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ABSTRACT
Traditional real-time disk-scheduling algorithms service real-
time tasks according to their deadlines. Such a priority-
based algorithm, although satisfying real-time constraints,
yields low disk utilization due to the excessive disk-seek
time. Furthermore, it results in prolonged response time
or even starvation for aperiodic tasks. In this paper, we
propose a novel rate-based real-time disk-scheduling algo-
rithm called WRR-SCAN (Weighted-Round-Robin-SCAN).
WRR-SCAN guarantees to meet the deadline of a real-time
task by reserving disk bandwidth according to its real-time
constraints. WRR-SCAN services scheduled tasks in scan
order to minimize the disk-seek time. In addition, WRR-
SCAN delivers better response time for aperiodic tasks which
are served in best-effort manner by priority-based algorithms.
We conducted a set of extensive experiments to compare
WRR-SCAN and SCAN-EDF, a priority-based algorithm
studied extensively in literature. The experimental results
show that WRR-SCAN reduces non-transmission overhead
significantly and produces a guaranteed minimum data rate
for aperiodic tasks while keeping the deadlines of real-time
tasks.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Algorithms, Performance

Keywords
Real-time disk-scheduling, weighted round-robin, real-time
multimedia servers
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1. INTRODUCTION
A real-time disk-scheduling algorithm is essential for a

system where applications [2, 10, 15] issue disk I/O requests
with real-time constraints. A good example is a real-time
multimedia server [13, 4] that delivers isochronous data of
disk I/O for each application to guarantee smooth playback.
Because each application may request a different data rate
and the requested data may scatter around the disk surface,
the server requires a real-time disk-scheduling algorithm to
schedule the available disk bandwidth to meet the real-time
constraint of each application. Failing to deliver the data
rate required by each real-time application may result in ei-
ther buffer overflow or jittered playback. In addition, the
disk-scheduling algorithm needs to provide an acceptable
level of response time for aperiodic I/O tasks such as inter-
active or paging requests. Furthermore, to increase the disk
utilization, the disk-scheduling algorithm needs to minimize
its non-transmission overhead, i.e., the disk-seek time and
the disk-rotation time.

The SCAN algorithm has been proven to be an opti-
mal disk-scheduling algorithm in minimizing the disk-seek
time [7, 6, 1]. In SCAN, the disk head scans the disk sur-
face and services tasks whose cylinder position falls right
under the disk head. However, because the real-time con-
straints of tasks are not considered, SCAN cannot guarantee
to meet the deadline of each task [22, 21, 3, 19]. Recently,
there are several approaches that modify SCAN to take into
account real-time constraints. These priority-based algo-
rithms include SCAN-EDF [23, 24], SCAN-RT [12], and
DM-SCAN [5]. Generally speaking, such a priority-based al-
gorithm services tasks in EDF (earliest-deadline-first) order,
an optimal preemptive real-time scheduling algorithm [17].
However, tasks with similar deadlines are serviced in scan
order to reduce disk-seek time if none of the tasks misses
its deadline. Although satisfying the real-time constraints,
these priority-based algorithms degenerate to an EDF algo-
rithm in most cases. An EDF-based disk scheduling algo-
rithm yields low disk utilization due to the excessive disk-
seek time. In addition, it delivers prolonged response time
or even starvation for aperiodic tasks.

In this paper, we present WRR-SCAN (Weighted-Round-
Robin-SCAN), a rate-based real-time disk-scheduling algo-
rithm. WRR-SCAN schedules real-time tasks in midst of
aperiodic tasks to deliver isochronous data for real-time tasks
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and provide a guaranteed minimum data rate for aperiodic
tasks. We first divide the disk bandwidth into rounds. Dur-
ing each round, the disk head moves in one direction (ei-
ther inward or outward) and services tasks in scan order.
We next assign each real-time task a weight, the maximum
amount of disk-transmission time the disk head will service
this task in one round. In addition, we create a virtual ape-
riodic server and assign this server a predetermined weight.
Aperiodic tasks are queued and serviced by this server. The
sum of all weights and non-transmission overhead must be
less than or equal to the round length to meet the dead-
line of each real-time task. By reserving the disk bandwidth
required for each real-time task, we guarantee its specified
minimum data rate with bounded maximum response time.
Furthermore, because tasks are serviced in scan order, non-
transmission overhead is reduced, and therefore, the disk
utilization is increased.

