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ABSTRACT
Constraints on the memory size of embedded systems re-
quire reducing the image size of executing programs. Com-
mon techniques include code compression and reduced in-
struction sets. We propose a novel technique that eliminates
large portions of the executable image without compromis-
ing execution time (due to decompression) or code gener-
ation (due to reduced instruction sets). Frozen code and
data portions are identified using profiling techniques and
removed from the loadable image. They are replaced with
branches to code stubs that load them in the unlikely case
that they are accessed. The executable is sustained in a
runnable mode.

Analysis of the frozen portions reveals that most are error
and uncommon input handlers. Only a minority of the code
(less than 1%) that was identified as frozen during a training
run, is also accessed with production datasets.

The technique was applied on three benchmark suites
(SPEC CINT2000, SPEC CFP2000, and MediaBench) and
results in image size reductions of up to 73%, 92%, and 85%
per suite, The average reductions are 59%, 79%, and 78%
per suite.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms
Performance
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image size, frozen code, frozen data, feedback directed
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1. INTRODUCTION
Embedded systems are everywhere – in a multitude of con-

sumer products, communication devices, and low-end com-
puting devices, and they recently have made inroads into the
desktop domain [16]. When embedded systems are required
to process desktop workloads, however, they are constrained
by power dissipation, energy consumption, and size. Partic-
ularly, they are constrained by memory size.

The constraints are not only on the physical memory hier-
archy, but on the virtual memory size as well. In fact, many
embedded systems have poor or no support for virtual mem-
ory [23]. Thus, reducing the size of loaded executable images
is of paramount importance.

This paper suggests a novel technique for reducing im-
age size: elimination of code and data that are not accessed
within representative trace executions. These portions are
called frozen code and frozen data. A profile of a program is
gathered based on representative workloads. Non-accessed
code or data are marked as frozen and replaced by an inter-
rupt to a code stub. This stub reads the frozen code/data
from storage, replaces the interrupt, and resumes execution.

This overcomes the liabilities of two common techniques
for image size reduction: (i) compression/decompression;
(ii) reduced size instruction sets. The former requires that
the executable is stored in a compressed state and is decom-
pressed before execution. Thus, it is possible that critical
code or data must be decompressed before it can be used.
[14] and [12] are two examples of this technique. Run-time
decompression [3] can help solve the issue of non-runnable
executable files. However, in run-time decompression, both
the compressed image program and the decompression sub-
routine, can consume substantial memory during run-time,
making such techniques inefficient in many cases. IN re-
duced size instruction sets, the size of all instructions are
diminished, usually from 32 to 16 bits. However, this greatly
limits the quality of the compiled code. The 16-bit Thumb
[25] instruction set is a famous representative of this tech-
nique.

Our proposed technique manages to reduce the image size
significantly and efficiently using known code and data re-
location techniques, making it a convenient method that
can be embedded into hardware, operating system, or soft-
ware development tools. In this work, we implemented the
reduction technique in FDPR (Feedback Directed Program
Restructuring) [8, 5], a post-link tool that is part of the IBM
AIX operating system.

The rest of the paper explores the implementation, poten-
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tial, and experimental results of the proposed scheme:

• Previous and related research are presented in section
2.

• The methods for code and data reduction are explained
in sections 3 and 4.

• The percentage of frozen code and data in the SPEC
CPU 2000 and MediaBench benchmark suites are shown
in section 5.

• The impact of the technique on existing systems and
applications are discussed in section 6.

2. RELATED WORK
The idea of reducing the size of code and data has been

approached in many different manners. Compressing the
executable on non-volatile storage and decompressing before
execution is probably the most popular. Many compression
techniques are based on the Huffman [11] and LZ (Lempel-
Ziv) [15] algorithms. Others (such as gzip [4]) were designed
in order to circumvent the aforementioned algorithms and
derivative patents. Several others are tailored to compress
code: [17] is a representative of such techniques.

However, decompressing before execution requires even
more memory than loading the uncompressed executable.
The gains achieved are in the area of storage and network
transfer, not memory image size. At the other end of the
spectrum are schemes that reduce the size of the individual
instruction’s representation. The Thumb [25] and MIPS16
[20] instruction sets are composed of 16-bit instructions that
implement 32-bit architectures. These implementations trade
code size for number of registers and operation variety. Ul-
timately performance is degraded.

