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ABSTRACT
Multithreaded programs coordinate their interaction
through synchronization primitives like mutexes and
semaphores, which are managed by an OS-provided
resource manager. We propose algorithms for the auto-
matic construction of code-aware resource managers for
multithreaded embedded applications. Such managers
use knowledge about the structure and resource usage
(mutex and semaphore usage) of the threads to guarantee
deadlock freedom and progress while managing resources
in an efficient way. Our algorithms compute managers as
winning strategies in certain infinite games, and produce
a compact code description of these strategies. We have
implemented the algorithms in the tool Cynthesis. Given
a multithreaded program in C, the tool produces C code
implementing a code-aware resource manager. We show in
experiments that Cynthesis produces compact resource
managers within a few minutes on a set of embedded
benchmarks with up to 6 threads.
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1. INTRODUCTION
Embedded and reactive software is often implemented as a

set of communicating and interacting threads. The threads
most commonly rely on primitives such as mutexes and
counting semaphores to coordinate their interaction, to en-
sure the atomic execution of critical code regions, and to
ensure that shared data structures are correctly accessed.
These mutexes and semaphores (which we collectively term
resources) are managed independently of the application
code. In this paper, we propose the automated construc-
tion of code-aware managers for resources. Such managers
use their knowledge of the thread structure and resource
usage to manage resources in an efficient and deadlock-free
fashion.

The simplest resource managers, found in the implemen-
tation of just about any thread library, use the most liberal
of policies: grant a resource whenever it is available. The lib-
erality of this policy creates the possibility of deadlocks: the
classical example is when thread 1 requests (and is granted)
a mutex A, and thread 2 requests (and is granted) a mu-
tex B. If the next requests are for mutex B from thread 1,
and for mutex A from thread 2, deadlock ensues. Writing
software that is deadlock-free under such a simple resource
management policy is a difficult and error-prone task [21,
11]. Monotonic locking [20] ensures deadlock freedom, at the
price of imposing additional bookkeeping on the program-
mer. Monotonic locking also cannot be extended to counting
semaphores, where there is no notion of a particular thread
“holding” a resource. Priority ceiling uses information on
the set of locks used by each thread to guarantee deadlock
freedom [3]. Like monotonic locking, however, priority ceil-
ing cannot cope with counting semaphores. Furthermore,
in the setting that we study in this paper, when all threads
have the same priority and need to get a fair share of CPU
time, priority ceiling is a most restrictive policy: it allows at
most one thread to hold mutexes at any given time. Other
algorithms, such as the banker’s algorithm [20], rely on a
manual analysis of the resources needed for given tasks, and
again do not cover code with semaphores.

We present an automatic static technique to synthesize
code-aware resource managers for multithreaded embedded
applications that guarantee deadlock freedom while man-
aging resources in a liberal and efficient way. Rather than
synthesizing the whole scheduler, we focus on the resource
policy, i.e., the part of the scheduler responsible for grant-
ing resources, depending on the underlying OS scheduler to
resolve the remaining scheduling choices. Our formulation
does not require special programmer annotations or code
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while ( 1 ) {
i f ( exp) {

mutex lock (a ) ;
mutex lock ( b ) ;
// c r i t i c a l region
mutex unlock ( b ) ;
mutex unlock (a ) ;

} else {
mutex lock (a ) ;
mutex lock ( c ) ;
// c r i t i c a l region
mutex unlock ( c ) ;
mutex unlock (a ) ;

}
}

(a) Thread 1

while ( 1 ) {
mutex lock ( b ) ;
mutex lock (a ) ;
// c r i t i c a l region
mutex unlock (a ) ;
mutex unlock ( b ) ;

}

(b) Thread 2

Figure 1: Two fragments of C code.

structures, nor any change in programming style. Hence, it
is directly applicable to existing bodies of code.

To illustrate the advantages of code-aware managers, con-
sider the threads of Figure 1. Thread 1 and Thread 2 can
lead to a deadlock under a standard, most liberal resource
manager. On the other hand, the code-aware manager we
construct is able to differentiate, in Thread 1, between the
requests for the mutex a occurring on the then and else

branches of the if statement (during code analysis, informa-
tion about the location of resource manager calls is added to
the calls themselves). When Thread 1 holds mutex a, and
Thread 2 requests mutex b, the request is granted if Thread 1
is in the else branch, and denied otherwise. Similarly, when
Thread 2 holds the mutex b, and Thread 1 requests the mu-
tex a, the request is granted if Thread 1 is in the else branch,
and denied otherwise. In all cases, the code-aware manager
guarantees deadlock freedom while managing resources in a
fair and liberal manner.

We focus on the problem of ensuring fair, deadlock-free
progress of all the threads composing the embedded applica-
tion; priorities will be dealt with in future work. We assume
that threads are correct, except possibly for their resource
interaction: for instance, we do not guarantee progress if a
thread holding a mutex enters an infinite loop (no resource
manager guarantees progress under these conditions). In
other words, we focus on the resource management prob-
lem, rather than on the software verification problem.

We formulate the scheduling problem as a game between
the manager and the threads, where the goal for the man-
ager is to avoid deadlocks while ensuring that all threads
make progress. A winning strategy in this game provides a
code-aware manager that guarantees progress for all threads
at run time. In this game, the manager has two sources
of antagonism: first, there is the non-determinism of each
thread (such as the if of Thread 1); second, the OS scheduler
chooses which thread to run when more than one is ready.
Treating both sources of antagonism in a purely adversar-
ial way would lead to the conclusion that most systems are
doomed to starvation. Rather, we include a detailed analy-
sis of what kind of fairness assumptions are needed to obtain
a more realistic model of the system. This analysis is not
present in some recent work on code-aware schedulers [17,
16], a circumstance that prevents those schemes from ad-
dressing the problem of progress (or absence of starvation),

C compiler C compiler

Embedded application
(executable)

Linker

Embedded application

Cynthesis

Annotated Code-aware
embedded
application

resource
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(C code) (C code)

(C source code)

Figure 2: Cynthesis tool flow: from the source code

of an embedded application, to the executable ap-

plication with its code-aware resource manager.

which is a major concern in the present paper. We argue
that this analysis is also necessary to extend the scope of
the synthesis to address quality of service concerns.

To achieve compact, yet fair, managers, we consider win-
ning strategies that may be randomized, that is, scheduling
decisions may use lotteries over available moves; the strate-
gies ensure progress and fairness with probability 1. We
provide efficient algorithms that compute winning strategies
from the source code in quadratic time, while accounting for
scheduler and thread fairness. We then take a closer look
at the interaction between the resource manager and the
underlying operating system scheduler, and we show how
the standard strategy obtained by solving the game can be
made more efficient in a real-world resource manager. We
show how the strategies can be represented compactly using
BDDs, and we discuss how to implement the resource man-
ager so that it is compact in terms of code size as well as
efficient to execute at run-time.