To demonstrate the effectiveness of WRR-SCAN, we con-
ducted a set of experiments to compare the performance of
WRR-SCAN and SCAN-EDF, a traditional priority-based
disk-scheduling algorithm that has been studied extensively
in literature [23, 24, 12, 5]. We evaluate each algorithm
in terms of its total disk-seek distance, normalized disk-idle
time, normalized non-transmission overhead, disk utiliza-
tion, and throughput and response time of aperiodic tasks.
The experimental results show that, by servicing each task
in scan order with a reserved weight, WRR-SCAN signif-
icantly reduces the disk-seek time, increases the disk uti-
lization, and delivers an acceptable level of response time
for aperiodic tasks, in addition to keeping the deadlines of
real-time tasks.

The rest of the paper is structured as follows. Section
2 describes the task model. Section 3 describes the WRR-
SCAN disk-scheduling algorithm. The experimental results
that compare WRR-SCAN and SCAN-EDF are presented in
Section 4. Section 5 discusses related work. Finally, Section
6 concludes this paper.

2. TASK MODEL
There are two types of commonly-used real-time disk I/O

tasks, rate-based tasks and deadline-based tasks. A rate-
based I/O task demands a minimum rate of isochronous
data to satisfy its real-time constraints. A deadline-based
I/O task, represented by the total number of bytes to be
transferred and its deadline, requires the disk controller to
transfer the requested bytes before its deadline. Rate-base
tasks are issued by real-time multimedia applications to sup-
port continuously smooth playback [20, 8]. On the other
hand, deadline-based tasks are often included in embedded
software to carry about disk I/O in a hard-real-time embed-
ded system [16, 11].

Our task model denotes a rate-based task τi as (Si, Li),
where Si is its release time and Li is the requested minimum
data rate. In addition, we convert a deadline-based task into
a rate-based task by setting its requested data rate as the to-
tal requested bytes divided by its deadline. Figure 1 shows
the WRR-SCAN system architecture where the operating
system allocates for each task τi a data buffer sized of Bi.
The disk controller reads data from the disk to this buffer
and, once filled, the operating system is notified to retrieve
data from this buffer. Consequently, we further convert each
task τi into a sequence of periodic jobs τi,k = (Si,k, Pi, Bi),
where Si,k is the release time of the k-th job and Pi is the
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Figure 1: The WRR-SCAN system architecture

period and the relative deadline of each job, Si,1 = Si and
Pi = Bi/Li. In other words, the scheduler satisfies the re-
quested minimum data rate Li of τi by filling its data buffer
at the rate of Bi bytes every Pi units of time. To prevent
buffer overflow, each job τi,k is released at the beginning of
its period. That is, Si,k = (Si + (k − 1) ∗ Pi).

The buffer size Bi determines how efficiently WRR-SCAN
services this task in each round. Because of Pi = Bi/Li, a
larger buffer results in a larger period that leads to less per-
centage of non-transmission overhead. On the other hand, a
system requires minimum memory to prevent thrashing and
deliver acceptable performance. A simple allocation scheme
is to reserve minimum memory for system activities and
allocate the rest of memory for rate-based I/O activities.
Because WRR-SCAN benefits from similar period lengths,
each rate-based task is next allocated a buffer according to
its minimum data rate. In other words, a task with a larger
Li is allocated a buffer of larger Bi.

Without loss of generality, our task model adopts a com-
mon disk model presented in [25]. Let C denote the number
of bytes in one block , the smallest unit of data to be read or
written by the disk head. The disk model allows multiple
zones of tracks. Tracks on different zones may have differ-
ent numbers of blocks. We use E to denote the number of
blocks in the smallest track. We assume that each Bi is
a multiple of blocks. That is, Bi = bi ∗ C, where bi is a
positive integer. We use V to denote the maximum num-
ber of bytes serviced by the disk head per time unit, or the
disk-transmission speed.