Hardware-based decompression is another popular tech-
nique. IBM’s codepack technique [14] uses dedicated lookup
tables to decompress code that is fetched to the L1 ICache.
Other hardware-based techniques are presented by Wolfe
and Chanin [28] and Larin and Conte [12]. The disadvan-
tage of these techniques is that they incur a potential penalty
for every line brought into the cache, and increase hardware
costs, although under some circumstances performance im-
provement is possible [14].

Prior research that is based on profiling include Hooger-
brugge et al. [10], who interpret non-critical code, but have
to include a possibly large interpreter in their code. Debray
and Evans [3] compress cold code, code that is executed
less than a threshold of T (during a train run). This tech-
nique incurs a performance degradation when these areas
are encountered. Only when T = 0 is there no impact on
performance. This is exactly the case of frozen code.

It can be said that Virtual Memory (VM) [9] performs
the same functionality as our proposed technique, except
that VM promotes code and data that are accessed from
disk to memory. However, our technique can overcome the
relatively large granularity of VM (default of 4K per page)
and the lack of memory management on many embedded
systems [23].

The same argument is true for caching [9], where only
code/data that are used are fetched into the higher levels of
the memory hierarchy. Nevertheless, in embedded systems
where the main memory can fit into the caches of high-end
servers, our technique is valid and useful.

3. THE CODE REDUCTION METHOD
The following list defines the key terms that will be used

in this paper:

Dead Code A portion of the program that never executes
for any program trace. Compiler optimizations usually
remove these sections.

Frozen Code A code area within the program file that is
not executed when run on a representative workload.

Cold Code A code area within the program file that is
rarely executed, relatively to other parts of the pro-
gram, when run on a representative workload.

Hot Code A code area within the program file that is fre-
quently executed, relatively to other parts of the pro-
gram, when run on a representative workload.

Thawed Code A code area within the program that was
marked as frozen but during runtime was accessed.

Frozen/Cold/Hot/Thawed Data Variable A data vari-
able within a given executable file, that is
not/rarely/frequently accessed when run on a repre-
sentative workload.

In general, the code reduction method relocates all frozen
basic blocks in the given code, groups them together in a sep-
arate non-loadable module and replaces each control transfer
to and from them by an appropriate interrupt. In the event
of a reference to an unloaded code instruction, the interrupt
handler is invoked and loads the relevant code regions from
secondary storage. The interrupt is replaced with a direct
or indirect branch (dependent on its placement in memory).
As will be shown in the experimental results, the time con-
suming interrupt mechanism will be rarely (if at all) invoked
during run-time, and will therefore, have no or little effect
on performance.

The first step in the proposed reduction method is to glob-
ally reorder the program code, based on profiling data gath-
ered with an appropriate representative workload. For ex-
ample, consider the following pseudo assembly instructions
before code reordering, in which hot code is shown in bold
face:

compare r1, r2
jump-false L1
(Frozen Then Part)

L1: (Hot Continue Part)

The above code after reordering will have the following form:

compare r1, r2
jump-true L2

L1: (Hot Continue Part)
...
L2: (Frozen Then Part)

jump L1

In the reordered code above, we reversed the condition of the
conditional jump instruction, and managed to group the hot
code together and place the frozen code further away in the
program. Code reordering has important properties of re-
ducing instruction cache misses and the number of branches
in the code. Note that in order to maintain correctness, an
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additional unconditional jump instruction to L1 was added
at the end of the relocated frozen code part.

The next step in the reduction algorithm is to replace the
control transfers between the frozen and non-frozen code ar-
eas with interrupts. The interrupt is generated by placing
invalid instructions in the code. In the unlikely event that
the invalid instruction is reached during runtime, an inter-
rupt exception invokes a loading subroutine which loads and
then branches to the relevant code. Each invalid instruction
contains the offset of the targeted code that needs to be
loaded into memory at run-time. After replacing jumps with
illegal instructions the example above will look like this:

compare r1, r2
jump-true L2I

L1: (Hot Continue Part)
...
L2I: invalid-opcode (containing the offset of L2)
...
L2: (Frozen Then Part)

invalid-opcode (containing the offset of L1)

Once a targeted frozen code is loaded into memory, the
loading subroutine replaces the control transfers between
the non-frozen code and the thawed code with appropriate
branch instructions.

