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ABSTRACT
Model-based design is an important approach for embedded
software. The method starts from a mathematical repre-
sentation of the design problem and derives the software
implementation from this representation. The model that
has had most success especially for control dominated ap-
plication is synchronous reactive. While this model sim-
plifies the way of dealing with concurrency by decoupling
functional and timing aspects, when implemented, it may
be inefficient since the synchronous assumption implies con-
straints that are stronger than needed. We present in this
paper a method for improving the efficiency of the software
design process, by relaxing computation constraints, while
preserving the synchronous computation semantics, with the
introduction of a particular inter-task communication mech-
anism. We show how this mechanism can be implemented
on single processor, multi processor and distributed imple-
mentation platforms.

Categories and Subject Descriptors: D.2 [Software]:
Software Engineering

General Terms: Design, Theory.

Keywords: Synchrony, Model-based.

1. INTRODUCTION
Model based design is emerging as a solution to embed-

ded software design issues. The tenet of this methodology
is moving away from manual coding from informal specifica-
tions by capturing embedded software functional and non-
functional requirements at the mathematical model level
of abstraction. As the complexity of designs ramped up
dealing with concurrency has become increasingly difficult,
the interest in time-driven models has grown considerably
also due to the availability of industrial tools and of a large
body of theoretical results. Synchronous languages such as
ESTEREL, LUSTRE and SIGNAL [2] and design environ-
ments like SIMULINK/ STATEFLOW are just a few ex-
amples of the so called synchronous programming model [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

The synchronous assumption provides an effective and rig-
orous way of dealing with concurrency but poses strong con-
straints on the implementation.

The problem of implementing this paradigm efficiently on
a single processor platform has been first discussed in [7]
where the authors present an RTOS buffering support for
inter-task communication that is able to preserve the syn-
chronous semantics assuming 1) a fixed-priority deadline
monotonic preemptive scheduler; 2) a task set with deadlines
shorter than periods. In this paper, we propose a general-
ization of the communication mechanism proposed in [7].
Our starting point is not a particular implementation but
rather an abstraction of a generic platform characterized by
a timing model. A common timing model of implementa-
tion platforms in real-time embedded software is expressed
in terms of periods, deadlines, response times and offsets of
computation tasks. This allows us to deal with any task
set and, most importantly, being independent of the imple-
mentation, to explore the design space effectively. Not only
are we able to target single processor platforms with differ-
ent scheduling policies, but also to address multi-processor
and distributed architectures. Due to its generality, our ap-
proach has to confront issues that are not discussed in [7].
In particular, we focus on buffer insertion as a method to
keep communication overhead to a minimum. Our approach
to sizing the buffers is based on the timing model used to
abstract the implementation platform and as such is capable
of exploiting the characteristics of the entire design process
from capture to implementation.

We realize that our approach to implementation optimiza-
tion for synchronous language specifications could be viewed
as a form of de-synchronization and as such this work can
be related to the theoretical approaches proposed in [6], [3]
and [4]. However, the analysis needed to relate all these
approaches is beyond the scope of this paper and will be
carried out in a forthcoming paper.

2. THE SPECIFICATION MODEL
Our analysis starts from a specification model where the

system is described as a composition of mixed time- and
event-triggered blocks that execute according to the syn-
chronous assumption [2]. Such a model is well known in
the literature, can be formalized in several ways [1] and is
supported by several design tools, e.g. Simulink/Stateflow
and SCADE. The synchronous assumption imposes a com-
putation requirement on the final implementation, which
can be captured as a deadline requirement of one “tick”
(logical time) for computing all triggered blocks. Since the
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one tick deadline represents only a way of implementing the
synchronous computation, more efficient implementations of
the system can be obtained by removing such requirement.
The work presented in this paper aims at increasing effi-
ciency in the software implementation while preserving the
synchronous computation semantics and can be viewed as a
generalization of the work presented in [7].

