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ABSTRACT
Energy-efficient scheduling is an effective way to balance the system
performance and the energy consumption. We design a polynomial-
time (1 + ε)-approximation algorithm to minimize the energy con-
sumption for periodic real-time tasks over such processors, where ε is
the tolerable error given by users (1 ≥ ε > 0). It provides trade-offs
between the user’s tolerable error and the runtime complexity includ-
ing the time complexity and the memory space complexity. System
engineers could trade performance with implementation constraints.

Categories and Subject Descriptors: C.3 [SPECIAL-
PURPOSE AND APPLICATION-BASED SYSTEMS] - Real-Time
and Embedded Systems

General Terms: Algorithms, Design.

Keywords: Energy-Efficient Scheduling, DVS Scheduling, Real-
Time Systems, Energy Consumption Minimization.

1. INTRODUCTION
With the advance technology of VLSI circuit designs, many mod-

ern processors can operate at various (processor) clock rates with
negligible voltage switching overheads. The lower the clock rate is,
the less the power consumption is. To cut the power bills or prolong
the lifetime of battery-powered embedded systems, it is desirable to
reduce the energy consumption as much as possible. However, a task
executing on a processor with a lower clock rate usually needs more
execution time. Hence, reducing the clock rate can certainly reduce
the energy consumption but may lead to the violation of the timing
requirements of the systems.

In this paper, we are interested in the clock rate assignment prob-
lem for periodic real-time task scheduling when a processor has a
finite number of available clock rates, in which all job instances of
a real-time task are executed at the same clock rate. We shall not
only guarantee the schedulability of tasks but also minimize the en-
ergy consumption. Our work is closely related to the work by Mejı́a-
Alvarez et al. [4], in which the total energy saving was pursued,
compared to task executions at the highest clock rate. Both of the al-
gorithms proposed in [4] could be applied to the problem concerned
in this paper. However, the approximation ratios of the proposed
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algorithms in [4] are not constants for the minimization of energy
consumption. In this paper, we propose a polynomial-time (1 + ε)-
approximation algorithm, where ε is the tolerable error margin given
by users (1 ≥ ε > 0). We show that the energy consumption of any
derived solution would not be more than (1 + ε) times of an opti-
mal solution. The proposed algorithm allows the users to trade the
system performance with implementation constraints. When there is
not enough time to compute the near optimal solution, the users can
specify a large tolerable error margin ε. When there is enough time
to compute, the users can specify a small tolerable error margin ε
to obtain a near optimal solution. The performance of the proposed
algorithm is evaluated by a series of experiments, compared to an
exponential algorithm based on an exhaustive search and algorithms
proposed in [4].

The rest of this paper is organized as follows: In Section 2, we
define the system models and formulate the problem. Our proposed
approximation algorithm for minimizing energy consumption is then
presented in Section 3. Experimental results are shown in Section 4.
Section 5 concludes this paper.

2. MODELS AND PROBLEM DEFINITION
Thus far, and in our subsequent discussion, we use the terms task

and job as they are commonly used in real-time systems literature [2,
3, 5]. A job is an instance of signal processing, computation, and so
on. A task is a sequence of jobs. We call tasks T1, T2, etc. A task
set is denoted by T = {T1, T2, . . . , TN} where N is the number of
tasks in set T.

We assume that the processor can operate at M distinctive clock
rates where M is an integer and no less than 2. The set of available
clock rates of a processor is denoted by F = {f1, f2, ..., fM} in
which clock rates are indexed in an ascendent order. The arrival
time of a task, denoted by a, is the instant of time at which the task
becomes known to the scheduler. The execution CPU cycles of a
task, denoted by c, is the number of CPU cycles required to complete
the execution of any job of the task when it executes alone and has
all the resources it requires. The period of a task, denoted by p, is the
minimal arrival interval between two consecutive jobs of the task. In
this paper, the relative deadline of a task is assumed to be equal to the
period of the task. Hence, a task Ti is defined as Ti = (ai, ci, pi).
The hyper-period for task set T, denoted by L, is the least common
multiple (LCM) of the periods of the tasks in task set T.

The assigned clock rate for a task Ti, denoted by ri, is the clock
rate of the processor when task Ti executes and is one of the avail-
able clock rates. The clock rate assignment for set T, denoted by R,
is a vector of assigned clock rates for all the tasks Ti in T, in which
R = (r1, r2, ..., rN ) and ri ∈ {f1, f2, . . . , fM} for 1 ≤ i ≤ N .
When we are concerned with the clock rate assignment for task sub-
set {T1, T2, . . . , Ti} where i ≤ N , partial clock rate assignment Ri
denotes the clock rate assignment for the subset.