The disk model [25] uses a linear function of seek-distance
to calculate the seek time for long seeks. Instead, the seek
time for short seeks is modeled as a square-root function
of seek-distance. Because the linear function dominates the
square-root function at the same seek-distance, we use the
linear function below to bound the disk-seek time

a × d + te,

where a is a constant, d is the seek-distance, and te is the
time to settle the disk head at the desired track. Let ts

denote the maximum time to seek the disk arm from one end
of the disk to the other end of the disk, excluding the disk-
settlement time. Obviously, ts equals to a times the number
of tracks of the disk. Furthermore, let tr denote the sum
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Definition

τi a real-time disk I/O task
τi,k the k-th job of τi

Si the release time of τi

Si,k the release time of τi,k

Pi the period of τi

Bi the number of requested bytes per period of τi

C the number of bytes in one block
E the umber of blocks in the smallest track
V the disk-transmission speed
tr the one-round disk-rotation time plus the

disk-settlement time
ts the maximum one-trip disk-seek time
R the round length
Wi the weight of τi

Wa the weight of the aperiodic server
A the disk-rotation time of R
qi the number of times τi is serviced in one

period
n the number of real-time tasks
bi the number of blocks in Bi

xi the number of blocks transferred in the length
of Wi

xa the number of blocks transferred in the length
of Wa

Th the time between the release of a job and the
first full round

Tt the time between the deadline of a job and
the last full round

Table 1: List of notations and definitions

of the time to rotate the disk once and te. To simplify the
presentation, we use disk-rotation time to include both disk-
rotation and disk-settlement time. For ease of reference,
Table 1 lists the definitions of notations used in the rest of
this paper.

3. WRR-SCAN ALGORITHMS
The WRR (Weighted Round-Robin) algorithm has been

applied extensively to provide QoS (Quality-of-Service) con-
trol in a system consisting of both periodic and aperiodic
tasks [9, 26, 14]. In general, WRR partitions the avail-
able time (bandwidth) of a service into rounds. Each pe-
riodic task is then assigned a weight that indicates the max-
imum amount of time the task receives the service in a single
round. The sum of weights of all tasks must be less than
or equal to the round length. The server services each task
in a round-robin order during each round. By adjusting the
weight of a task, we control the QoS of the task accordingly.

The WRR-SCAN algorithm applies the WRR algorithm
on top of the SCAN disk-scheduling algorithm to schedule
real-time disk I/O tasks in midst of aperiodic tasks such
as interactive and paging tasks. The WRR-SCAN disk-
scheduling algorithm first partitions the disk bandwidth into
rounds, and let R denote the round length. During each
round, the disk head moves from one end of the disk to the
other end of the disk (either inward or outward) and services
tasks in scan order. On the next round, the direction of the
disk-head movement is reversed. A round length R can be
decomposed into three components: the disk-seek time, the
disk-rotation time, and the disk-transmission time. Because

i,k-1

R

qi rounds Th  Tt

Si,k

time

i,k i,k+1

Figure 2: The relationship between the round length
and the period

tasks are serviced in scan order, the disk-seek time of R is
bounded by ts. We next assign each real-time task a weight
Wi that bounds the maximum amount of disk-transmission
time the disk head will service this task in a single round.
We note that Wi excludes any disk-seek and disk-rotation
time. Consequently, the disk-transmission time of R is the
sum of Wi of all tasks. Let A bound the disk-rotation time
of R. When there is no aperiodic tasks, WRR-SCAN guar-
antees the requested date rate of each real-time task if

ts + A +

n∑

i=1

Wi ≤ R,

where n denotes the number of real-time tasks in the system.
We create a virtual aperiodic server when aperiodic tasks

exist in the system. We assign this aperiodic server a weight
Wa. Incoming aperiodic tasks are queued and serviced by
the server. By reserving Wa disk-transmission time in each
round, WRR-SCAN provides a minimum data rate for ape-
riodic tasks and avoids starvation. The schedulability test
for real-time tasks is modified accordingly as shown below

ts + A +

n∑

i=1

Wi + Wa ≤ R. (1)

In order to service tasks in scan order, WRR-SCAN needs
to be aware of the disk-data location of each task. Such
information is also essential in determining the bound on
A. In the following, we first describe the default WRR-
SCAN algorithm, denoted by WRR-SCAN-R, designed for
a system where the disk-data location of a task is randomly
scattered. We next describe the WRR-SCAN-C algorithm
that reduces the bound on A by applying a simple data-
compaction scheme to place data on contiguous blocks. Fi-
nally, we present the WRR-SCAN-CA algorithm that fur-
ther enhances WRR-SCAN-C by aligning release times of
periodic jobs with rounds and allowing a larger round length.