Efficiency can be obtained by deferring the block’s com-
putation, as long as the deadlines coming from the system’s
timing specification are met, which however requires the in-
troduction of buffers to store communication data and ap-
propriate access mechanisms to retrieve the required data in
the correct order. Here we have a trade-off, which in many
practical cases pays off, because the computation burden is
heavily reduced. The above relaxation can be regarded as
a desynchronization of the system specification and clearly
widens the implementation space. This relaxation can be
explicitly represented in the model by introducing tagging
functions as presented in the sequel.

By recalling that signals can be represented as functions
of time, we can decompose them as follows. Let k denote the
logical time. Without loss of generality k can be taken to
be a variable over the set of natural numbers. Every signal
in the system representation is a function s(k) that returns
the value of the signal at the logical time k.

Let us decompose the signal into two functions s(k) =
s′(Ts(k)). We refer to the function Ts(k) as the tagging
function for s. The pair (s(k), Ts(k)) is usually referred to
in the literature as an event on signal s and Ts(k) is called
its tag. The tagging function may be any function that
composed with s′ provides the original signal s, but for our
purposes it is sufficient to select a function Ts : N 7→ N ,
where N denotes the set of natural numbers.

Signals are put into relation by components. In particular,
if P is the producer of signal s, then there is a relation
between the tagging function of P ’s triggering signal and the
tagging function of signal s. This is because P produces new
outputs only when triggering events occur. The simplest
way of stating this relationship is to let the two tagging
functions be equal, i.e. Ts(k) = TtP (k), where tP denotes the
triggering signal of P . As for TtP (k), it may be defined, for
example, as one returning the number of triggering events
up to logical time k.

Consider a simple system where a producer P and a con-
sumer C are interconnected by a signal s. When the con-
sumer is triggered by a triggering event, say at logical time
k, it must read the input value s(k). The computation re-
quirement can be relaxed if we provide C with the pair
(s(·), k), where s(·) can be implemented as a buffer on s
to store the values of the signal, while k is the index by
which the buffer must be accessed. Now, we have seen
above that s(k) = s′(Ts(k)) = s′(TtP (k)). Hence, the pair
(s′(·), TtP (k)) can be used in place of (s(·), k), which allows
for a more convenient implementation because only a small
subset of values need to be stored in the buffer.

From the discussion above it follows that correct imple-
mentations of the synchronous model can be obtained by
implementing the following: 1) buffers on signals, 2) tag-
ging functions and 3) prod-cons precedence constraints. The
prod-cons precedence constraint is necessary to guarantee
that when a consumer accesses the buffer with the proper
tag, it will find valid data to read. In other words all data
must be produced before being consumed.

3. SIZING COMMUNICATION BUFFERS
As introduced in the previous section, to relax the com-

putation requirement of synchronous systems it is necessary
to implement event buffering and tagging for every commu-
nication signal in the system specification. In the present
section we provide a formula for sizing the communication
buffers, based on the system’s timing specification. In the
sections to follow we will provide tagging techniques for dif-
ferent implementation platforms.

We take the timing model from the literature on real-time
scheduling. Here, each system’s component is associated
with a time period T and a deadline D. The period can also
be defined for sporadic event-based references as the min-
imum time separation between any two successive events.
The deadline is the maximum time interval by which the kth

component’s computation must be completed after the kth

triggering event. We also define a maximum and a minimum
dynamic offset, denoted by OBi,Bj and oBi,Bj , respectively,
of a component Bj with respect to a component Bi as the
maximum and minimum time separation between a trigger-
ing event of Bj and the preceding triggering event of Bi.
Note that the following inequalities hold for the dynamic
offsets: 0 ≤ oBi,Bj ≤ OBi,Bj ≤ TBi .