The power consumption function for task Ti is denoted by Pi(ri)
where ri is the assigned clock rate for task Ti. Without loss of
generality, we assume that power consumption functions are strictly
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convex and increasing functions, e.g., Pi(s) ∝ s3 [4, 7]. Similar
to most earlier works, we assume that the execution time of a job
is proportional to the clock rate chosen to execute the job. When
the assigned clock rate for task Ti is fj , the instantaneous utiliza-
tion of task Ti is Uij = ci

pi
· 1
fj

. The energy consumption for Ti
executed at ri for the hyper-period is denoted by ψ(Ti, ri), where
ψ(Ti, ri) = L

pi
(Pi(ri)

ci
ri

). For task set T and its corresponding
clock rate assignment R, the total energy consumption, denoted by
Ψ(T, R), is the sum of energy consumption of all of the tasks in set
T, i.e., Ψ(T, R) =

P

1≤i≤N ψ(Ti, ri).
We also assume that tasks are preemptible and independent. Liu

and Layland [2] show that the earliest-deadline-first (EDF) policy
is the optimal scheduling algorithm on a uniprocessor environment.
A task set scheduled by the EDF policy is feasible if and only if
the total instantaneous utilization of the task set is no more than 1
[2]. Hence, a clock rate assignment R for set T is feasible if and
only if

P

1≤i≤N ( ci
pi

· 1
ri

) ≤ 1. Furthermore, a partial clock rate

assignment Ri is feasible if and only if
Pi
k=1(

ck
pk

· 1
rk

) ≤ 1. A
feasible clock rate assignment, denoted byR∗, is optimal in the sense
that its energy consumption is the minimum among all feasible clock
rate assignments.

The MIN ENERGY CONSUMPTION CLOCK RATE ASSIGNMENT

problem is to find a feasible clock rate assignmentR for task set T so
that the sum of energy consumption for all the tasks in set T is min-
imized. Theorem 1 shows that the MIN ENERGY CONSUMPTION

CLOCK RATE ASSIGNMENT problem is NP-hard.

THEOREM 1. The MIN ENERGY CONSUMPTION CLOCK RATE

ASSIGNMENT problem is NP-hard.

PROOF. The theorem can be proved by a reduction from the NP-
complete SUBSET SUM problem [1] and, hence, the details are omit-
ted due to the space limitation.

3. OUR APPROXIMATION ALGORITHM
The proposed algorithm, denoted as Algorithm ε-ME, is a dynamic

programming algorithm. The rationale of the algorithm is to first
group the possible energy consumptions to a limited number of en-
ergy consumption groups. The representive energy consumption of
each group is called the rounded-up energy consumption. It is be-
cause every possible energy consumption in an energy consumption
group is no greater than the representive energy consumption. In-
stead of finding the optimal clock rate assignment R∗, the algorithm
chooses a feasible clock rate assignment for T such that the sum of
the rounded-up energy consumption for task set T is minimized. We
will show that the algorithm completes in polynomial time and the
energy consumption for the chosen clock rate assignment is no more
than (1 + ε) times of the optimal energy consumption where ε is a
design parameter.

For the sake of brevity, we define ratio γ as

γ = max
1≤i≤N,2≤j≤M

{
ψ(Ti, fj)

ψ(Ti, fj−1)
, 1} = max

1≤i≤N,2≤j≤M
{
Pi(fj)fj−1

Pi(fj−1)fj
, 1}.

In other words, the energy consumption to execute a task at available
clock rate fj is at most γ times of that at the clock rate fj−1 for any
2 ≤ j ≤ M . Algorithms SGA and EGA proposed in [4] can also
be applied to solve the MIN ENERGY CONSUMPTION CLOCK RATE

ASSIGNMENT problem. The following theorem shows that the two
algorithms provide a γ-approximation ratio.

LEMMA 1. When Algorithms SGA and EGA proposed in [4] are
applied to the MIN ENERGY CONSUMPTION CLOCK RATE AS-
SIGNMENT problem, the approximation ratio is γ, which is tight.