The complete layout of the program code at run-time can
be shown in Figure 1. The program code layout consists

 Region 1
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Region 10

Region 3

Region 1

Region 2
.
.
.
Region n-1

Region n

Non-Frozen 
Code Area 

(in main 
memory)

Interrupt

Interrupt

Frozen Code 
Area (in secondary 
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Thawed 
(frozen -> 
non-frozen) 
Code 
Regions

Jump

Branch

Branch
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Figure 1: Program code layout at run-time

of three main areas: non-frozen, frozen and thawed. The
non-frozen area is laid out sequentially in main memory.
The frozen code area is laid out sequentially on disk (or any
other secondary memory device) This area is divided into
“regions”. In the event of a reference to a frozen instruction,
its entire containing region is loaded into memory. There-
fore, all control transfers between regions (i.e., inter-regional
transfers) are replaced by corresponding illegal instructions,
to enable the loading subroutine to handle them at run-
time. Control transfers within a scope of a region do not
need to be changed when loaded to memory by the loading
subroutine. Finally, the thawed code area consists of various
thawed (not necessarily successive) code regions which are
allocated in memory at run-time. Control transfers between
thawed and non-frozen code areas are updated to use direct
or indirect branches, whereas transfers between thawed or
non-frozen to frozen code areas continue to use the interrupt
mechanism triggered by the illegal instructions.

BB4

BB1

BB2

BB3

BB5

BB6

Figure 2: Basic Blocks layout before frozen code
relocation

BB4

BB1

BB2

BB3

BB5

BB6
Loading
Module

Figure 3: Basic Blocks layout after frozen code re-
location

Figures 2 - 4 illustrate the code layout of a short exam-
ple. Each rectangle in the figure represents a single basic
block. The arrows represent the control flow between the
basic blocks. Figure 2 illustrates the original code of a pro-
cedure prior to applying the relocation step. The procedure
consists of four hot basic bocks labeled BB1 - BB4, and two
frozen basic blocks labeled BB5 and BB6. Figure 3 illus-
trates the same procedure after relocating the frozen code
to a separate area. The frozen basic blocks BB5 and BB6
are placed together in a separate (non-loadable) section and
each control transfer to them from the other basic blocks
is replaced with an illegal instruction, containing the offset
target of the callee basic block within the area it was relo-
cated to. The loading subroutine, which includes the code
for intercepting the trap created when trying to execute the
illegal opcodes, is placed in a different location of the non-
frozen code area. The dashed lines represent the control
transfer between the loaded frozen and the non-frozen code
via the interrupt mechanism. Figure 4 illustrates a scenario
in which the frozen basic block BB6 is thawed after being
referenced by a non-frozen branch instruction during run-
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Figure 4: Basic Blocks layout after basic block thaw-
ing at run-time

time. As a result, the loading subroutine is invoked to load
BB6 into a dynamically allocated memory area and to up-
date the control transfer to and from the allocated BB6 code
area, directly to its neighboring basic blocks BB2 and BB4.

The method for reducing the program image code size is
described as follows:

1. Use the profiling information to identify all the frozen
code segments within the code. In this work we pre-
ferred to use existing post-link tools for gathering the
required profile information and for analyzing given
executable files. For details on post-link tools or link-
time tools for global code analysis and restructuring
see [1, 2, 18, 21, 22, 24, 27].

2. Relocate all the frozen code segments into a single
group and then place it in a non-loadable section area
of the executable file, or optionally, in a separate file.
In our work the frozen code was placed in a separate
non-loadable section of the executable file in a non-
compressed form.

3. Divide the frozen code segment into regions. A region
is defined as a sequence of instructions in which ev-
ery control transfer that branches within the scope of
a region remains unchanged when loaded to memory.
Inter-region branches, or branches back to the non-
frozen code area, are replaced with appropriate invalid
instructions. In the event that some frozen instruction
is referenced at run-time, its entire containing region is
loaded into memory. Each region is defined by its size
and starting offset in the frozen segment. The frozen
code area also includes a ”region map” (located on disk
or in secondary memory). This map supports efficient
mapping from targeted offsets within the frozen code
area to their corresponding containing regions.

4. Identify all control flow instructions and fall through
instructions, into and out of the frozen code segments,
and between the regions in the frozen code segment.
For each of these instructions compute the offset of
their target, the target offset. In this work, the target
offsets of both frozen and non-frozen basic blocks are

calculated from the beginning of the section in which
they were placed.