The tool Cynthesis. We have implemented these algo-
rithms in the tool Cynthesis. Our tool takes as input a
multithreaded application written in C, and produces code
for a custom resource manager for the application. The
Cynthesis tool flow is illustrated in Figure 2. First, Cyn-

thesis identifies the threads composing the embedded ap-
plication, and extracts from each thread a resource interface

192



which summarizes the resource usage (mutexes, semaphores)
of the thread. These resource interfaces are then merged
into a joint interface, and game-theoretic methods are used
to generate a code-aware resource manager from the joint
interface; this code-aware resource manager also consists of
C code. While generating the resource interfaces, Cynthe-

sis annotates the code of the embedded application, so that
it can communicate with the resource manager. The result-
ing annotated application, and resource manager, can then
be compiled and linked to obtain the complete embedded
application. Currently, Cynthesis produces code for the
the eCos embedded operating system [10]; the tool can be
easily retargeted to other operating systems.

We have applied the tool to a set of small multithreaded
embedded applications with up to six threads. In each case,
Cynthesis produced the custom resource manager within a
few minutes, and the resource manager could be compactly
represented using BDD-based data structures with a few
hundred nodes. We have also applied Cynthesis to a larger
case study, described in Section 5, consisting in a multi-
threaded program implementing an ad-hoc network protocol
for mobile robots. In this case study, Cynthesis correctly
identified and prevented a subtle deadlock that was present
in the original application.

Related work. In closely related work, [17, 16] study the
synthesis of code-aware managers for Java. The focus is
deadlock avoidance, and as mentioned earlier, the question
of progress (absence of starvation) is not addressed.

The problem of deadlock prevention has been extensively
studied in at least three different fields: databases, operating
systems, and flexible manufacturing systems. In the latter
field [9, 18, 1, 14, 12, 15], it is assumed that a Petri Net
model is constructed by hand. Also, most of these works
deal with processes that are terminating and/or determin-
istic. In contrast, our approach and tool rely on the auto-
mated analysis of software, and we deal in detail with the
issues arising from code abstraction and interaction with
operating-system schedulers. Further, the use of random-
ization to generate efficient schedulers has not been studied.

Static compiler techniques have been used in high perfor-
mance thread packages to improve response time through
better scheduling [24], however, the problem of resource in-
teraction and deadlock has not been studied. Finally, dead-
lock detection and prevention methods from transactional
databases do not apply in our setting, since our applications
do not have transactional semantics and rollback.

Paper organization. In Section 2, we define thread re-
source interfaces and joint interfaces, and outline how such
interfaces are extracted from the code of the embedded ap-
plication. Section 3 covers the game-theoretical techniques
used to generate code-aware resource managers. This sec-
tion presupposes some knowledge of game theory, and may
be skipped by readers interested in forming a general idea of
the tool Cynthesis. Section 4 explains how to adapt the re-
source managers obtained via game-theoretical methods to
the characteristics of the runtime environment of an embed-
ded application, obtaining managers that are more efficient
in practice. Finally, Section 5 describes the tool Cynthe-

sis, as well as the examples and case studies that have been
analyzed with it.

2. THREAD RESOURCE INTERFACES

2.1 Resources
A resource is a non-sharable, reusable quantity. For our

purposes, a resource x is an integer-valued variable together
with a set of actions {wx!, gx?, rx!} on x. Intuitively, these
actions correspond to communications between the threads
that manipulate the resource and the resource manager, and
have the following meaning:

• wx!: a thread requests the resource x (“want x”).

• gx?: the resource manager grants the resource x to a
thread (“get x”).

• rx!: the thread releases the resource x (“release x”).

Given a set R of resources, the set of actions on R is
Acts [R] = {wx!, gx?, rx! | x ∈ R} ∪ {ε}. The output actions
over R are given by ActsO[R] = {wx!, rx! | x ∈ R} ∪ {ε},
and correspond to communication from the thread to the
resource manager. In addition, we have a special action ε
which is needed in Definition 3 below. The input actions
over R are given by ActsI [R] = {gx? | x ∈ R}, and corre-
spond to communication from the resource manager to the
thread. We consider two types of resources: mutexes and
(counting) semaphores. A mutex is a resource that takes
value in {0, 1} and starts from the initial value 1; a mutex
can only be released by the same thread that acquired it
(as in POSIX). A semaphore, on the other hand, can be
initialized to any integer, and can be released and acquired
without constraints, except that its value can never become
negative.

2.2 Thread Interfaces
We model the behavior of threads by thread interfaces.

Thread interfaces model only the resource manipulation as-
pect of threads, and abstract out all data manipulation.

Definition 1. A thread interface I = (R,S, E, sinit, λ) con-
sists of a set R of resources, a finite control-flow graph (S, E)
with E ⊆ S × S, an initial state sinit ∈ S, and an action la-
bel λ : E → Acts [R] \ {ε} mapping each edge to a resource
action, such that

• each wx! edge leads to a state whose only outgoing edge
is labeled with gx?;

• each gx? edge starts from a state whose incoming edges
are all labeled with wx!.

Intuitively, the conditions on a thread interface guarantee
that a “want” action is immediately followed by the cor-
responding “get” action; moreover, a “get” action has no
siblings. We say that a state s is final if it has no suc-
cessors. For s ∈ S, let Isucc(s) = {t ∈ S | (s, t) ∈
E ∧ λ(s, t) ∈ ActsI [R]} be the set of input successors of s,
and let Osucc(s) = {t ∈ S | (s, t) ∈ E ∧ λ(s, t) ∈ ActsO[R]}
be the set of output successors of s. We carry subscripts
over to components, so that an interface Ii will consist of
(Ri, Si, Ei, s

init
i , λi); similarly, we carry subscripts to Isucc

and Osucc.

Example 1. Consider the POSIX interface for mutexes with
functions mutex lock(x) and mutex unlock(x). Each call
mutex lock(x) is represented by the pair of actions wx! and

193



1

wa!wa!

2

3

10

4

7

5

6

8

9

0

wc!

ga?

gc?

rc!rb!

gb?

wb!

ga?

ra! ra!

(a) Thread interface 1

2

3

4

5

ga?

ra!

gb?

wa!

1

0

wb!

rb!

(b) Thread inter-
face 2

Figure 3: The thread interfaces corresponding to

the code in Figure 1.

gx?; a (nonblocking) call mutex unlock(x) is represented
by the action rx!. Similarly, for a counting semaphore y,
the function sem wait(y) corresponds to the two actions
wy! and gy?, and the function sem post(y) corresponds to
the release action ry!. For example, our tool extracts the
resource interfaces of Figure 3 from the code in Figure 1.