PROOF. It is not difficult to show the approximation ratio is no
greater than γ since there is at most one task assigned with two clock
rates fj and fj+1 in the optimal solution of the problem (P2) in [4].
We show the tightness by considering the following input instance of

T with N tasks: T1 = (0, p(1 − (N − 1)λ/2), p), P1(f) = f3,
T2 = (0, p · λ, p), TN = TN−1 = · · · = T3 = T2, P2(f) =
P3(f) = · · · = PN (f) = (1 + δ)f3, and (f1, f2, f3, . . . , fM ) =
(1, ρ, ρ2, . . . ρM−1), where δ > 0, ρ ≥ 2, M ≥ 3, and (1+ δ)(N −

1)λρ(2M−4) = (1 − (N − 1)λ/2). It is clear that γ = ρ2 and
1

4(N−1)
> λ > 0. Both algorithms SGA and EGA derive a clock

rate assignment RA to execute T1 at clock rate f2 and the other tasks
at clock rate f1. The energy consumption of such a clock rate as-
signment is p((1 + δ)(N − 1)λ + (1 − (N − 1)λ/2)ρ2). Because
1−(N−1)λ/2+(N−1)λ/ρ < 1, executing T1 at clock rate f1 and
the others at clock rate f2 is also a feasible clock rate assignment, and
the energy consumption is p((1+δ)(N−1)λρ2+(1−(N−1)λ/2)).
Since (1 + δ)(N − 1)λρ(2M−4) = (1 − (N − 1)λ/2), we have

Ψ(T, RA)

Ψ(T, R∗)
≥
p((1 + δ)(N − 1)λ+ (1 − (N − 1)λ/2)ρ2)

p((1 + δ)(N − 1)λρ2 + (1− (N − 1)λ/2))
≈ ρ2 = γ.

For the rest of this section, we show how to exploit the clock rate
assignment derived from Algorithm SGA [4] to (1+ε)-approximation
solutions. Before we describe our proposed Algorithm ε-ME, we de-
fine several terms used for the algorithm. Rounding factor, denoted
by q, for all tasks in the task set T is a positive real. Rounding fac-
tor q determines the granularity of rounded-up energy consumptions,
which is the inverse of the rounding factor, i.e., 1/q. Hence, the less
the rounding factor q is, the greater rounding error of the rounded-up
energy consumption is. However, the less rounding factors q is, the
higher the runtime overhead the algorithm has. The rounded-up en-
ergy consumption for executing task Ti at clock rate fj for rounding

factor q, denoted by ψq(Ti, fj), is ψq(Ti, fj) =
dq·ψ(Ti,fj)e

q
. Natu-

rally, when the rounding factor is q and the feasible partial clock rate
assignment is Ri (1 ≤ i ≤ N ), the rounded-up energy consump-
tion for Ri is Ψq(T, Ri) =

Pi
m=1 ψq(Tm, rm). If we can have a

good control on the rounding error of the energy consumption, we
can have a good approximated solution and acceptable runtime over-
head. We will show how to choose a good rounding factor q later.
From now on, we will use term k to denote the amount of rounded-
up energy consumption in the scale of 1/q energy unit where k is a
positive integer.

The utilization lower bound for task subset {T1, . . . , Ti}, denoted
by Bq(i, k), is the minimum total utilization for all feasible partial
clock rate assignments Ris such that the total rounded-up energy
consumption of the task set is no greater than k units of rounded-
up energy, i.e., Ψq(T, Ri) ≤ k/q. If there exists no feasible partial
clock rate assignment Ri such that Ψq(T, Ri) is also no greater than
k/q, then Bq(i, k) is undefined. In the following, we show how to
derive Bq(i, k) from Bq(i − 1, ·). If there exist clock rates fjs such
that Bq(i − 1, k − q · ψq(Ti, fj)) is defined and Bq(i − 1, k − q ·
ψq(Ti, fj)) + ci

pifj
is no greater than 1, then Bq(i, k) is defined and

the value ofBq(i, k) is the minimum Bq(i−1, k− q ·ψq(Ti, fj))+
ci
pifj

. Otherwise, Bq(i, k) is undefined.
To compute the utilization lower bound, we define the boundary

conditions of Bq(i, k) as follows.

Bq(i, k) =



0 if k ≥ 0 and i = 0;
∞(i.e., undefined) if k < 0 and 0 ≤ i ≤ N .

