]. One way of view-
ing the init value is as a pseudo-state which the model is in
prior to execution and in fact this plays the role of the state
variable for default transitions. For parallel states the local
state variable depends only on the init and term variables,
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as do the flags for entry, exit and during actions. These
are computed as in the following table (s is the local state
variable) and are embodied in auxiliary nodes (for example
the state variable is computed by the node sfs in the above
code):

state init and not term -> (init or pre s) and not term

entry init -> s and not pre s

exit init and term -> (pre s or init) and not s

during false -> s and pre s

For exclusive sub-states the init and term flags
are computed solely from the local state variable
(init = s and not pre s and term = not pre s and s).
The complication is that we need the value of the state vari-
able at the end of the reaction without actually setting the
variable itself because the nested states have to be executed
using the input value. This is why we call the state entry
computation beforehand (sgu8 B1en for example) but save
the value in a temporary variable (sg8 B1t) and then update
the actual value at the end of the computation. The tempo-
rary value then stands for the new value and the input value
(sg 8B1in) for the previous one. Actually, for the code pre-
sented here this is unnecessary but when event broadcasting
is enabled (Section 3.4) the value of the state variable can
be updated by actions. Note also that for the top-level call
we set init to true->false and term to false.

3.4 Event broadcasting
One of the most difficult aspects of Stateflow to translate

is the generation of events within the Stateflow model, these
are called local events in Stateflow terminology. The prob-
lem is that Stateflow implements these by running the inter-
pretation algorithm to completion on each transmitted local
event which implies the possibility of unbounded behaviour
(since transmission of one event can trigger the transmission
of another). On the other hand, Lustre provides a bounded
(and known at compile time) recursion mechanism. There-
fore, if we can prove (or assume) that the implicit recursion
is bounded by a constant k, then we can translate the State-
flow model into a Lustre program with recursion bounded
by k.

This is implemented by creating a const11 recursion vari-
able for event broadcasts which we call the “event stack
size”. We can then call the top-level node at the point where
an event is broadcast, reducing this constant by one. This
allows emulation of the recursive nature of Stateflow’s inter-
pretation algorithm up to a finite limit set by the event stack
size. If we have a proof of the bound on event broadcast re-
cursion then our behaviour will be the same as Stateflow’s.

The following is a trivial model with non-confluent parallel
states which requires event broadcasting:

B/
on E: F;

1
A/
en: E;

2

The two states A and B are evaluated in the order B then
A but A emits event E whereas B receives it. The following
code is generated, showing the event stack:

11A const value in Lustre refers to a value which can be
statically evaluated at compilation time.

-- entry action for node id=3 name=A
node enaA(F,E:event; sB,sA,term,init:bool; const n:int) 
returns(Fo:event; sBo,sAo:bool; Eo:event);
let
  Fo,sBo,sAo,Eo=with n=0 then (F,sB,sA,E)
                else sf_2ca(clr,set,sB,sA,term,init,n-1);
tel

-- graph id=7 name=Parallel5,call
node sf_2ca(F,E:event; sB,sA,term,init:bool; const n:int) 
returns(Fo:event; sBo,sAo:bool; Eo:event);
let ...

-- graph id=7 name=Parallel5,top
node sf_2(dummy_input:bool) returns(F:event);
let
  F,sB,sA,E=sf_2ca(F_1,E_1,sB_1,sA_1,term,init,1);
tel.

The event broadcast routines simply call the recursion
point (sf 2ca). At the point of call, all events are cleared
(clr) and the event being broadcast is set. The recursion
point is the sf 2ca node and the top-level function (sf 2) is
simply a wrapper for sf 2ca replacing the recursion variable
(const n) with the event stack size. This is needed because
Lustre will not accept a const value as an input to the top-
level node.

Within this scheme it is possible to implement Stateflow’s
“early return logic” which is intended to reduce the possi-
bility of inconsistent states arising from the misuse of event
broadcasts. It results, however, in messy and inefficient code
since virtually all activity after the potential processing of
an event has to be guarded with a check of the parent or
source state. This has been partially implemented in our
translator, for example, in the above code, if state A was
within another state, say A1, then the call to the entry ac-
tion for state A would actually be something like:

if (sgA1 and enA) then enaA1(...);

This static recursion technique allows us, in theory, to
emulate the behaviour of Stateflow charts which exhibit
bounded-stack behaviour. In practice, there is a heavy
penalty to pay for static recursion since the recursion en-
compasses practically the entire program. This means that
each event broadcast point results in expansion of the whole
program at that point, down to the level of the event stack.
Practical experience with the translator shows that an event
stack size of 4 is about the greatest that can be accommo-
dated in reasonable space and time.