A bound for the optimum buffer size is given by the mini-
mum between the events written and those read on s within
the maximum lifetime τs of events on s, i.e. the maximum
time interval that elapses between the occurrence of an event
and its consumption. In general, for one producer P and N
consumers Ci on signal s, a bound for the overall buffer size
is given by

NX
i=1

min

„‰
τs,i

TP

ı
,

‰
τs,i

TCi

ı«
(1)

Formula 1 gives a coarse bound for the multiple consumers
case. The bound can be made tighter by observing that, no
matter how many consumers read from s, the number of
distinct events read cannot be larger than the number of
events written to s by P . Consider the N consumers and let
them be ordered by increasing lifetime, so that τs,i ≤ τs,i+1.l

τs,j

TP

m
is an upper bound to the required buffer size for all

consumers Ci with i ≤ j, because τs,j is the longest life-

time for those consumers and
l

τs,j

TP

m
provides the maximum

number of events written by P within τs,j . Hence, given

j = max
n

i|
l

τs,i

TP

m
≤

Pi
k=1

l
τs,k

TCk

mo
, a tighter bound on the

buffer size is given by
l

τs,j

TP

m
+

PN
i=j+1

l
τs,i

TCi

m
, where the

first term represents a buffer shared among all consumers
Ci such that τs,i ≤ τs,j . Each addendum of the sum still
accounts for a buffer dedicated to the i-th consumer Ci, as
in formula 1, for those Ci such that τs,i > τs,j .

As for the longest lifetime on s for each consumer, ob-
serve that an event ek produced by P on s will be read by
a consumer Ci if there is a triggering event of Ci that oc-
curs after ek and before ek+1, the next event produced by
P . We call this condition an interleaving of events of P
and Ci. Moreover, ek will be alive until Ci completes its
computation. Hence, the longest lifetime on s for Ci has to
include the response time of Ci and the maximum offset of
Ci with respect to P , i.e. τs,i ≤ OP,Ci + RCi , where RCi is
the maximum response time of Ci, i.e. the maximum time
interval within which the computation of Ci is completed.
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In all schedulable implementations, RCi is smaller than the
deadline DCi . DCi can be used in place of RCi , when the
response time is not available. The formula for the upper
bound to the buffer size on signal s becomes:‰

OP,Cj + RCj

TP

ı
+

NX
i=j+1

‰
OP,Ci + RCi

TCi

ı
(2)

When Di < Ti, ∀i, the bound provided by formula 1 can
be compared with the implementation presented in [7]. Note
that this bound is never worse than the two-place buffer de-
ployed in [7]. Rather, when TP +RC < TC , one-place buffers
suffice, since there is always at least an execution of P be-
tween two successive executions of C. The very rationale is
that, formula 1 does not necessarily include a buffer location
for the freshest value computed by the producer, because
this is not always needed by the consumers. We can choose
a looser bound to always guarantee a buffer location for
writing the freshest value by observing that, under the con-

dition TP ≤ TCi , we have
l

OP,Ci
+RCi

TCi

m
≤

l
OP,Ci

TP
+

RCi
TCi

m
≤l

1 +
RCi
TCi

m
= 1 +

l
RCi
TCi

m
. The term

l
RCi
TCi

m
accounts for all

events that P can produce during the execution of Ci and 1
accounts for the reserved place to accommodate the freshest
event.

Buffer optimization is more effective when we consider
multiple readers on a single signal due to the introduction
of the shared buffer accommodating all events produced by
P over a given period of time. This optimization has not
been considered in [7].

The bound provided by formula 2 may be further re-
duced by taking into account special but very common tim-
ing conditions, such as time-disjoint consumers such that
RCi ≤ oCi,Cj and RCj ≤ oCj ,Ci , and single-event consumers
for which OCi,Cj ≤ oP,Cj . In both cases Ci and Cj can
share the same buffer locations, because in the former case
the lifetimes of their readings do not overlap (disjoint com-
putations), while in the latter the consumers read the same
events. Hence, in formula 2 we do not need to consider both
consumers, but only the one with the highest lifetime/period

ratio, i.e. max

„
τs,i

TCi
,

τs,j

TCj

«
.