(1)

Therefore, the following recursive relation holds for any 1 ≤ i ≤ N
and any non-negative integer k:

Bq(i, k) = min
j=1,...,M



Bijk if Bijk ≤ 1;
∞(i.e., undefined) otherwise, (2)

whereBijk = Bq(i−1, k−q ·ψq(Ti, fj))+
ci
pifj

for abbreviations.
When the utilization lower bound for set T is defined and kq,min is
the minimum integer among all possible ks, we call kq,min/q the
minimum rounded-up energy consumption for rounding factor q; that
is, Ψq(T, R) is no less than kq,min/q for any feasible clock rate
assignment R for T.
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Algorithm 1 : ε-ME

Input: (T, {f1, . . . , fM} , ε);
Output: A feasible clock rate assignment for T;
1: if

PN
i=1

ci
pi·fM

> 1 then

2: return no feasible clock rate assignment exists;
3: obtain R̂ by calling Algorithm SGA proposed in [4] in O(MN logMN) time;
4: q ← N/(ε ·Ψ(T, R̂));
5: while true do
6: ψq(Ti, fj)←

dq·ψ(Ti,fj )e

q
for i = 1, . . . , N and j = 1, . . . ,M ;

7: k ← 0
8: while true do
9: for i← 1 to N do

10: computeBq(i, k) according to Equations (1) and (2);
11: if Bq(N,k) 6=∞ then
12: break;
13: else
14: k ← k + 1;
15: if ε · k ≥ 2N then
16: break;
17: else
18: q ← q ∗ 2;
19: backtrack the dynamic table generated by lines 5-18; let Rq be the resulting clock

rate assignment;

20: return Rq ;

The pseudo-code of Algorithm ε-ME is shown in Algorithm 1. The
goal of our algorithm is to define the utilization lower bound for each
rounded-up energy consumption, i.e., to determine a feasible clock
rate assignment. Since q·ψq(Ti, fj) is a non-negative integer, the uti-
lization lower bound Bq(i, k) can be obtained by constructing a dy-
namic programming table. The algorithm starts from the case that the
task set has only one task T1 and variable k is 0; the initial value of
rounding factor q is N/(ε ·Ψ(T, R̂)), where ε is a user input param-
eter and 0 < ε ≤ 1 and R̂ is the clock rate assignment derived from
Algorithm SGA [4]. From Lines 6 to 14, the algorithm constructs a
dynamic programming table by applying Equations (1) and (2) until
Bq(N, k) is defined. After Bq(N, k) is defined at Line 11, the algo-
rithm doubles the rounding factor q to refine the solution. For each
iteration, the algorithm repeats the dynamic programming until the
termination condition satisfies, i.e., ε · kq,min ≥ 2N , given at Line
15. When the termination condition satisfies, a feasible clock rate as-
signment can be derived by backtracking the dynamic programming
table built in the earlier steps.

We now prove the optimality of the proposed algorithm. For the
rest of this section, let Rq be a feasible clock rate assignment for T

such that Ψq(T, R
q) = kq,min/q. By the definition of kq,min, the

rounded-up energy consumption of any feasible clock rate assign-
ment for T is no less than kq,min/q. Therefore, we have

Ψq(T, R
q) ≤ Ψq(T, R), (3)

for any feasible clock rate assignment R of T and any rounding
factor q. Since ψq(Ti, fj) is defined as

dq·ψ(Ti,fj)e

q
, we know that

ψ(Ti, fj) ≤ ψq(Ti, fj) ≤ ψ(Ti, fj) + 1
q

. Therefore, the following
inequality

Ψ(T, R) ≤ Ψq(T, R) ≤ Ψ(T, R) +
N

q
(4)

holds for any clock rate assignment R of T due to the aggrega-
tion error of these N tasks. By the optimality of R∗, and Equa-
tions (3) and (4), we have

Ψ(T, R∗) ≤ Ψ(T, Rq) ≤ Ψq(T, R
q)

≤ Ψq(T, R
∗) ≤ Ψ(T, R∗) + N

q
.

(5)

We shall show that the condition in Line 15 in Algorithm ε-ME, i.e.,
ε · kq,min ≥ 2N , leads us to have a (1 + ε)-approximation solution.

LEMMA 2. If ε · kq,min ≥ 2N and 0 < ε ≤ 1, then the energy
consumption for the corresponding clock rate assignment Rq of T is
no greater than (1 + ε) times of the minimum energy consumption,
i.e., Ψ(T, Rq) ≤ (1 + ε)Ψ(T, R∗).

PROOF. The inequality of ε·kq,min ≥ 2N implies q ≥ 2N
ε·Ψq(T,Rq)

.

Therefore, combining with Equation (5), we have N
q
≤

ε·Ψq(T,R
q)

2
≤

ε·Ψ(T,R∗)
2

+ ε·N
2q
.With 0 < ε ≤ 1, it follows that N

q
≤ ε·Ψ(T,R∗)

2−ε
≤

ε · Ψ(T, R∗). By Equation (5), we have Ψ(T, Rq) ≤ (1 + ε) ·
Ψ(T, R∗).