3.5 The translatable subset of Stateflow
Currently, we can translate hierarchical and parallel AND

states assuming no inter-level transitions. We can imple-
ment event broadcasting provided the broadcasting recur-
sion is bounded by a reasonably small value. State entry,
exit, during and on-actions as well as condition and tran-
sition actions for transitions are all supported. Only part
of the action language is translatable but we can implement
array processing and so-called temporal logic operators. This
gives basic functionality. In addition, however, we can im-
plement sending of events to specific states, history junc-
tions, inter-level transitions and inner transitions, the de-
tails of these are outwith the scope of this paper. See the
accompanying technical report [16].
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4. ENLARGING THE “SAFE” SUBSET
BY MODEL-CHECKING

The existence of a translation from Stateflow into Lus-
tre allows us to immediately apply the existing model-
checking tools for Lustre to Stateflow models. In this section
we demonstrate two useful properties that can be model-
checked in Stateflow models; confluence of parallel states
(partially addressing the graphical layout problem in Sec-
tion 2.2.3 and extending the static check for confluence in
Section 2.3.6) and boundedness of event broadcasting (par-
tially addressing the non-termination problems of Section
2.2.1 and extending the check for acyclic event emission in
Section 2.3.2). Our translator is able to generate auxiliary
Lustre nodes which are observers for properties supplied to
the translator. Currently, these have to be generated man-
ually but in future could be generated automatically for the
specific properties addressed in Section 2.3.

N1 1
N3 4N2 3

Observer 5

N4 2

HFD

A

B

C E G

S1 R1 R2S2R2S2 R1S1

{prop=(sgN1==sgN3 && sgN2==sgN4 && sA==sE ...
&& sC==sG && sB==sF && sD==sH);}

The above chart shows a set of parallel states. The state
variable names are accessible in our translator so sOn refers
to the variable for the On state. These pseudo-variables have
to be included in Stateflow’s data dictionary. States N1 and
N2 (executed in the order N1 then N2) and states N3 and
N4 (executed N4 then N3) form two versions of the same
simple machine except for the order of parallel execution.
The figure also shows an observer which directly compares
equivalent state variables between the two machines. Run-
ning Lesar on the generated Lustre code results in a TRUE

value so we can deduce that the order of execution of parallel
states in the machine N1/N2 (or N3/N4) is irrelevant.

Observer 3

TOP1 2 TOP2
1

C

DB

A

E/F; E/F;G/E; G/E;

{prop=~error;}

The above is a Stateflow chart which requires either paral-
lel state confluence or the use of an event stack. State TOP1

generates a local event E upon receiving input event G. Event
E is received by state TOP2 which then emits output event
F. To allow detection of event stack overflow the translator
generates an additional local value “error” which is set if
there is an attempt to broadcast an event when the event
stack counter is zero. The broadcast statement for event F

is shown in the following code:

propo,Fo,sAo,sBo,sCo,sDo,sgObservero,sgTOP1o,sgTOP2o,
erroro,Eo = with n = 0
  then (prop,F,sA,sB,sC,sD,sgObserver,sgTOP1,sgTOP2,true,E)
  else sf_2ca(clr,clr,set,prop,sA,sB,sC,sD,sgObserver,
              sgTOP1,sgTOP2,error,term,init,n-1);

If TOP2 is executed before TOP1 we need event broadcasts
to allow E to be received by TOP2. Furthermore, if output
event F is to be broadcast we need a minimum event stack
of 2 which is verified by Lesar. Model-checking using the
error property gives a FALSE property for an event stack
depth of 1 but a TRUE property if the event stack is set to 2.
Finally, if we reverse the order of execution of states TOP1

and TOP2 we can get a TRUE property with an event stack
size of zero.

Although these examples are trivial the analysis itself can
be extended to models of greater complexity. We envisage
using the model-checking not just for verification of safety
properties but also as a means of enhancing the subset of
Stateflow which we are able to implement. A designer can
use model-checking to spot where his design does not con-
form and where to fix the model to bring it into conformance.

5. TOOL AND CASE STUDY

5.1 Prototype implementation
We have developed a prototype translator of Simulink/

Stateflow to Lustre, called ss2lus. The tool integrates and
extends the existing Simulink to Lustre translator s2l [5]
with a new module, called sf2lus. All examples shown in
the paper have been translated automatically with the tool.

s2l and sf2lus interface in a “clean” manner: whenever s2l
finds a Stateflow block, it submits it to sf2lus which trans-
lates it into a Lustre node and returns this node (body plus
type signature) back to s2l. Type and clock inference, which
have been major issues in s2l, are much easier with State-
flow. Types of variables are explicitly declared in Stateflow,
so they need not be inferred. In fact, type checking is re-
quired by the translator but this is solely for constant and
operator resolution and it suffices to typecheck the generated
Lustre code. The Stateflow block is triggered by a Simulink
signal and uses a single clock, thus, no clock inference is
needed either.

What we have, therefore, is a development tool for
Simulink/Stateflow which allows, firstly, verification of sub-
set inclusion for our various subsets of Stateflow, secondly,
verification of application-specific model properties using
model-checking and finally, an alternative means of code-
generation for Simulink/Stateflow models via the various
Lustre compilers and interpreters. To demonstrate this
tool’s applicability, we present a simple case study.