4. IMPLEMENTATION OF SYNCHRONOUS
SYSTEMS

In all software implementations, triggered blocks are mapped
to tasks. When the computation carried out by a block B is
required, the task B has been mapped to must be released
by the scheduler. B’s triggering events are thus associated
to release requests of the corresponding task.

The access mechanism to the buffer must be strongly re-
lated with the tagging function in order to guarantee the cor-
rect computation. To simplify implementation, we will con-
sider the looser bound guaranteeing a location for the fresh-

est value, i.e.
l

OP,Cj
+RCj

TP

m
+

PN
i=j+1

“l
RCi
TCi

m
+ 1

”
Since

the first term defines a buffer to store all the values writ-
ten to s up to logical time k, the corresponding buffer can
be accessed with the tag TtP (k), defined as the number of
triggering events to the producer up to logical time k mod-

ulo
l

OP,Cj
+RCj

TP

m
, i.e. the size of the buffer. This requires

computing TtP (k) at each triggering event of the producer

and consumers sharing the buffer. As for the second term, it
represents N−j independent buffers. Since the size of these
buffers is tailored on the number of readings, their tagging
functions depend on both TtP (k) and TtCi

(k). In this case,
the tagging functions provide the number of interleavings
between triggering events of P and Ci up to logical time k

modulo
“l

RCi
TCi

m
+ 1

”
, i.e. the size of the buffer.

In the rest of the paper we will discuss how the mecha-
nisms discussed above can be correctly implemented on most
relevant architecture platforms.

4.1 Single processor implementations
In single processor architectures a unique scheduler se-

quentializes the computation of blocks’ functions on the sin-
gle execution resource. The tagging function of a signal is
implemented by associating tagging operations to the pro-
ducer and consumers of the signal. At each triggering event
the appropriate tagging operations must be performed prior
to the release of the corresponding triggered blocks.

The tagging function for the shared buffer provides the
number of P ’s triggering events up to k, which is used to
access the buffer. This can be more conveniently imple-
mented using a pointer to the current buffer location that
is being written by P . The buffer is handled as a circular
queue and the pointer is incremented, modulo the size of
the buffer, by P ’s tagging operation at each P ’s triggering
event. Similarly, for consumers we need pointers that point
to the locations that must be read. At any given consumer’s
triggering event, a pointer is created by the consumer’s tag-
ging operation and assigned the location currently pointed
by the P ’s pointer. This ensures that when Ci executes it
will read the correct value. Ci’s pointer is no longer needed
after Ci’s completion.

The implementation of each of the N − j independent
buffers is the same as discussed above for the shared buffer,
with one difference: the tagging function must count in-
terleavings instead of writings on s. This affects the way
the P ’s pointer is incremented. In particular, it must be
incremented only if a consumer’s pointer is moved to the
current location, which indicates a new reading. To detect
this condition we need a read-flag set by Ci’s tagging oper-
ation before moving its pointer. When a triggering event of
P occurs, the P ’s triggering operation tests the value of the
read-flag and the P ’s pointer is incremented only if the read-
flag is set. After incrementing the P ’s pointer, the read-flag
is unset by P ’s triggering operation.

Tagging operations must all be atomic: they must run
uninterruptedly and execute in the same order as trigger-
ing events. This can be guaranteed either by implementing
tagging support directly in the RTOS as proposed in [7], or
by demanding it to highest priority dedicated tasks that are
released on triggering events.

The order P and Ci are executed does not affect the cor-
rectness of the implementation. Nonetheless, the prod-cons
precedence constraint must be always satisfied. In single
processor architectures, where a single execution resource is
available, this order can be guaranteed by deploying either
lock-free or locking methods. The former must guarantee
that Ci’s execution follows P ’s execution whenever Ci is
triggered after P , because Ci needs the data produced by
P . This can be obtained by statically scheduling Ci after P
or by either static or dynamic priority assignment ensuring
that PriorityP ≥ PriorityC .
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With locking methods, inversions in the execution order
are possible and Ci may try reading a value P has not writ-
ten yet. To block Ci’s reading, a valid-flag can be added to
each buffer location which is unset by P ’s tagging operation
and is set by P when it completes writing the data. Ci must
test the valid-flag before reading and is allowed to proceed
only when the valid-flag is set.