2.3 Systems

Syntax. Given a set R of resources, a resource valuation is
a function ν : R 7→

�
mapping each resource to a natural

number value. For a valuation ν and x ∈ R, we denote by
ν[x := k] the valuation obtained from ν by assigning the
value k ∈

�
to x. A system is a set of resources, an initial

resource valuation of the resources, and a tuple of (a fixed
number of) thread interfaces.

Definition 2. A system is a tuple I = (R, ν0, (I1, . . . , In)),
consisting of a set R of resources, a mapping ν0 : R 7→

�
assigning an initial value to each resource, and of n > 0
thread interfaces I1, . . . , In. We require that Ri ⊆ R, for
1 ≤ i ≤ n, and that if x ∈ R is a mutex, ν0(x) = 1.

Semantics. Given a system, we can define its semantics
using a joint interface, obtained by constructing the product
of the interfaces, annotated with the values of the resources
at the states. The joint interface models the execution of a
multithreaded system on a single processor.

Definition 3. Given a system I = (R, ν0, (I1, . . . , In)), its
joint interface is a tuple MI = (R, S, E, sinit, λ, θ), where R
is as in I, and:

• S = ���
i
Si � × (R 7→

�
);

• sinit = (sinit
1 , . . . , sinit

n , ν0);

• E ⊆ S × S, and λ : E 7→ Acts [R], θ : E 7→ {0, . . . , n}
are defined as follows. Let s = (s1, . . . , sn, ν) ∈ S; we
have (s, t) ∈ E, λ(s, t) = α, and θ(s, t) = i iff there is
s′i ∈ Si such that (si, s

′
i) ∈ Ei, λi(si, s

′
i) = α, and for

t = (s1, . . . , si−1, s
′
i, si+1, . . . , sn, ν′) we have:

[resource grant] if α = gx?, then ν(x) > 0 and ν ′ =
ν[x := ν(x) − 1];

[resource request] if α = wx!, then ν′ = ν; and

[resource release] if α = rx!, then ν′ = ν[x := ν(x) +
1]; further, if x is a mutex, then ν(x) = 0.

Moreover, let s be a state that has no successors according
to the above rules. Then, we add a self-loop (s, s) ∈ E and
we set λ(s, s) = ε and θ(s, s) = 0.
Let s ∈ S and s = (s1, . . . , sn, ν); for all i = 1, . . . , n, we
set loci(s) = si. We let Osucc, Isucc refer to MI , and for
1 ≤ i ≤ n, we let Osucci, Isucci refer to Ii.

In MI , edges labeled with the special action ε are a technical
addition, used to ensure that all finite paths can be extended
to infinite ones.
The portion of the joint interface MI that is reachable from
its initial state sinit may not be finite, as the value of re-
sources could grow beyond bounds. Of course, if all re-
sources are mutexes (which take values 0 and 1), the state
space is finite. In general, a coverability tree algorithm for
Petri nets can check for boundedness, but this check is ex-
pensive.

Theorem 1. Let MI = (R, S, E, sinit, λ, θ) be the joint in-
terface of a system I. The problem of deciding whether
the portion of S that is reachable in (S, E) is finite is
EXPSPACE-hard.

In the following, we only consider systems I such that the
reachable portion of MI is finite. In our tool Cynthesis we
avoid solving the question of whether the portion of the joint
interface reachable from the initial state is finite. Rather,
we simply take as input the maximum value to consider
for any semaphore; this value is usually well known to the
programmer. If we find a reachable state where the value
of a semaphore is greater than this maximum, we stop and
report the problem.

3. THE SCHEDULING GAME
In this section, unless otherwise noted, we consider a fixed

system I = (R, ν0, (I1, . . . , In)), which gives rise to a joint
interface MI = (R,S, E, sinit, λ, θ).

A joint interface evolves by the interaction between three
entities: the threads, the resource manager, and the sched-
uler. From a given state, if there are any outgoing edges
labeled by input actions, the resource manager can choose
to follow one of them: this corresponds to granting a re-
source to a thread. Once the input edge has been followed
(and the resource granted), the resource manager still re-
tains control at the destination state. From a given state, if
there are any edges labeled by output actions that leave the
state, the resource manager can also elicit to return control
to the threads. At this point, which output action occurs
next depends on two factors. The underlying operating-
system scheduler, using its own policy (such as time-sharing
with round robin), selects which of the ready threads exe-
cute on the CPU. In addition, each thread has its own inter-
nal nondeterminism, which determines which output action
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the thread generates next. Thus, we identify three types of
nondeterminism in the joint interface.

1. Resource manager nondeterminism, due to the re-
source manager choosing an input edge, or choosing
to wait for an output action.

2. Inter-thread nondeterminism, due to the operating-
system scheduler resolving thread interleaving.

3. Intra-thread nondeterminism, which determines which
of several possible output actions a thread will do.

Resource manager. The goal of the resource manager is
to ensure that all threads progress, unless they terminate.
In order to define the goal, we introduce the following pred-
icates over edges of MI : for 1 ≤ i ≤ n, the predicate
progress i is true over an edge (s, t) ∈ E if θ(s, t) = i, and the
predicate final i is true over an edge (s, t) ∈ E if the thread
i is in a final state in s. Using temporal logic notation, and
considering that final i is equivalent to 2final i, the goal can
be written as a generalized Büchi condition over the edges:

φgoal
I

=
n�

i=1

23(progress i ∨ final i).

Our aim is to synthesize a resource manager that satisfies
this goal. In order to model accurately the resource manager
synthesis problem, we make the following fairness assump-
tions over the other two types of nondeterminism.

Inter-thread nondeterminism. We assume that the un-
derlying operating system scheduler is fair: more precisely,
we assume that, if a thread is infinitely often ready to exe-
cute, it will make progress infinitely often. We introduce a
predicate ready i, for 1 ≤ i ≤ n, which is true over an edge
(s, t) ∈ E iff (i) (s, t) is labeled with an output action, and
(ii) there is (s, t′) ∈ E with θ(s, t′) = i. Intuitively, (i) means
that the resource manager decided to let the scheduler sched-
ule some thread, and (ii) means that thread i was among the
threads that could have generated the next output. With
this notation, the fairness assumption on the scheduler is:

φinter
I =

n�
i=1

(23ready i → 23progress i).

Intra-thread nondeterminism. Assuming that intra-
thread nondeterminism is resolved in an arbitrary way may
easily lead to declaring the manager synthesis problem to
be infeasible. In fact, whenever a thread can execute a
loop while holding a resource, the arbitrary resolution of
intra-thread nondeterminism introduces the possibility that
the loop never terminates. In practice, a reasonable as-
sumption is that intra-thread nondeterminism is resolved
in a (strongly) fair fashion: if each choice is presented in-
finitely often, each choice outcome will follow infinitely of-
ten. Such fairness entails loop termination.1 For all threads
1 ≤ i ≤ n, all u, v ∈ Si, and all (s, t) ∈ E, we in-

troduce the predicates fromu
i (s, t)

def
= (loci(s) = u) and

1Recall that our goal is to schedule correct software, rather
than to perform software verification.

takeu,v
i (s, t)

def
= � (loci(s) = u) ∧ (loci(t) = v) � . The fair-

ness assumption for intra-thread nondeterminism can then
be written as

φintra
I =

n�
i=1

�
u∈Si

�
v∈Osucci(u)

(23fromu
i → 23takeu,v

i ).