3.1 WRR-SCAN-R

Weight Assignments
To determine the weight Wi of τi, we first calculate qi, the
number of times τi is serviced in one period. Figure 2 shows
the execution timeline of a job τi,k, where Th denotes the
time between Si,k and the beginning of the first full round
and Tt denotes the time between the end of the qi-th full
round and the end of the period Pi. Obviously, 0 ≤ Th < R
and 0 ≤ Tt < R. In addition,

Pi = qi ∗ R + (Th + Tt).

In the worst-case scenario, the disk head misses the track in
the round of Th and the period Pi expires before the disk
head reaches the track in the round of Tt. In other words,
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Figure 3: The worst-case response time of τi,k

τi,k is serviced at least qi times. Because Th + Tt < 2R, we
have

qi =
Pi − (Th + Tt)

R
>

Pi

R
− 2.

Therefore,

qi = �Pi

R
� − 1. (2)

Since the disk controller transfers data in the unit of blocks,
we use xi to denote the number of blocks transferred in
the length of Wi. The number of blocks transferred in Pi

must be equal to or larger than bi. Therefore, xi ∗ qi ≥ bi.
Accordingly, we obtain

Wi =
xi ∗ C

V
=

C

V
∗ � bi

qi
�. (3)

In addition, let xa denote the number of blocks we reserve
for aperiodic tasks in each round. Similarly, we can compute
Wa by

Wa =
C

V
∗ xa. (4)

Disk-Rotation Time
When the disk-data locations of tasks are randomly scat-
tered, the data blocks of the same task that are transferred
in one round may be located in different tracks. The total
number of blocks transferred in one round is

n∑

i=1

� bi

qi
� + xa.

In the worst-case scenario, each of these blocks is located
in a different track and reading each block incurs tr disk-
rotation time. Therefore, we can bound A by

A ≤ tr ∗ (
n∑

i=1

� bi

qi
� + xa). (5)

Round Length
In addition to the lower bound of R given in Eq. (1), we also
need to give an upper bound of R to guarantee that each
task be serviced at least once in its period. Let a job τi,k

demand a disk read starting at track Nr. Figure 3 shows
the response time between Si,k and the time when the disk
head visits track Nr . Let ∆ denote the worst-case response
time. Because WRR-SCAN services disk requests in scan
order, we have ∆ < 2R. Consequently, to guarantee τi be
serviced at least once in its period, Pi must be larger than
or equal to the worst-case response time ∆. In other words,
we have

R ≤ 1/2 ∗ Pi. (6)

In summary, the round length R is bounded by

ts + (tr +
C

V
) ∗ (

n∑

i=1

� bi

qi
� + xa) ≤ R ≤ 1/2 ∗ Pi. (7)

The WRR-SCAN-R disk-scheduling algorithm works in
the following steps. We first determine xa and Wa, the disk-
transmission bandwidth reserved for the aperiodic server in
each round. Based on the periods of all real-time tasks, we
next choose the largest R allowed by Eq. (7). Once R is
known, we then calculate qi and Wi. If Eq. (7) is satisfied
with the current selections of Wi and Wa, WRR-SCAN-R
guarantees the minimum data rate specified by each real-
time task and aperiodic tasks have an acceptable level of
response. Otherwise, we need to choose a smaller R or re-
duces the bandwidth reservation for the aperiodic server and
repeat the selection process. On the other hand, Eq. (7) is
served as an admission control when a new real-time task
is issued. The new real-time task is admitted and serviced
only if it passes the acceptance test by Eq. (7). Finally,
in most cases, the actual disk-rotation time would be much
less than the worst-case reservation made in Eq. (7). We
can allocate this unused bandwidth to the aperiodic server
for better throughput and response time.

3.2 WRR-SCAN-C
To reduce the disk-bandwidth reservation on A, we ap-

ply a simple data-compaction scheme to place the data of
the same task in contiguous blocks. Reading a segment of
contiguous blocks incurs only one disk-rotation time. As a
result, such a compaction scheme reduces the disk-rotation
overhead to one tr per real-time task in each round. The
data-compaction scheme can be easily deployed on multi-
media systems whose file set contains large multimedia files.
Such a multimedia file is often read-only and rarely changed.
Consequently, placing data of a multimedia file in contigu-
ous blocks is an effective approach for reducing disk-rotation
overhead. On the other hand, the aperiodic server may ser-
vice different tasks in one round, and these xa blocks may
still be located in different tracks. Accordingly, we modify
the bound on A to

A ≤ tr ∗ (n + xa).