It remains to show that the time complexity and the space com-
plexity are both polynomial in the input size and 1

ε
.

LEMMA 3. Algorithm ε-ME takes O(N2M(ε−1 + log γ)) time
and O(ε−1N2) space for any parameter 0 < ε ≤ 1,

PROOF. For notational brevity, let q′ be the initial rounding factor
q and q′′ be the termination rounding factor in Algorithm ε-ME. That
is, q′ = N

ε·Ψ(T,R̂)
and ε · kq′′,min ≥ 2N . For a rounding factor q,

building a dynamic programming table Bq() until Bq(N, kq,min) is
defined takes

O(MN · kq,min) = O(MN · Ψq(T, R
q) · q) (6)

time and O(N · Ψq(T, R
q) · q) space. If the initial rounding factor

is equal to the termination rounding factor, Algorithm ε-ME takes
O(N2M/ε) time and O(N2/ε) space since

O(Ψq′ (T, R
q′ ) · q′) = O(Ψ(T, R∗) · q′ +N)

= O(NΨ(T,R∗)

εΨ(T,R̂)
+N) = O(N

ε
),

where the first equality comes from Equation (5). In the following,
we focus on the other case that q′′ 6= q′. By Equations (5) and (6),
we know that each iteration for a specified q to build a dynamic pro-
gramming table takes O(MN(q · Ψ(T, R∗) +N)) time. Similarly,
the space complexity isO(N(q ·Ψ(T, R∗) +N)). Since the round-
ing factor q is doubled in each iteration, the overall running time is

O

„

MN

„

q′′ · Ψ(T, R∗) +N log
q′′

q′

««

,

and the overall space is

O
`

N
`

q′′ · Ψ(T, R∗) +N
´´

. (7)

Furthermore, we have

ε · kq′′/2,min < 2N ⇒
q′′

2
<

2N

ε · Ψq′′/2(T, Rq
′′/2)

, (8)

for the (log2
q′′

q′
− 1)-th iteration. By Equation (5), we have

q′′ <
4N

ε · Ψq′′/2(T, Rq
′′/2)

≤
4N

ε · Ψ(T, R∗)
. (9)

Therefore, we know

q′′ · Ψ(T, R∗) = O(N/ε),

and the space complexity is O(ε−1N2). Combining the known rela-
tion of Ψ(T, R∗) and Ψ(T, R̂) and Equation (9), we have

log2

q′′

q′
< log2

4Ψ(T, R̂)

Ψ(T, R∗)
= O(log γ).

Therefore, the time complexity is O(N2M(ε−1 + log γ)).

After all, since log γ is polynomial in the number of bits required
to encode the power consumption functions Pi(fj) for all 1 ≤ i ≤
N and 1 ≤ j ≤ M , we have the following theorem by combining
the above lemmas.

THEOREM 2. Algorithm ε-ME is a fully polynomial-time approx-
imation scheme of the MIN ENERGY CONSUMPTION CLOCK RATE

ASSIGNMENT problem to compute a solution no greater than (1+ε)-
optimal solution for any user-specified parameter ε, where 0 < ε ≤
1.

PROOF. This comes directly from Lemmas 1, 2, and 3.
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Figure 1: The average normalized relaxed energy consumption for the
distribution of Type-I and II.
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Figure 2: The average and maximum normalized relaxed energy con-
sumptions for the distribution of Type-III.

4. EXPERIMENTAL RESULTS
The performance of Algorithm ε-ME is evaluated by extensive

evaluations. We compare the performance of Algorithm ε-ME with
Algorithm SGA and Algorithm EGA [4]. The 95% confidence in-
tervals for the data sets in the results are no more than 5% of their
data values for 256 independent runs on each configuration. The
proposed algorithm is evaluated for task sets with various workload.
The workdload are generated based on two parameters: utilization
and number of jobs within time interval L. Tasks in Type-I are first
randomly determined whether they are tasks with high or low uti-
lization. Tasks have a probability equal to (1 − (2/N)) being a task
with low utilization, where N is the number of tasks in each experi-
mented task set. For tasks with low utilizations, the maximal instan-
taneous utilization of such a task Ti (i.e., the utilization of Ti when
the system operated at the lowest clock rate) is randomly chosen in
the range (0, 1/(5N)]. For tasks with high utilizations, the maxi-
mal instantaneous utilization of such a task is randomly chosen in
the range [1/(5N), 1]. Task sets in Type-II have one task with high
(maximal instantaneous) utilization randomly selected between 0.9
and 1.1. The maximal instantaneous utilizations of other tasks are
randomly selected between 1/(10N) and 1/(5N). In Type-III, the
maximal instantaneous utilization of each task is randomly selected
between 1/(2N) and 2/N .