5. Update each of the control transfer or fall through in-
structions that were identified in step 4, to invoke an
interrupt. In this work the interrupts are triggered
by inserting invalid instructions in the code. During
run-time, in the unlikely case that a frozen basic block
is referenced, the invalid instruction interrupt is then
thrown by the system and a loading subroutine is auto-
matically invoked. In order to occupy as little space as
possible, minimal illegal code instructions are used. A
single invalid instruction is comprised of a 5-bit zero
opcode, followed by 1 characterization bit, and then
followed by 26 bits of the target offset (calculated in
step 4) of the instruction in its corresponding section.
The invalid instruction does not exceed a regular fixed
instruction opcode of 32-bits. The characterization bit
is used for specifying whether the targeted code falls
in the non-frozen text section (when called from the
frozen section) or in the non-loadable frozen code sec-
tion.

These invalid instructions are inserted into the code as
follows:

(a) A direct unconditional branch to or from a frozen
code segment is replaced entirely by an invalid op-
eration instruction followed by the corresponding
target offset.

(b) A conditional branch instruction which branches
into or out of a frozen code segment is modified
to branch to an intermediate location consisting
of the invalid instruction followed by the appro-
priate target offset.

(c) A conditional branch instruction which falls through
or out of a frozen code segment, will have its
condition reversed and then be modified as de-
scribed above. If the condition is non-reversible,
an invalid instruction followed by the appropri-
ate target offset is inserted immediately after the
conditional branch.

(d) A non-branch instruction that falls out of a frozen
code, will have an invalid instruction inserted im-
mediately after it.

(e) For an indirect branch instruction via a register
or memory, we differentiate between three types
of indirect branch instructions:

• Branch via branch table:1 For such branches
into or out of a frozen code area, each relo-
cated target is replaced by an invalid instruc-
tion as described above.

• Function return: For a branch instruction
returning into or out of a frozen area, we re-
place the instructions following each call to
that function, by invalid instructions as de-
scribed above.

• Indirect function call: For each function
that can be called indirectly and is located in
the frozen code area, an invalid instruction is
added to its prologue.

1Generated by compilers mainly for efficient implementation
of switch statements.
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6. Add the code of the loading subroutine handler to the
given executable file or alternatively, place it in an
appropriate linkable module and link it (either stat-
ically or dynamically) to the executable file. During
run-time, the loading subroutine is capable of loading
the appropriate region from the relocated region and
load it into the ”thawed area”. The loading subroutine
also loads the code for intercepting the trap generated
by the invalid instructions that were inserted in step5.
When invoked at run-time:

(a) The loading subroutine uses the characterization
bit b and the target offset S of the referenced basic
block in order to locate the region within the non-
loadable frozen code section (reference to frozen
code) or within the loaded text section (reference
to non-frozen code).

(b) If the target offset S is in the non-frozen code
area, then retrieve its run-time address S + B in
memory, where B is the base loading address of
the entire non-frozen code segment in memory.

(c) If the target offset S is located in the non-loadable
frozen code section, then:

• The loading subroutine checks whether the
referenced frozen instruction was already loaded
into memory. Targeted instructions are marked
loaded by maintaining a dynamic map (in our
work implemented by an open hash table)
containing all loaded target addresses in mem-
ory. The target addresses table is constantly
maintained and updated by the loading sub-
routine.

• If the referenced code is not in memory, the
subroutine then:

i. identifies the region containing the target
offset S using the region map of the frozen
code created in step 3.

ii. dynamically allocates additional memory
space for the region. 2

iii. loads the said frozen region into the allo-
cated memory at address T .

iv. marks the region as loaded by adding a
new entry in the target addresses table.

• If the referenced offset S is already in mem-
ory, then retrieve its address from the target
addresses table.

(d) Replace the triggering invalid instruction by a
branch instruction to the target instruction in the
thawed region 3. If a direct jump cannot reach
the targeted instruction, the triggering illegal in-
struction is replaced by a call instruction to an
indirect jump wrapper code (added to the end
of the non-frozen code area). This is similar to
the mechanism that the linker uses in order to
perform a far jump from one module to another.
The wrapper code loads the targeted instruction

2If no available memory is left for allocating the region, least
recently used regions may be freed from memory
3it is assumed that the loading subroutine has the necessary
permissions to write to the text area of the application

from the target addresses table into a register and
jumps via that register. 4

(e) Finally, the loading subroutine branches to the
target address of the referenced instruction in or-
der to continue execution.

7. Insert an action listener at the entry point of the pro-
gram file, for invoking the loading subroutine handler
in the event of referenced invalid instructions.