By following the same calculations for Wi and Wa, we obtain
a new bound on R

ts + tr ∗ (n + xa) +
C

V
∗ (

n∑

i=1

� bi

qi
�+ xa) ≤ R ≤ 1/2 ∗Pi. (8)

3.3 WRR-SCAN-CA
The calculations of qi and Wi in Eqs. (2) and (3) are pes-

simistic and conservative. Such conservative calculations,
although satisfying the real-time constraints, lead to over-
reservations of the disk bandwidth for τi. Specifically, in the
length of a period Pi, there are at most two rounds in which
the weight Wi is reserved but not used. As a result, the disk
bandwidth is not fully utilized.

To reduce the over-reservations of the disk bandwidth, we
use the technique of release-time alignments to release every
job at the beginning of a round, as shown in Figure 4. Such
alignments are done in the conversion of a rate-based task
into a sequence of periodic jobs. The new release time is
reduced by (R − Th) to be a multiple of R. On the other
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Figure 4: The illustration of release-time alignments

hand, the period and relative deadline is increased by (R −
Th) to keep the same absolute deadline. Accordingly,

P ′
i = Pi + (R − Th) = q′i ∗ R + Tt,

and

q′i =
P ′

i − Tt

R
≥ Pi − Tt

R
>

Pi

R
− 1.

As a result,

q′i = �Pi

R
� = qi + 1.

Finally, we obtain the new weight assignment W ′
i of τi

W ′
i =

C

V
∗ � bi

qi + 1
�. (9)

The technique of release-time alignments may overlap the
first round of a job with the last round of a previous job. To
prevent buffer overflow, we need to increase the buffer size
by at most � bi

qi+1
� blocks. In addition, because a job will

be serviced at the first round after release-time alignments,
the worst-case response time of τi,k shown in Figure 3 is
now less than or equal to R. Therefore, we obtain a higher
upper bound on R, R ≤ Pi ≤ P ′

i . By following the same
calculations of A given in WRR-SCAN-C, we have a new
lower and upper bound on R

ts + tr ∗ (n + xa) +
C

V
∗ (

n∑

i=1

� bi

qi + 1
�+ xa) ≤ R ≤ Pi. (10)

The technique of release-time alignments reduces the lower
bound on R. Consequently, given the same R, this technique
allows WRR-SCAN-CA to schedule more real-time tasks at
their desired data rates and, therefore, increase the disk uti-
lization. On the other hand, the higher upper bound on R al-
lows a larger round length that in turn allows a larger weight
assignment and reduces the percentage of non-transmission
overhead.

4. EXPERIMENTAL RESULTS
We conduct a set of experiments to compare the perfor-

mance of WRR-SCAN and SCAN-EDF, a priority-based
real-time disk-scheduling algorithm. Each algorithm is eval-
uated in terms of its total disk-seek distance, normalized
disk-idle time, disk overhead, disk utilization, throughout
and response time of aperiodic tasks. We implemented all
three versions of WRR-SCAN and carefully analyze the ef-
fects of data-compaction and release-time alignment. Be-
cause a data-compaction scheme will considerably improve

Sector size 512 bytes
C 4096 bytes
Number of cylinders 1962
Tracks per cylinder 19
E 9
Revolution speed 4002 RPM
tr 23 ms
ts 15.7 ms
V 2.8 MB/s

short(ms) 3.24 + 0.400
√

d
Seek time long(ms) 8.00 + 0.008d

boundary d = 383

Table 2: The HP97560 disk model

the performance of a disk-scheduling algorithm, as shown
in the experimental results, we measure the performance of
SCAN-EDF with compact data to demonstrate the effec-
tiveness of WRR-SCAN.