3.1 Stochastic Games
We base the synthesis of the resource manager on stochas-

tic games. As we will see in detail later, we use prob-
abilities both to approximate the above types of nonde-
terminism, and to be able to generate manager strategies
that are memoryless, but that may require randomization
[4]. Given a finite set A, we denote by Distr(A) the set of
probability distributions over A. For d ∈ Distr(A) we let
Supp(d) = {a ∈ A | d(a) > 0}. Given a ∈ A we denote by
δ(a) ∈ Distr(A) the probability distribution that associates
probability 1 with a, and 0 to all other elements of A. We
also denote by Uniform(A) the probability distribution that
associates probability 1/|A| to every element of A.

Definition 4. A two-player game G =
(S,Moves , Γ1, Γ2, τ, φ) consists of a set of states S, of a set
of moves Moves, of two mappings Γ1, Γ2 : S 7→ 2Moves \ ∅
associating to each state s and player i ∈ {1, 2} the set of
moves Γi(s) that player i can play at s, a (probabilistic)
destination function τ : S × Moves2 7→ Distr(S), which
associates with each s ∈ S and m1 ∈ Γ1(s), m2 ∈ Γ2(s),
a probability distribution τ (s,m1, m2) over the successor
state. Finally, the winning condition φ is a measurable
subset of Sω.

For i ∈ {1, 2}, we say that G is an i-Markov decision
process (i-MDP) [8] if |Γ3−i(s)| = 1 at all s ∈ S; 1-
MDPs are also called simply MDPs. A strategy for player
i ∈ {1, 2} in a game G = (S,Moves , Γ1, Γ2, τ ) is a map-
ping πi : S+ 7→ Distr(Moves), such that for all σ ∈ S∗

and s ∈ S, we have πi(σs)(m) > 0 implies m ∈ Γi(s).
We denote by Π1, Π2 the set of strategies for players 1
and 2 respectively. Once the strategies π1 and π2 are fixed,
the game is reduced to an ordinary stochastic process, and
the probabilities of all measurable events (which include all
ω-regular properties [22]) are defined (see e.g. [13]). We
say that a state s ∈ S is winning if there is π1 ∈ Π1

such that, for all π2 ∈ Π2, we have Prπ1,π2

s (φ) = 1. As
we use randomized strategies, winning with probability 1
is the natural notion of winning. We denote by Win(G)
the set of winning states. A winning strategy is a strat-
egy that wins from all winning states, that is, a strategy
π1 ∈ Π1 such that, for all s ∈ Win(G) and all π2 ∈ Π2,
we have Prπ1,π2

s (φ) = 1. The size of a game is defined by
|G| = �

s∈S
�

m1∈Γ1(s) �
m2∈Γ2(s) | Supp(τ (s,m1, m2))|.

3.2 The Scheduling Game
Since our aim is to derive strategies that resolve resource

manager nondeterminism, we formulate the resource man-
ager synthesis problem as a game played on the joint in-
terface by the resource manager against a team consisting
of the threads and the scheduler. Again, unless otherwise
noted, we refer to a system I = (R, ν0, (I1, . . . , In)) which
gives rise to a joint interface MI = (R, S, E, sinit, λ, θ).

Definition 5. The two-player game corresponding to a sys-
tem I consists of a tuple G2 = (S,Moves , Γ1, Γ2, τ, φ2),
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where Moves = S ∪ {⊥} and φ2 = (φinter
I ∧ φintra

I ) → φgoal
I

.
The sets of moves for player 1 (representing the resource
manager) and player 2 (representing the inter and intra-
thread nondeterminism) are as follows, for all s ∈ S:
• If Osucc(s) 6= ∅, then Γ1(s) = Isucc(s) ∪ {⊥} and
Γ2(s) = Osucc(s).
• If Osucc(s) = ∅, then Γ1(s) = Isucc(s) and Γ2(s) = {⊥}.
The destination function is given by the following rules,
where ∗ represents a wildcard, and s ∈ S:
• For t ∈ Isucc(s), we have τ (s, t, ∗) = δ(t);
• for t ∈ Osucc(s), we have τ (s,⊥, t) = δ(t).

The manager synthesis problem can thus be phrased as the
problem of finding a winning strategy in G2. We say that
the system is schedulable if sinit ∈ Win(G2). One can see
that this goal is upward-closed, so that memoryless, but ran-
domized, strategies suffice to win the game [4].

3.3 Practical Solution of the Scheduling Game
The best known algorithms to compute a winning strategy

in G2 take time exponential in the winning condition, and
in our case, the size of the winning condition is proportional
to the sum of the sizes (numbers of states) of all thread in-
terfaces in I [23]. Thus, this approach leads to an inefficient
algorithm. Instead, we show that we can exploit the spe-
cial structure of the joint interface and solve the synthesis
problem in a more efficient way, consisting of two steps. We
consider two simplified versions of G2:

1. A game G2.5, resulting from resolving all intra-thread
nondeterminism in G2 in a purely randomized fashion.

2. An MDP G1.5, resulting from resolving both the intra-
thread and the inter-thread nondeterminism in G2 in
a purely randomized fashion.

We show that we can construct in quadratic time in |G2|
a winning strategy for the MDP G1.5 which is also a win-
ning strategy of the game G2.5. We show that this winning
strategy, under many cases of practical importance, is also
a winning strategy for the original game G2. In all cases,
we show that it is possible to check efficiently whether the
strategy for game G2.5 works also for G2 — and in our ex-
perience, this has been always the case in the examples we
have studied so far.

Definition 6. Given the game G2 =
(S,Moves , Γ1, Γ2, τ, φ2), the games G2.5 =
(S,Moves ′, Γ1, Γ

′
2, τ

′, φ2.5) and G1.5 =
(S,Moves , Γ1, Γ

′′
2 , τ ′′, φ1.5) are obtained as follows. We

have Moves ′ = Moves ∪ {1, . . . , n}, φ2.5 = φinter
I → φgoal

I
,

and φ1.5 = φgoal
I

. The functions Γ′
2, τ

′ and Γ′′
2 , τ ′′ coincide

with Γ2, τ , except that:

• For all s ∈ S such that |Osucc(s)| > 1, we let Γ′
2(s) =

{i | ∃t ∈ Γ2(s) . θ(s, t) = i}, and for i ∈ Γ′
2(s), we let

τ ′(s,⊥, i) = Uniform({t ∈ Γ2(s) | θ(s, t) = i}).