In this work we replaced illegal instructions by appropri-
ate branch instructions only when reached at run-time to
trigger an interrupt. The loading subroutine may be further
extended to replace all illegal instructions within a promoted
region, containing target offsets already in memory. Such an
enhancement to the loading subroutine can improve perfor-
mance but will complicate its implementation.

4. THE DATA REDUCTION METHOD
The method for reducing the static data in the given pro-

gram file is similar to the code reduction method. All frozen
data variables that are not referenced in a representative
trace, are relocated, grouped together, and then placed in
a separate section. Each load instruction of the relocated
data variables is then similarly replaced by invalid instruc-
tions which trigger a trap mechanism in charge of loading
the variables into memory.

The loading mechanism for handling static variables in
the IBM PowerPC uses a table, referred to as the Table
Of Contents (TOC), consisting of the addresses of all static
variables in the program. As a result, the instruction for
loading a static variable has the following form:

load rt, off(r2)

where the r2 register, referred to as the ”TOC anchor” reg-
ister, holds the address of the TOC in memory, and serves as
an anchor from which the offset off is used in order to reach
the TOC entry containing the required variable’s address5.

In our proposed reduction mechanism this instruction is
replaced by an illegal instruction comprised of an invalid
opcode (different from the frozen code illegal instruction)
followed by the same original encoding data rt, off(r2). The
corresponding entry in the TOC is then modified to hold the
offset of the frozen variable within the non-loadable frozen
data section. In the event that a frozen static variable is
referenced at run-time, the loading subroutine triggered by
the illegal instruction, allocates memory for the variable,
loads it into the allocated area, replaces the content of its
TOC entry by its loaded address in memory and modifies the
triggering illegal opcode back to its original load instruction.

The static data reduction method is described as follows:

1. Identify all the load instructions in the code which ref-
erence the static data variables and which need to be
updated during data positioning. These instructions
are updated by the linker once the global data vari-
ables are placed in the executable file. As a result,
these instructions have appropriate linker relocation

4Note that two copies of the jump wrapper code may be
needed in order to be reached from both the thawed and
the non-frozen code areas
5On a platform that doesn’t use a TOC, an alternative ap-
proach that mimics a TOC will be used.
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information attached to them. The proposed method
can use this relocation information in order to identify
them. For more details on global data placement at
post-link time please see [6].

2. Use the profiling information to identify all frozen data
variables within the static data area. In this work,
we use the profiling information to check whether the
aforementioned load instructions, which reference a
certain data variable, are all frozen.

3. Relocate all the frozen data variables, group them to-
gether and then place them in a non-loadable section
area of the executable file (or in a separate file).

4. Repopulate the contents of each frozen variable entry
in the TOC, to hold the offsets of each frozen variable
in the non-loadable section and attach a characteriza-
tion bit with the value of 1 to the end of each offset. A
value of 1 for the characterization bit indicates that the
variable’s offset falls in the non-loadable frozen data
section.

5. Update each of the load instructions which refer to a
frozen data variable, identified in step 1, by an invalid
instruction containing an invalid opcode of 5 zero bits
followed by the same encoding data of the original in-
struction. During run-time, in the unlikely case that
the frozen data is referenced, an invalid instruction in-
terrupt will be thrown by the system and a loading
subroutine will be automatically invoked.

6. Add the loading subroutine to the given executable
file or, alternatively, place it in an appropriate link-
able module and link it to the executable file. When
invoked at run-time:

(a) The loading subroutine verifies whether the refer-
enced frozen data was already loaded into mem-
ory using the characterization bit b attached to
each offset in its corresponding TOC entry in step
4.

(b) If the frozen data is not yet in memory, the load-
ing subroutine then:

i. loads the given frozen data variable into a
dynamically allocated memory area.

ii. replaces the content of its TOC entry by its
loaded address in memory. This will auto-
matically override the characterization bit b

attached to the end of the previous offset,
back to zero.

(c) The loading subroutine then modifies the opcode
of the triggering illegal instruction prefixed by the
zero bits, back to its original load instruction op-
code.

(d) Finally, the loading subroutine returns the con-
trol back to the beginning of the modified load
instruction, in order to continue with the normal
execution of the program. In this work, a thawed
frozen data variable is no longer considered frozen
and therefore, remains in memory throughout the
entire application execution cycle.

7. Insert an action listener which will invoke the loading
subroutine handler in the event of invalid instructions,
at the entry point of the program file.