The experiments are based on HP97560, a commonly-used
disk model [25] whose parameters are given in Table 2. We
simulate a workload with a set of real-time tasks and ape-
riodic tasks. The period Pi of a real-time task is a random
variable of normal distributions with a 5000-ms mean and a
1000-ms variance. Similarly, the buffer size Bi of a real-time
task is another random variable of normal distributions with
a 56-KB mean and a 28-KB variance. On the other hand,
the interarrival time of aperiodic tasks is controlled by an
exponential random variable with a 35-ms mean to model
frequent arrivals of background activities. We adjust the
workload by increasing the number of real-time tasks in a
task set. To simulate the characteristics of short I/O, we as-
sume that each aperiodic task reads one block of data. The
SCAN-EDF algorithm services an aperiodic task only when
there are no periodic jobs. In the WRR-SCAN algorithms,
all aperiodic tasks are served by a virtual aperiodic server.
We reserve a fixed percentage of disk bandwidth for the ape-
riodic server in WRR-SCAN in order to compare fairly the
three versions of WRR-SCAN.

Total Disk-Seek Distance
Figure 5 compares the four disk-scheduling algorithms at
the total disk-seek distance. We apply the same workload
to each algorithm for a fixed amount of time, and measure
the total number of tracks the disk head seeks. The number
of real-time tasks in a workload ranges from one task to 91
tasks. SCAN-EDF generates the most seek-distance which
increases as the workload increases. This behavior results
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from the EDF scheduling that vibrates the disk head to meet
the deadline of each real-time task as well as serve aperiodic
tasks. When the number of real-time tasks is less than 60,
the workload remains relatively light such that the aperiodic
server queue is empty most of the time.

In other words, most aperiodic tasks are serviced right
after its release. When the number of real-time tasks is
larger than 60, aperiodic tasks start to queue up, which
we will show in Figure 11, as most of the disk bandwidth is
taken by real-time tasks. Because serving one more real-time
task will queue several aperiodic tasks due to the difference
of each read size, the total disk-seek distance drops when the
number of real-time tasks increases, as shown in Figure 5.

Because WRR-SCAN services tasks in scan order, its to-
tal disk-seek distance is significantly smaller than SCAN-
EDF’s, especially when the workload is heavy. At a light
workload, only a small portion of a round is used. To in-
crease the throughput and response time for aperiodic tasks,
we reclaim unused disk bandwidth by starting a new round
at the completion of all requests in the current round, in-
stead of idling the disk head for the rest of the round. Be-
cause aperiodic tasks arrive more frequently than real-time
tasks, the bandwidth reclamation approach causes WRR-
SCAN to service aperiodic tasks immediately when the work-
load is light. On the other hand, at a heavy workload, each
round is almost used up and aperiodic tasks are serviced in
a batch way. Consequently, the disk seeks caused by aperi-
odic tasks and the total disk-seek distance decreases when
the number of real-time tasks increases in all three versions
of WRR-SCAN.

Since the round length used in WRR-SCAN-CA (Eq. (10))
is larger than the one used in WRR-SCAN-C (Eq. (8)),
WRR-SCAN-CA allows larger weight assignments and in-
curs less non-transmission overhead. As a result, the total
disk-seek distance of WRR-SCAN-CA is smaller than that of
WRR-SCAN-C. Without data compaction, WRR-SCAN-R
incurs much more disk-rotation time, compared with WRR-
SCAN-C and WRR-SCAN-CA. The disk-rotation overhead
consumes a significant bandwidth of a round and hinders
the performance of the bandwidth reclamation approach.
Similar to the effect of a heavy workload, WRR-SCAN-R
services aperiodic tasks in a batch way and incurs the least
total disk-seek distance. Finally, due to its strict admission
test by Eq. (7), WRR-SCAN-R can only service less than 20
real-time tasks. The data-compaction scheme allows WRR-

SCAN-C to service up to 55 real-time tasks. Furthermore,
the release-time alignment and a larger round length allows
WRR-SCAN-CA to service more than 90 real-time tasks.

Normalized Disk-Idle Time
We define the disk-idle time as the period the disk head
is completely idle. The total disk-idle time is equal to the
length of execution minus the sum of total disk-transmission,
disk-seek, and disk-rotation time. Accordingly, the normal-
ized disk-idle time is the total disk-idle time divided by the
length of execution. Figure 6 shows the normalized disk-idle
time for each disk-scheduling algorithm. In general, the nor-
malized disk-idle time decreases as the workload increases.
Due to its excessive disk-rotation time, WRR-SCAN-R has
the least normalized disk-idle time. The data-compaction
scheme increases the normalized disk-idle time of WRR-
SCAN-C. However, because WRR-SCAN-C decomposes a
job into several pieces, each of which is serviced in one round,
it still incurs more disk-rotation overhead than SCAN-EDF
which services a job with one disk-rotation overhead. By
aligning the release time and using a larger round length,
WRR-SCAN-CA further increases the normalized disk-idle
time and becomes the most efficient algorithm.