• For all s ∈ S, we let Γ′′
2 = {⊥}, and we let

τ ′′(s,⊥,⊥) = Uniform(Osucc(s)).

First, we show how to construct the most liberal winning
strategy for game G1.5; informally, this is the strategy that,
among the winning ones, plays with positive probability the
largest possible sets of moves.

A memoryless strategy π ∈ Π1 gives rise to a graph
(S, Eπ), where Eπ = {(s, t) | π(s)(t) > 0 or π(s)(⊥) >
0 and λ(s, t) ∈ ActsO[R]}. A maximal end component
(MEC) of G1.5 is a maximal subgraph (C, F ) of (S, E) such
that: there is a memoryless strategy π such that C is a
closed (no outgoing edge) and strongly connected compo-
nent of (S, Eπ), and such that F = {(s, t) ∈ Eπ | s ∈ C} [6].
We say that thread k is finished in a state s if lock(s) is final
in Ik. Notice that if a thread k is finished at some state of
a MEC, it is finished at all states of the MEC. We say that
a MEC (C, F ) is fair iff, for every thread 1 ≤ k ≤ n, either
k is finished in C, or there is (s, t) ∈ F with θ(s, t) = k.
Let W be the union of all sets of states belonging to fair
end components. It can be shown that a state is winning
in G1.5 iff it can reach W with probability 1 [4]; we denote
by Win(G1.5) the set of winning states of G1.5. By the re-
sults of [6, 7], this set can be computed in time quadratic in
|G1.5|.

The most liberal winning strategy π∗ for G1.5 is the
strategy that selects uniformly at random among moves of
player 1 that lead only to winning states. Precisely, for
s ∈ Win(G1.5), we let π∗(s) = Uniform({m ∈ Γ1(s) | ∀t ∈
S.(τ ′′(s, m,⊥)(t) > 0 → t ∈ Win(G1.5))}). π∗ is arbitrarily
defined on states s ∈ S \ Win(G1.5).

Theorem 2. The strategy π∗ is winning in G1.5, and can
be computed in time O(|G1.5|2).

In the next section, we present some technical lemmas, that
are later used to show the relationships between the different
versions of the scheduling game.

3.4 Properties
In order to argue that π∗ is winning not only in G1.5, but

also in G2.5, we need to develop some properties of π∗ and
MI . First, we state a simple property of MI .

Lemma 1. In MI , there is no loop made entirely of input
edges, and there is no loop made entirely of output edges.

Proof. The first statement is due to the fact that each
input edge decreases the value of a resource. The second
statement is due to the fact that resource requests (wx!) are
immediately followed by an input edge, and resource releases
(rx!) increase the value of a resource.

We now show that, in MI , input and output moves com-
mute, as they are independent. In the following, we write
s

x
−→
i

t to signify that (s, t) ∈ E, λ(s, t) = x and θ(s, t) = i.

Lemma 2. For all s, s1, s2 ∈ S, if s
α!
−→

i
s1 and s

β?
−→

j
s2,

then there is t ∈ S such that s2
α!
−→

i
t and s1

β?
−→

j
t.

Proof. First, notice that i 6= j, as input edges have no
siblings in their respective thread (see Definition 1). Second,
the value of each resource in s1 is at least as much as it is

in s. Thus, there is a state t such that s1
β?
−→

j
t. In s2, the

value of a certain resource is lower than it is s. However,
output edges are not affected by the value of the resources,

so there is a state t′ such that s2
α!
−→

i
t′, and by construction

of MI , we have t = t′.

The following lemma states an equivalent commutativity
property for outputs belonging to different threads.
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Figure 4: Outputs cannot link winning states to los-

ing ones.

Lemma 3. For all s, s1, s2 ∈ S, if s
α!
−→

i
s1 and s

β!
−→
j

s2,

with i 6= j, then there is t ∈ S such that s2
α!
−→

i
t and s1

β!
−→
j

t.

Proof. Since output edges can either decrease resource
usage (in the case of resource release actions), or leave re-
source usage unchanged (in the case of resource request ac-
tions), α! will still be enabled from s2, and β! will be enabled

from s1; moreover, by construction of MI , we have s2
α!
−→

i
t

and s1
β!
−→
j

t for the same t.

The following lemma shows that, in G1.5, an edge labeled
with an output cannot connect a winning state to a losing
state.

Lemma 4. Let s ∈ Win(G1.5) and s
α!
−→

i
t. Then, t ∈

Win(G1.5).

Proof. Suppose that, starting from s, we keep following
winning inputs, as long as there is a winning input in the
current state. By Lemma 1, we must eventually reach a state
sm−1 that has no winning inputs. By repeated applications
of Lemma 2, the output α! is still enabled in sm−1.

Summarizing, as illustrated in Figure 4, we can find a path
σ = ss1 . . . sm such that (i) all states in σ are winning, (ii)
all edges in σ except the last one are labeled with inputs,
and (iii) the last edge (sm−1, sm) is labeled with α!.

Again by repeated applications of Lemma 2, from t we
can mimic the path σ, by taking similar input edges, finally
reaching sm. We obtain the conclusion that t can reach the
winning state sm be means of input edges only. So, t itself
is a winning state.

In the following, we say that a path is in Win(G1.5) to mean
that it is a path in G1.5 made entirely of winning states. We
now introduce a binary relation “v” over the set of winning
states of G1.5. For all s, s′ ∈ Win(G1.5), let s v s′ if and
only if there is a path σ in Win(G1.5) that goes from s
to s′ using only output edges. The following lemma shows
that if s v s′ and an input edge is winning from s, the
corresponding input edge from s′ is also winning.

Lemma 5. Let s v s′. For all t ∈ Win(G1.5) such that

s
α?
−→

i
t there is t′ ∈ Win(G1.5) such that s′

α?
−→

i
t′ and

t v t′.

Proof. Let σ be a path from s to s′ in Win(G1.5) that
contains only outputs edges. By repeated applications of
Lemma 2, we can take a similar path σ′ from t, leading to a

state t′ such that t v t′. Moreover, by construction s′
α?
−→

i
t′.

By applying Lemma 4 to all edges in σ′ we obtain that, since
t is winning, t′ is also winning.

The following lemma will be instrumental in showing that
π∗ is a winning strategy also in G2.5.

Lemma 6. There is p > 0 such that, for all s ∈ Win(G1.5),
if in Win(G1.5) there is an acyclic path from s to a state
s′, then using π∗ in G2.5, for all player 2 strategies, with
probability at least p, starting from s the game reaches a
state t′ such that s′ v t′.