4.2 Multi-processor implementations
In multi-processors architectures several parallel execu-

tion resources can be used to compute the overall system
function and multiple RTOS instances schedule computation
on each execution unit. This has potentially a strong impact
on the capability of determining the total order among trig-
gering events and on the atomicity of tagging operations.
Since we are still considering a centralized architecture, a
simple and efficient solution to the problem is to demand all
tagging operations to a single execution unit. The computa-
tion of the system’s block can still be allocated to different,
parallel execution resources. It is mandatory that task ex-
ecutions follow the completion of tagging operations. This
can be guaranteed by timing requirements or enforced, for
example, by implementing all tasks as software tasks that
are released only at the end of tagging operations. When P
and Ci are assigned to different execution units, the prod-
cons precedence constraint can only be guaranteed by a lock-
ing mechanism, such as for example the one described in
Section 4.1.

4.3 Distributed implementations
Distributed implementations have the same problem of

determining the total order among triggering events and en-
suring the atomicity of tagging operations. Unlike multi
processor architectures, however, it may be not viable to
centralize all tagging operations due to higher communica-
tion cost (i.e. delay).

Since the case of P and Ci assigned to the same node is
not different from single processor solutions, we focus our
attention on the case when P and Ci are executed on dif-
ferent nodes, as their triggering functions are. Dedicated
buffers are different to implement because of the atomicity
constraint for the test and set operations on the read-flag.
Hence, we can only implement a shared buffer for all con-
sumers of a given signal and this must be local to the pro-
ducer. To size the shared buffer we must use the formulal

τs,N

TP

m
, where τs,N is the longest lifetime on s among all its

consumers.
When Ci is triggered and its tagging operations are exe-

cuted, Ci’s pointers must be assigned the current value of
the P ’s pointer, i.e. it must be TtCi

(k) = TtP (k). However,

communication delays may cause the value TtP (k + D) to
be assigned, instead. The problem can be solved by pro-
viding all nodes with a common time basis. Different tech-
niques can be used. Independent, local clock sources can
be deployed provided they feature a negligible drift within
system life-time. Alternatively, we can resort to clock syn-
chronization protocols like the one implemented in TTA [5].
Once a common time base is available, Ci can measure lo-
cally the value kC of k when its triggering condition occurs.
kC can be fed to P , which can compute the corresponding
tag TtP (kC) and finally provides C with the correct value
s′(TtP (kC)).

In terms of tagging operations, the time-stamps of P ’s
triggering events are dynamically associated to the corre-
sponding buffer locations by the P ’s tagging operation. When
C requires a new data, it provides P with the time-stamp kC

of its triggering event. The tag for accessing the local buffer
is computed as the least upper bound of P ’s time-stamps up
to kC and the correct data is retrieved and returned to C.

5. CONCLUSIONS AND FUTURE WORKS
In this paper we presented an approach for the efficient

software implementation of synchronous systems. Efficient
implementations require the introduction of buffers and tag-
ging techniques. We presented formulas for sizing of the
buffers driven by the system timing specification and we
provided tagging techniques for different implementations,
comprising single and multi processor solutions as well as
distributed implementations.

We believe that this paper can be a solid basis for rigor-
ous model-based embedded software design flows that start
from synchronous specifications. The benefits of such design
flows are two-fold: the implementation of the synchronous
specification allows using simulation for early system verifi-
cation, and the relaxation of the computation requirement
at the specification level allows widening the implementation
space for effective design space exploration.

Future works include an in-depth analysis of how the tech-
niques proposed here relate to desynchronization theories
proposed in the literature [4, 6], and how to use buffer sizes
as a cost factor to drive the search for a feasible and cost-
effective scheduling.
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