The number of job instances of task Ti within the hyper-period
L, denoted by bi, is an integral variable uniformly distributed in
the range [1, 16]. The hyper-period L of the tasks is set as 32, 000
units of time. Then, the worst-case CPU execution cycles ci for
task Ti is ci = f1Ui1pi. The power consumption function of task
Ti is Pi(f) = αif

3 for 1 ≤ i ≤ N , where the value of αi is
uniformly distributed in the range of [2, 10]. The target processor
is the Intel XScale with five clock rates, i.e., 150MHz, 400MHz,
600MHz, 800MHz, and 1000MHz [6]. The evaluations are per-
formed by normalizing the clock rates. Therefore, M = 5 and
(f1, f2, . . . , f5) = (0.15, 0.4, 0.6, 0.8, 1.0).

The normalized relaxed energy consumption of an algorithm for
an input instance is defined as the ratio of the energy consumption
for the clock rate assignment derived from the algorithm to the lower
bound of the input instance by solving problem P2 in [4].

Due to the space limit, only representative results are shown. Fig-
ure 1 shows the performance for the case when there are five dis-
tinctive clock rates for the distributions of Type-I and Type-II, where

(f1, f2, . . . , f5) = (0.15, 0.4, 0.6, 0.8, 1.0). Figures 1(a) and 1(b)
show the average normalized relaxed energy consumption for Type-
I and II workload when the number of tasks range from 20 to 80
stepped by 5, respectively. Both of the clock rate assignments de-
rived from Algorithms SGA and EGA have worse performance than
those of Algorithm ε-ME. The performance of Algorithm ε-ME is
steady regardless of the number of tasks in T for the either Type-I
or Type-II workload. Algorithms SGA and EGA perform not well
for Type-II workload due to the possibility of improper clock rate
assignment of the large task (i.e., the task whose maximal instanta-
neous utilization is between 0.9 and 1.1). Such an improper clock
rate assignment may result in a significant increase on the energy
consumption if the energy consumption of the other tasks is rela-
tively small. This also explains why Algorithms SGA and EGA have
very similar performance for the distribution of Type-II since Algo-
rithm EGA only tries to improve the other tasks instead of the large
task. When ε is equal to 0.5, the maximum ratio observed is no more
than 1.21 and the average ratio is no more than 1.10. When ε is equal
to 0.1, the maximum ratio observed is no more than 1.02 and the av-
erage ratio is no more than 1.01. In the evaluated cases, setting ε as
0.1 is the best trade-off on the energy consumption and the running
time of Algorithm ε-ME.

Figure 2 shows the performance when the workload distribution is
Type-III. The average and maximum normalized relaxed energy con-
sumptions for distributions of Type-III are illustrated in Figures 2(a)
and 2(b), respectively. Algorithm ε-ME still outperforms Algorithms
SGA and EGA. The results in Figure 2 show that all of the evaluated
algorithms have a smaller normalized relaxed energy consumption
with larger number of tasks. This is because that the increased en-
ergy consumption resulted from choosing improper clock rates for
tasks becomes much less due to the smaller variance of the maximal
instantaneous utilization between tasks for larger number of tasks.

5. CONCLUSIONS
In this paper, we consider the clock rate assignment problem for

task executions on a processor with the capability of dynamic volt-
age scaling, where there is a finite number of available clock rates.
Our objective is to guarantee task deadlines and to minimize the
energy consumption at the same time. We propose a polynomial-
time (1 + ε)-approximation algorithm for the scheduling of periodic
real-time tasks, where ε is the tolerable error margin given by users
(1 ≥ ε > 0). Our solution provides trade-offs among the user’s tol-
erable error and the complexity, including the time complexity and
the space complexity. The performance of the proposed algorithm
is evaluated by extensive experiments, compared to algorithms pro-
posed in [4]. The proposed algorithm outperforms Algorithms SGA
and EGA in [4] for various workloads.

For future research, we shall extend this work for energy-efficient
scheduling in multiprocessor environments. We shall also exploit an
integrated approach for task scheduling and clock rate assignments
along with resource competition.
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