Proof. Let ρ be the path from s to s′; the proof is by
induction on the length of ρ. Fix an arbitrary strategy of
player 2. For |ρ| = 0, the result trivially holds. As induction
hypothesis, assume that there is a path ρ from s to s′ in
Win(G1.5), and assume that using π∗ in G2.5 we can reach
from s a state t′ such that s′ v t′ with positive probability.
Let σ be the sequence of output actions leading from s′ to
t′, and let θ be the path from s to t′. We will show that, if
we prolong ρ by one step, reaching s′′, then we can prolong
θ by 0 or more steps, obtaining a path θ′′ to t′′, such that
s′′ v t′′, and such that θ′′ is followed with positive bounded
probability in G2.5. Notice that, due to Lemma 3, outputs
of different threads commute. Hence, we can consider the
ordering in σ restricted to outputs belonging to the same
thread. Equivalently, rather than σ, we can reason about the
collection of sequences of output actions {σi}i=1..n, where
σi represents the sequence of actions of thread i along σ.
There are then three cases, depending on the step s′s′′:

• Assume that s′
α?
−→

i
s′′, for some α and i ∈ {1, . . . , n}.

By Lemma 5, there is also a winning step t′
α?
−→

i
t′′,

and a path from s′′ to t′′ that uses the sequence of
output actions σ. As π∗ takes this step with positive
probability, this leads to the result.

• Assume that s′
α!
−→

i
s′′, for some α and i ∈ {1, . . . , n};

assume also that α does not appear in σi. By
Lemma 3, from t′, the same output α is enabled, so
that π∗ will play with positive probability action ⊥,
and in G2.5 some output β will occur. If β belongs
to thread i, then with positive probability (according
to the randomized resolution of intra-thread nondeter-
minism) it must be β = α, and the destination state
t′′ will be related to s′′ again by σ. If β does not be-
long to thread i, we add β to σ. By Lemma 3 we have
that output α is still enabled from the destination state
after β, so that π∗ will again play ⊥ from the destina-
tion with positive probability. Eventually, an output
belonging to thread i will occur, as by Lemma 1 there
cannot be an infinite path consisting entirely of output
actions.

• Assume that s′
α!
−→

i
s′′, for some α and i ∈ {1, . . . , n};

assume also that α appears in σi. Then, with posi-
tive probability (due to the resolution of inter-thread
nondeterminism), α will be the first action of σi. We
remove α from σi, obtaining a shorter σ′; we have that
s′′ v t′, and s′′ and t′ are related by σ′.

The existence of a constant bound p > 0 derives from the
fact that the length of ρ, and the size of σ, are bounded, as
is the number of ways in which intra-thread nondeterminism
can be resolved.
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Figure 5: Thread interface from Example 2.

3.5 Comparing Games
We now proceed to prove that the strategy π∗ is also a win-
ning strategy for G2.5.

Theorem 3. The strategy π∗ is winning in game G2.5, and
Win(G1.5) = Win(G2.5).

Proof. For i ∈ {1, . . . , n} and s ∈ Win(G1.5), we say
that thread i is enabled in s if there is an edge (s, t) ∈ E
such that θ(s, t) = i and t ∈ Win(G1.5). Note that this
definition is correct, as by Lemma 4 output edges are always
winning.

For i ∈ {1, . . . , n} and s∗ ∈ Win(G1.5), we have to prove
that, using π∗ in G2.5 and starting from s∗, with positive
probability a state is reached where thread i is enabled.
Since this is true of every winning state s∗, and since the
game stays forever in the set of winning states, it follows that
the probability of enabling thread i infinitely often, ensuring
that it is also taken infinitely often, is in fact 1.

If in s∗ the next action of thread i is an output, then by
Lemma 4 it is available directly from s∗. Thus, assume in the
following that the next action of thread i in s∗ is an input.
Since s∗ is winning in G1.5, there is a path in Win(G1.5)
from s∗ to a state t∗ where thread i is enabled. By applying
Lemma 6 to states s = s′ = s∗ and t = t∗, we obtain that in
G2.5 with positive probability a state t′ is reached such that
t∗ v t′, and therefore thread i is enabled in t′.

The previous result, which depends in a crucial way on the
structural properties of G2.5 (it is certainly not valid for
an arbitrary two-person game), enables us to compute in
quadratic time a winning strategy for game G2.5. We now
show how to use this result for G2.5 also for our original
problem G2.

Our first result concerns systems where all resources are
mutexes (called mutex-only systems), and where the threads
satisfy the periodically mutex-free (PMF) assumption. Infor-
mally, this assumption states that, if the intra-thread non-
determinism is resolved in a fair fashion, then the thread is
infinitely often not holding any mutex. In practice, threads
in mutex-only systems invariably satisfy the PMF assump-
tion. To make this precise, consider a fixed thread inter-
face Ii = (Ri, Si, Ei, s

init
i , λi), for 1 ≤ i ≤ n. A path in

Ii is a path in the graph (Si, Ei). We say that an infinite
path is fair iff it satisfies �

u∈Si
�

v∈Osucci(u) 23fromu
i →

23takeu,v
i . Moreover, for a finite path σ and a re-

source x ∈ R, let decr (x, σ) = |{(s, t) ∈ σ | λi(s, t) =
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Figure 6: Thread interfaces from Example 2.

gx?}|, incr(x, σ) = |{(s, t) ∈ σ | λi(s, t) = rx!}|, and
balance(x, σ) = incr(x, σ) − decr (x, σ). We say that Ii is
mutex-correct if for all finite traces σ and all mutexes x ∈ Ri,
it holds balance(x, σ) ∈ {−1, 0}.

Definition 7. We say that a thread is periodically mutex
free (PMF) if it only uses mutexes, it is mutex-correct, and
in all fair paths σ, there exist infinitely many prefixes σ′ of
σ that satisfy balance(x, σ′) = 0 for all mutexes x.

For mutex-only systems consisting of threads satisfying the
PMF assumption (called, for short, PMF systems), the
strategy π∗ is winning also in G2. Hence, for PMF sys-
tems we can derive resource managers in time quadratic in
|G2|.

Theorem 4. For PMF systems, π∗ is winning in game G2,
and Win(G1.5) = Win(G2).

The next example shows that π∗ may not be winning in G2,
when the system is not PMF. Notice that a rather special
thread structure is required for this to happen.

Example 2. Consider the 5-mutex, 3-thread system
({a, b, c, d, e}, ν0, (I1, I2, I3)) where I1 is as in Figure 6(a),
I2 is as in Figure 6(b), and I3 is as in Figure 5. First, at
all times after thread 1 reaches state 2, it will always own
at least one mutex among {a, b, c}. Similarly, thread 2 will
always own at least one of {a, d, e}. For this reason, the
system is not PMF. However, the initial state (0, 0, 0, ν0)
of G1.5 is winning. Clearly, threads 1 and 2 can make
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infinite progress, since they only share mutex a, and they
both release said mutex periodically. It remains to show
that under the most general winning strategy π∗, thread
3 is allowed to perform its critical region (i.e. state 6)
with probability 1. In G1.5 (and G2.5) the nondeterminism
that threads 1 and 2 exhibit in state 2 is resolved by a
uniform distribution. So, while making infinite progress,
with probability 1 those threads will acquire mutexes b
and d at the same time, thus leaving mutexes c and e free.
At that point, as soon as mutex a is released, thread 3
can safely execute its critical region, by acquiring mutexes
a, c, e.