Normalized Non-Transmission Overhead
The normalized disk-seek and disk-rotation time is defined
as the total disk-seek time and the total disk-rotation time
divided by the length of execution, respectively. Figure 7
shows the normalized disk-seek time and Figure 8 shows the
normalized disk-rotation time. Figure 7 follows closely the
pattern shown in Figure 5. In general, WRR-SCAN incurs
more disk-rotation overhead than SCAN-EDF, as shown in
Figure 8, because WRR-SCAN services a job multiple times,
each of which involves at least one disk-rotation overhead.
WRR-SCAN-R yields most normalized disk-rotation time
because reading each block may involve one disk rotation.
The data-compaction scheme and release-time alignment ef-
fectively reduces this overhead. The disk-rotation overhead
of SCAN-EDF decreases when the number of real-time tasks
is larger than 60 because the number of serviced aperiodic
tasks decreases dramatically.

Figure 9 is the addition of Figure 7 and Figure 8, where
we define the normalized non-transmission overhead as the
sum of total disk-seek and disk-rotation time divided by
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Figure 7: The normalized disk-seek time
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Figure 8: The normalized disk-rotation time

the length of execution. Although WRR-SCAN-R has the
least disk-seek overhead, it incurs the most non-transmission
overhead due to its excessive disk-rotation time. This re-
sult shows that disk-rotation, often overlooked by traditional
real-time disk-scheduling algorithms, is in fact an important
factor in designing an efficient disk-scheduling algorithm.
Compared with SCAN-EDF, WRR-SCAN-C incurs similar
overhead as its advantage on disk-seek is offset by its dis-
advantage on disk-rotation. Finally, by solving the over-
reservation problem and serving tasks in scan order, WRR-
SCAN-CA delivers the least non-transmission overhead.

Disk Utilization
We define the disk utilization as the disk-transmission time
divided by the disk-service time which is equal to the sum
of disk-transmission, disk-seek, and disk-rotation time. Fig-
ure 10 shows the disk utilization of the four algorithms.
WRR-SCAN spends less time in disk-seek while SCAN-EDF
generates less disk-rotation time. Similar to the normalized
disk-idle time, the disk utilization increases as the work-
load increases. Among all three versions of WRR-SCAN,
WRR-SCAN-CA outperforms WRR-SCAN-C which in turn
is better than WRR-SCAN-R. Compared with SCAN-EDF,
WRR-SCAN-CA has less non-transmission overhead and,
therefore, has better disk utilization.

Throughput and Response Time of Aperiodic
Tasks
We define the throughput of aperiodic tasks as the total
number of bytes transferred divided by the length of exe-
cution. In addition, the response time of an aperiodic task
is the time from its release to its completion. Figure 11
and 12 show the throughput and averaged response time of
aperiodic tasks, respectively. Because WRR-SCAN reserves
a fixed bandwidth for aperiodic tasks and services tasks in
a round-robin order, all three versions of WRR-SCAN de-
liver a nearly constant throughput for aperiodic tasks at
all workloads. On the other hand, because SCAN-EDF
only services aperiodic tasks when there are no real-time
tasks, the throughput of aperiodic tasks depends greatly on
the workload of real-time tasks. At a light workload, the
throughput remains high as there is enough disk bandwidth
to service aperiodic tasks. However, when the workload in-
creases, most of the available disk bandwidth is taken by

real-time tasks and the throughput of aperiodic tasks drops
considerably.

At a light workload, the response time of an aperiodic
task is extremely short as it is serviced almost right after its
release. SCAN-EDF delivers prolonged response time when
the workload increases. WRR-SCAN will deliver bounded
response time if the reserved bandwidth is larger than the re-
quested bandwidth of incoming aperiodic tasks. Otherwise,
aperiodic tasks will start to queue up and their response
time is prolonged as well. In our experiments, the requested
bandwidth of the aperiodic workload is larger than the re-
served bandwidth. The bandwidth reclamation approach
utilizes unused bandwidth to service more aperiodic tasks
when the workload is light. In contrast, WRR-SCAN ser-
vices tasks according to its reserved weight at a heavy work-
load, and therefore, the response time of an aperiodic task
increases.