Note that when applying code reduction together with
static data reduction, we can avoid duplicating the proposed
reduction mechanisms, by automatically loading the static
data referenced from thawed code regions.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

The technique proposed here was analyzed using a post-
link optimization tool called FDPR (Feedback Directed Pro-
gram Restructuring) reported in [8, 5]. FDPR is part of
the IBM AIX operating system for the IBM pSeries servers.
FDPR was also used to collect the profile information for
the statistics presented here. In this section, we will ana-
lyze two benchmark suites: SPEC CPU2000 [26] and Me-
diaBench [13] and show the percentage of frozen code and
data they posses.

5.1 SPEC CPU2000
The CPU2000 suite is primarily used to measure worksta-

tion performance but was designed to run on a broad range
of processors as stated in [26]: “SPEC designed CPU2000
to provide a comparative measure of compute intensive per-
formance across the widest practical range of hardware”.
Although it may be hard to imagine that applications such
as gcc (C compiler), vpr (circuit placement), or twolf (circuit
simulation) running on handheld devices, others such as gzip
(compression), parser (word processing), and eon (visualiza-
tion) are sure to be. And while many embedded processors
do not support floating point operations, many others do
so even better than desktop processors [16], leading us to
include the SPEC CFP2000 suite in our analysis.

We believe that the types of applications presented in the
suite will migrate to embedded processors while its succes-
sor, CPU2004, will be used in the workstation domain. As a
consequence, we chose to analyze 32-bit, rather than 64-bit,
executables. The C/C++ benchmarks were compiled on a
Power4 running AIX 6 version 5.1 using the IBM compiler
xlc v6.0 with the flags: -O3. The Fortran benchmarks were
compiled using the xlf v8.1 compiler with the flags: -O3.

The profiles were taken using the suite’s train input set
7. This dataset was tailored to provide shorter running, yet
representative executions. It is used extensively by profile
based tools. Figure 5 shows the percentage of frozen code
and data in the SPEC CPU2000 suite. The results (CINT
first) show that an average (weighted harmonic mean) of
64/80% of the code and 19/52% of the data is frozen. This
results in executables which are 58/79% smaller than the
originals.

5.2 MediaBench
The MediaBench [13] suite was compiled in 1997 by Lee,

Potkonjak, and Mangione-Smith in order to provide a suite
of applications for the embedded domain. The benchmarks
are supplied with two datasets, which enables picking one
as a train set and the other as a reference set (see [19] for
specific input descriptions). Table 1 lists the inputs used for

6See section 6 for details regarding other platforms.
7Benchmark and dataset details can be found in [26].
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Figure 5: Percentage of frozen code and data in the SPEC CINT2000 and CFP2000 suites.

Table 1: MediaBench benchmarks and datasets.
Benchmark mode Train input Ref. input
adpcm dec clinton.adpcm S 16 44.adpcm
adpcm enc clinton.pcm S 16 44.pcm
epic dec test image.pgm.E titanic3.pgm.E
epic enc test image.pgm titanic3.pgm
g.721 dec clinton.g721 S 16 44.g721
g.721 enc clinton.pcm S 16 44.pcm
ghostscript dec tiger.ps titanic2.ps
gsm dec clinton.pcm.gsm S 16 44.pcm.gsm
gsm enc clinton.pcm S 16 44.pcm
jpeg dec testimg.jpg monalisa.jpg
jpeg enc testimg.ppm monalisa.jpg
mpeg2 dec mei16v2.m2v tek6.m2v
mpeg2 enc options.par -
pegwit dec pegwit.dec -
pegwit enc pegwit.enc -

each benchmark8 Most of the benchmarks are composed of
two executables, an encoder and decoder, we shall present
them as different applications 9.

Figure 6 shows the percentages of frozen code/data in the
MediaBench suite. In these applications the ratio is even
better than for CPU2000 and is 76/82% (code/data), which
results in an average reduction of 78% in the image size. All
the results in this section show that the potential for image
size reduction is promising.

5.3 Train vs. Reference
In order for our scheme to work without any performance

degradation, we must ensure that the frozen code and data
areas are either related to error handling or infrequent case
handling. In both cases, it is assumed that the code has
been written in order to preserve correctness and generality
of the program, even though performance will be degraded.
Obviously, this will not be the case for every application.
176.gcc of CINT2000, the gcc compiler, contains hundreds
of command line flags. It is virtually impossible to devise a
“representative” trace that can cover all valid executions.