On the other hand, in game G2 threads 1 and 2 can coop-
erate in order to never release both c and e at the same time.
When thread 1 is in state 2, thread 2 can only be in state
6 or 11 (because those are the only states where thread 2
does not hold a). So, player 2 can choose to acquire c when
thread 2 is in 6 (thus holding d) and acquire b when thread
2 is in 11 (thus holding e). This ensures that c and e are
never free at the same time. Now, consider a state where a
is free. Giving a to thread 3 inevitably leads to a deadlock,
because thread 3 needs c and e before releasing a, and either
of them is currently owned and will not be released before
a is.

Our next result, useful for threads that may use semaphores,
enables us to establish whether the strategy π∗ is winning
also for G2. To develop the result, note that the game G2,
once player 1 fixes strategy π∗, is a 2-MDP. For such 2-
MDPs, we can compute in polynomial time the set of win-
ning states for player 2 with respect to the complementary
goal ¬φ2 using an algorithm that is a modified version of
the algorithm proposed in [5] for Streett MDPs. This leads
to the following result.

Theorem 5. We can check in time O � |G2|2 ·n · � n

i=1 |Ei| �
whether the strategy π∗ is winning in G2.

In our experience, the strategy π∗ is almost invariably win-
ning in G2; indeed, the only counterexamples we have been
able to construct are based on threads with fairly special
structure, where inter-thread communication can be used
to synchronize the usage of resources by threads in partic-
ular ways. Therefore, we claim that in most cases, we can
construct a resource manager strategy in time quadratic in
|G2|.

4. TOWARDS EFFICIENT RESOURCE
MANAGERS

The strategy π∗, even when winning, may not be an ef-
ficient strategy in practice. According to it, the resource
manager would issue ⊥ (wait for a resource request or re-
lease) with positive probability when there are input moves
that are available and winning. First, this potentially re-
duces CPU utilization. In fact, other things being equal, it
is better to grant immediately as many resource requests as
possible: this ensures that the OS scheduler has the widest
choice of threads to execute on the CPU, helping to avoid
idle time when all available threads are blocked, e.g., waiting
for I/O. More importantly, as a consequence of how we ab-
stract thread interfaces, there is no guarantee that a thread
whose next action is an output will issue that output within
a short amount of time. For instance, the next resource re-
quest may be issued only after some user input has occurred.

In this section, we propose several improvements to π∗,
aimed at reducing the number of times when the manager
issues ⊥ when input actions are available.

Maximal progress and critical progress strategies.
The simplest idea consists in issuing ⊥ only in the states
S! = {s ∈ S | π∗(s)(⊥) = 1} where ⊥ is the only winning
move: this corresponds to waiting for output moves only
when no resource can be granted. This idea leads to the
maximal progress strategy πp, defined by πp(s) = δ(⊥) for
s ∈ S!, and πp(s) = Uniform(Supp(π∗(s)) \ {⊥}) otherwise.
Unfortunately, the maximal progress strategy is not always
winning, as the following example demonstrates.

Example 3. Consider the 3-thread system ({a, b}, {a 7→
1, b 7→ 1}, (I1, I2, I3)) where I1 and I2 are as in Figure 7(a),
while I3 is as in Figure 7(b). Figure 7(c) shows a frag-
ment of the corresponding joint interface. Let us analyze
this fragment as part of G2, and assume that player 1 em-
ploys πp. One can check that, starting from the initial state
(0, 0, 0, ν0), player 2 can steer the game to state (5, 1, 1, ν),
where ν = {a 7→ 0, b 7→ 1}. At this point, all of the edges,
except for the dashed ones, can be taken under πp. The ob-
jective for the player 1 is to reach one of the states labeled as
“good”, as in those states thread 3 can make progress with-
out risking a deadlock. However, player 2 can steer the game
away from the two good states, thus reaching (1, 5, 1, ν) with
certainty. Since (1, 5, 1, ν) is symmetrical w.r.t. (5, 1, 1, ν),
this strategy enables player 2 to keep thread 3 starving for-
ever. Thus, πp is not a winning strategy in this game. The
same applies to G2.5, since the threads under consideration
have no inter-thread non-determinism.

It should be noted that the situation is different in G1.5.
Since all output edges happen uniformly at random, πp

is winning in this case, as state (0, 0, 1, ν0) is eventually
reached with probability 1.

The example above suggests that sometimes, as in state
(5, 1, 1, ν), it is necessary to wait for output actions, even
when there are resources that are ready to be granted. The
problem of waiting for outputs, as mentioned earlier, is that
in general there is no guarantee that the outputs will be
generated in a timely fashion. However, in mutex-only sys-
tems, we can assume that when a thread holds a mutex it
will generate an output in a timely fashion, either to release
the mutex, or to request another mutex. This captures the
idea that, in well-written code, critical regions have short
durations. Based on this idea, we let Sc be the set of states
of a mutex-only system where there is some thread holding
a mutex, and we propose a strategy that waits for outputs
only in Sc. We define the critical progress strategy πc by
letting, for all s ∈ S, πc(s) = π∗(s) if s ∈ Sc or s ∈ S!, and
πc(s) = Uniform(Supp(π∗(s))\{⊥}) otherwise. The follow-
ing result shows that, for PMF systems, πc is an efficient
resource manager strategy.

Theorem 6. In a PMF system, πc is winning for G2.

Efficient strategies for systems with semaphores. A
natural extension of πc to systems with semaphores is a
strategy that waits for outputs only when there is at least
one thread waiting for a resource that is not available (so
that another thread must be holding a resource, and it may
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Figure 7: A system where the maximal progress

strategy is not winning.

be reasonable to expect an output action in a timely man-
ner). Unfortunately, there are examples showing that such
an extension is not winning in general. We discuss two re-
lated strategies that are winning, and efficient, for systems
with semaphores.