5. RELATED WORK
Traditional disk-scheduling algorithms, such as SCAN,

SSTF, and LOOK, are designed to reduce disk-seek time
and increase throughput. These algorithms do not consider
real-time constraints of I/O tasks, and therefore cannot be
applied directly on a real-time system. On the other hand,
traditional real-time scheduling algorithms, such as Rate-
Monotonic (RM) [17] and Earliest-Deadline-First (EDF) [17],
address this issue without considering disk-seek time.

Several approaches that modify SCAN to consider real-
time constraints have been proposed. SCAN-EDF [23, 24],
the first of this kind, first sorts the tasks by their deadlines
and then applies SCAN on tasks with the same deadline.
SCAN-EDF degenerates to EDF when each task has a dif-
ferent deadline. In our simulations, SCAN-EDF and EDF
deliver similar performance in most cases. SCAN-RT [12]
inserts a task into the disk queue in scan order only if this
insertion will not cause any existing task to miss its dead-
line. Otherwise, the task is appended to the end of the
disk queue. Another example is the Deadline-Modification
SCAN (DM-SCAN) [5]. Again, DM-SCAN first sorts tasks
in EDF order. It next finds a group of tasks that can be
serviced in scan order without missing any of their dead-
lines. DM-SCAN modifies the deadline of each task in such
a group to form a new task sequence in EDF order. The
same technique can be applied repeatedly to reduce exces-
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Figure 10: The disk utilization

sive disk-seek time caused by EDF scheduling. Similar to
SCAN-EDF, DM-SCAN has the possibility of degeneration
to EDF. In addition, the on-line performance of DM-SCAN
is hindered by the complexity of its iterative algorithm.

All of the above real-time disk-scheduling algorithms are
priority-based. WRR-SCAN is the first rate-based real-
time disk-scheduling algorithm. The idea of WRR-SCAN
was first proposed by Liu [18]. Our paper fully develops
WRR-SCAN and provides extensions for performance im-
provement. Compared with WRR-SCAN, a priority-based
algorithm incurs excessive and unnecessary disk-seek time.
In addition, it provides no real-time guarantee for aperiodic
tasks.

6. CONCLUSIONS
In this paper, we presented WRR-SCAN (Weight-Round-

Robin-SCAN), a rate-based real-time disk-scheduling algo-
rithm. WRR-SCAN includes WRR into the SCAN disk-
scheduling algorithm to schedule real-time tasks in midst of
aperiodic tasks. WRR-SCAN first divides the disk band-
width into rounds. Each real-time task is next assigned a
weight indicating the maximum amount of disk-transmission
time in each round. On the other hand, all aperiodic tasks
are served by a virtual aperiodic server which is also assigned
a weight. The sum of all weights and non-transmission
overhead must be less than or equal to the round length.
Three versions of WRR-SCAN are implemented. The de-
fault WRR-SCAN, called WRR-SCAN-R, assumes random
locations of data. WRR-SCAN-C reduces the disk-rotation
overhead by compacting data of the same file in contiguous
blocks. Finally, WRR-SCAN-CA further reduces the non-
transmission overhead by aligning release times with rounds
and allowing a larger round length.

We conducted a set of experiments to compare WRR-
SCAN and SCAN-EDF, a priority-based disk-scheduling al-
gorithm. Because SCAN-EDF services tasks according to
their deadlines, it causes unnecessary vibrations of the disk
head and excessive disk-seek distance. In contrast, WRR-
SCAN delivers considerably low disk-seek distance even at
a heavy workload. SCAN-EDF provides prolonged response
time or even starvation for aperiodic tasks that are served
in best-effort manner. Because WRR-SCAN services aperi-
odic tasks with a reserved bandwidth, it offers a guaranteed
minimum data rate and bounded response time. Among

all three versions of WRR-SCAN, WRR-SCAN-C signifi-
cantly reduces the disk-rotation overhead of WRR-SCAN-R
by data compaction. In addition, WRR-SCAN-CA allows
a larger round length and decreases the over-reservation of
WRR-SCAN-C to deliver the best performance of WRR-
SCAN. In conclusion, compared with priority-based algo-
rithms, WRR-SCAN greatly reduces non-transmission over-
head, increases disk utilization, and provides an acceptable
level of response time for aperiodic tasks.
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