5.2 Case Study
Figure 1 shows a hypothetical alarm monitoring system

for a car. This contains two parallel states, Speedometer

which adjusts the speed variable according to input events
and Car which is hierarchical, the outer layer engine on

monitoring the engine status and the next inner layer moni-
toring the car’s speed. The innermost level has two parallel
states, belt which monitors the seat belt status and gener-
ates the belt alarm alarm if the seat belts are not on and
the speed is greater than 10, and locks which monitors the
door lock switch and controls the locks.
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Car 2
Speedometer 1

engine_off

engine_on

running

stopped

locks 2

belt 1

locks_off locks_on/
en: locks_down

[ speed == 0 ]
time_tic
{ speed = 0 }

[ speed >  0 ]toggle_engine

[ belt<>0 && speed > 10] { belt_alarm }

road_tic
{ speed++ }

toggle_engine

open_door | toggle_locks_button

toggle_locks_button

[ speed > 20 ]

Figure 1: An alarm controller for a car

Observer 3

Car 2
Speedometer 1

engine_off

engine_on

running

stopped

locks 2

belt 1

locks_on/
en: locks_down

locks_off

[speed_eq_0]

time_tic
{speed_eq_0=true;
speed_gt_10=false;
speed_gt_20=false;}

[ speed_eq_0 ] [ !speed_eq_0 ]

[!speed_eq_0]
toggle_engine

road_tic

[ !belt && speed_gt_10] { belt_alarm }

[!speed_gt_20]

toggle_engine

[speed_eq_0]
{speed_eq_0=false;} open_door || toggle_locks_button[!speed_gt_20]

[!speed_eq_0]
toggle_locks_button

[ speed_gt_20 ] [speed_gt_20]

[speed_gt_10]
{speed_gt_20=true;}

[!speed_gt_10]
{speed_gt_10=true;}

{prop=((sgengine_on&&((!speed_gt_20)||(speed_gt_20&&slocks_on))
                                  &&((!srunning)||(srunning&&((belt)||(!belt&&speed_gt_10&&belt_alarm)))))
         ||(sengine_off&&(!belt_alarm&&!locks_down)));}

Figure 2: Abstracted and corrected version of the alarm controller

Lesar only has limited support for numerical values, and
does not handle the speed variable very well. Since we now
have a Lustre program, we could use the tool Nbac [11],
which is based on abstract interpretation techniques, to han-
dle the speed variable. However, the only role of this vari-
able in the model is in boolean tests so we can abstract this
variable and use an equivalent set of boolean flags. This
chart is shown in Figure 2. Here, the Speedometer state out-
puts flags according to whether the speed is zero, non-zero

or greater than 10 or 20. The rest of the model has been
suitably transformed. The observer for this model states
that there should be no alarms when the engine is off and
that the door locks should always be on when the speed is
greater than 20. Furthermore, the belt alarm should be on
if the speed is greater than 10 and the belt status is off.

Running Lesar on the original model results in a FALSE

property with the following counterexample:
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--- TRANSITION 1 ---

road_tic

--- TRANSITION 2 ---

toggle_engine and not time_tic and road_tic

--- TRANSITION 3 ---

not toggle_engine and not time_tic and road_tic

The model-checker has spotted that if the engine is
switched on while the car is moving (not an impossibility
by any means) then it is possible to reach a state where the
speed is greater than 20 and not be in the locks on state.
The solution is simple, split up the default transitions in
the engine on and locks states (for example, [speed_eq_0]
and [!speed_eq_0]) so that the correct state is reached de-
pending upon the initial conditions when these states are
entered. These additional default transitions are shown in
Figure 2. The new model gives a TRUE Lesar property with
the observer shown.

This model is perhaps not a realistic application but even
with such a simple model the properties verified by Lesar
are not intuitively obvious. It is also not very well-written
Stateflow since the use of conditions on default transitions is
warned against in the Stateflow documentation. The point,
however, is that given suitable observers and verification by
model-checking, even badly written Stateflow can be used
with confidence.

6. CONCLUSIONS
The success of Simulink/Stateflow lies partly in the inte-

gration of heterogeneous modeling styles, namely, dataflow
and automata based. In this paper, we have extended our
previous work on translating discrete-time Simulink to Lus-
tre by incorporating a large part of Stateflow. Our method
and tool, although still incomplete (we cannot handle arbi-
trary for-loops, for instance), translates most of Stateflow,
including features which may be considered “unsafe” (e.g.,
backtracking and dependence on graphical layout). This
is important for reasons of legacy. Still, realizing the im-
portance of identifying a “safe” subset of Stateflow and per-
haps developing standard guidelines which restrict engineers
to this subset, we have also provided a number of light-
weight static checks which guarantee absence of most seman-
tic problems of Stateflow. In the case where a model fails
these checks, the generated Lustre program can be model-
checked instead. Finally, the Lustre program can be used
for C code generation, which is guaranteed to preserve the
semantics.
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