8We have omitted pgp, and rasta due to difficulties in com-
piling, profiling, and executing them.
9mesa is part of CFP2000 and omitted to avoid duplication.
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Figure 6: Percentage of frozen code and data in the
MediaBench suite when the alternative input set is
used.

Thus, in order to quantify the quality of the training runs,
we compared the amount of frozen code/data in both the
train and reference datasets. Figures 7 and 8 show these
comparisons for the CPU2000 and MediaBench10 suites. The
results show that the differences are indiscernible (except for
g.721, which displays a slight variation). However, they are
not identical. Table 2 summarizes the average differences in
size and dynamic instruction count (both in absolute num-
bers and ratios).

6. DISCUSSION AND SUMMARY
The results in the preceding section indicate that there

are code segments that may become unfrozen for different
workloads. This indicates that they are not error correction
code and should not have been taken out of the loadable
text section. We will refer to these basic blocks as singular
mispredictions.

The main performance penalty of the proposed reduc-
tion method derives from the fact that we require access to
secondary memory for each singular misprediction, which

10Couldn’t obtain reference datasets for mpeg2-encode and
pegwit.
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Figure 7: Comparison of frozen code/data between the train and reference data sets of CPU2000.
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Figure 8: Comparison of frozen code/data between
the train and reference data sets of MediaBench.

may take from micro to milliseconds, depending on the dis-
tance, state, and speed of the storage device and I/O chan-
nel. However, for every singular misprediction, we pay this
penalty only on the first encounter. Future references are re-
placed by corresponding branch instructions by the loading
subroutine handler.

In order to learn about the estimated penalty of the sin-
gular mispredictions, we selected the gcc benchmark as a
proper candidate for investigation as it contains the highest
number of differences in the behavior between the train and
the ref workloads. Therefore, the numbers presented here
represent the worst-case scenario for our proposed mecha-
nism on SPEC CPU2000.

The actual size of the gcc code that was considered frozen
(based upon the train workload) yet turned out to be non-
frozen with the reference workload, is around 4000 bytes,
which is around 200 basic blocks. The entire gcc code con-
tains 95,000 basic blocks, making the number of singular
mispredictions 0.2% of all basic blocks. In addition, it turns
out that all singular mispredictions are considered cold, i.e.,
rarely executed even on the reference workload. Thus, the
the number of singular mispredictions is relatively small,
and will most likely not result in a significant overhead.

Table 2: Average differences (weighed harmonic
mean) of frozen code/data between train and ref-
erence datasets.

Suite Type Metric Diff.
CINT2000 code KB 12

% 0.32
data KB 1

% 0.05
CFP2000 code KB 5

% 0.53
data KB 0.1

% 0.34
MediaBench code KB 0.3

% 0.09
data KB 0.05

% 0.08

Our prototype system was developed on a non-embedded
system (AIX on a Power4) which might not need and ex-
ploit the full potential of the system. In order to partially
test its usefulness we ran our experiments on a Linux sys-
tem (2.6.5-7-pseries64) compiled with gcc version 3.3.3, the
frozen code/data ratios are virtually the same. As many
embedded systems use versions of Linux as their operating
system [7] this is a first step in verifying our technique for
embedded systems.

Nevertheless, for hard real-time applications and/or sys-
tems this technique might not be suitable. Our assumption
that error handling code can suffer degraded performance is
not true in every situation: error handling or rare situation
code might be time critical (handling a nuclear reactor over-
load, for instance). Developers must take care to categorize
and analyze their applications before applying this (or any
other compression) scheme. For systems that have stricter
timing guidelines, profiling on several distinct input sets,
marking code as non-freezable, and analysis of thawed code
can reduce both the size of the executable and the chance
of accessing frozen code or data.

6.1 Summary
This paper presents a technique that reduces the runtime

image of executables by stripping them of frozen code and
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data and storing them in secondary storage devices. The
frozen code/data areas are detected using profiling tech-
niques on representative runs. The executable is then re-
structured in order to bunch all frozen code/data together
and accesses to these areas are replaced with interrupts. In
the unlikely case that these code/data areas are accessed, a
mechanism that promotes them to main memory is engaged.
Our results have shown that this happens with less than 1%
of the code/data. This techniques yields image sizes on the
SPEC CINT2000, CFP2000, and MediaBench that are re-
duced by an average 59%, 79%, and 78% per suite.
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