To obtain our first strategy, we reason as follows. Once a
memoryless strategy π ∈ Π1 is fixed, the game G2 is equiv-
alent to a 2-MDP G2(π). If an end-component in this 2-
MDP is not fair, that is, if there is a thread k that is neither
finished, nor progresses in the end component, then it can
be seen that thread k must be stuck waiting for an input
(a resource) at all states of the end component. This sug-
gests to skip ⊥ (waiting for outputs) only when no thread
is blocked: in this way, if the strategy differs from π∗ by
cutting ⊥, it can do so only in a winning component. Pre-
cisely, for s ∈ S we let Succ(s, π∗) = {t ∈ S | ∃m1 ∈
Γ1(s).∃m2 ∈ Γ2(s).(π

∗(m1) > 0 ∧ τ (s,m1, m2)(t) > 0)} be
the set of possible successors of s according to π∗, and we
let Sb = {s ∈ S | ∃k ∈ [1..n].∀t ∈ Succ(s, π∗).θ(s, t) 6= k} be
the set of states where some thread is blocked. For s ∈ S,
we then define πb by πb(s) = π∗(s) if s ∈ Sb ∪ S!, and
πb(s) = Uniform(Supp(π∗(s)) \ {⊥}) otherwise.

Theorem 7. The strategy πb is winning in G2 iff π∗ is win-
ning in G2.

Finally, we can obtain an efficient strategy with memory as
follows. We say that a thread k is bypassed whenever it is
waiting for an input, and the scheduling strategy does not
give that input. Then, given a bypass bound M ∈

�
, we

can construct a strategy πp
M as follows. For each thread

k ∈ [1..n], πp
M keeps track of the number bk of times for

which thread k has been consecutively bypassed. As long as
bk ≤ M for all 1 ≤ k ≤ n, the strategy πp

M behaves like πp.
When bk > M for some k ∈ [1..n], on the other hand, πp

M

reverts to behave like π∗, thus sometimes waiting for outputs
when there are input actions (resource grants) that could
be taken. The idea, informally, is as follows: if a thread is
bypassed for a large number of consecutive times, it means
that some other threads may be holding the resources it
needs to proceed. Favoring output actions (among which are
resource releases) enables the system to reach a state where
the bypassed thread can be finally granted the resource it
needs.

Theorem 8. For all M ∈
�
, we have that πp

M is winning
in G2 iff π∗ is winning in G2.

5. THE TOOL
We have developed a prototype tool called Cynthesis

that realizes the theory hereby presented. The tool takes as
input a C program, and it either produces a warning that
the system is not schedulable (according to the definition
in Section 3.2), or it outputs a custom resource manager
encoded as a C program that can be compiled and linked
to the original program. The result is an executable that
is deadlock-free whenever the OS scheduler is fair, and the
threads do not block for reasons other than resources (such
as infinite loops). The tool is currently tailored to the eCos
embedded OS [10], but it can be easily modified to work
with another OS.

To extract thread interfaces, the tool uses the CIL li-
brary [19] to build a control-flow graph (CFG) for each
thread. For the purpose of this graph, function calls are
treated as inlined. While building the CFG, each time a
synchronization primitive is detected, edges labeled with
the appropriate action are added to the thread interface,
as follows: (i) calls to mutex unlock(x) and sem post(x)

are represented by an edge labeled rx!, and (ii) calls to
mutex lock(x) and sem wait(x) are represented by a se-
quence of two edges labeled with wx! and gx? respectively.
The original calls are also automatically annotated with lo-
cation information, to allow the resource manager to distin-
guish them at run-time. The graph is then minimized to
remove transitions that do not involve resources.

Currently, in order for the tool to correctly identify re-
sources, they must be declared as global variables and then
used by their original names; we are working to add alias
analysis to the tool to overcome this limitation. Once the
thread interfaces are extracted, the tool solves the game
G1.5 and it outputs a custom resource manager in the form
of compilable C code. The resource manager behaves like
the strategy π∗, or optionally like one of the other winning
strategies discussed in Section 4. In order to simulate the
behavior of a strategy, the custom manager needs to know
which winning moves are available at any given decision
point. In turn, this means that it has to know in which
state of the joint interface the system currently is, and what
are the winning moves from that state. Rather than keeping
a copy of the joint interface, which can be of exponential size
in the number of threads, the manager keeps separate copies
of the individual thread interfaces, along with the value of
the resources. With this information, the manager is aware
of all moves; all that remains to encode are the moves that
are not part of the winning strategy: to do this, it suffices
to store the set of losing states. As the number of losing
states can grow exponentially with the number of threads,
we encode the losing states using a BDD [2], leading to a
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n |MI | # bad states BDD nodes time (sec.)
2 37 3 15 0.05
3 171 18 30 0.07
6 17496 2592 62 39
6 33120 5490 211 334

Table 1: Experiments.

very compact representation. In Table 1, we report the re-
sult of some experiments, all run on a 2.4GHz Pentium 4
machine with 512Mb of memory. The threads involved in
the test give rise to thread interfaces having between 5 and
12 states; apart from the resource primitives, the size of the
source code of the threads has a negligible effect on the run-
ning time of the tool, and it is irrelevant to the size of the
synthesized manager and the BDD. The second column re-
ports the number of states in the joint interface, and the
last column reports the total time needed to synthesize the
manager.

A Case Study
We conducted a more extensive test, consisting in analyzing
a multi-threaded program implementing an ad-hoc network
protocol for Lego robots. As illustrated in Figure 8, the
program is composed of five threads, represented by ovals in
the figure, that manage four message queues, represented as
boxes in the figure.

Threads user and generator add packets to the input
queue. The router thread removes packets from the input
queue, and dispatches them to the other queues. Packets
in the user queue are intended for the local node, so they
are consumed by the user thread. Packets in the broad-
cast queue are intended for broadcast, and they are moved
to the output queue by the delay thread, after a random
delay, intended to avoid packet collisions during broadcast
propagations. Packets in the output queue are in transit to
another node, so they are treated by the sender thread. No-
tice that if the sender fails to send a packet on the network,
it puts it in the broadcast queue (even if it is not a broadcast
packet), so that it will be re-sent after a delay.

Each queue is protected by a mutex, and two semaphores
that count the number of empty and free slots, respec-
tively. Altogether, the program employs 7 mutexes and 8
semaphores. By restricting all queues to having 1 slot, the
resulting joint interface contains 400,000 states, and the tool
terminates its analysis in about 7 minutes.

The tool found a deadlock that corresponds to the follow-
ing situation. Suppose that queues output and broadcast are
both full. Suppose also that the sender thread extracts a
packet from output and tries to send it on the network. If
the send fails, the thread will try to insert the packet in the
broadcast queue. Since the latter is full, the sender thread
will hang on a semaphore, waiting for an empty slot in broad-
cast. However, the only way a slot in broadcast can be emp-
tied is for the delay thread to move a packet to output, which
is still full. Therefore, the sender will hang forever, and the
whole system will consequently block.

Interestingly, the tool reports that there is a winning
strategy in this situation. The strategy consists in “slow-
ing down” the router, preventing it from adding packets to
broadcast if output is full, and viceversa.

router

sender

input

generator

broadcast

user

output

delay

user

Figure 8: Scheme of an ad-hoc network protocol

implementation.
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