
Semantics-Based Optimization Across Uncoordinated
Tasks in Networked Embedded Systems

Jie Liu
Microsoft Research
One Microsoft Way

Redmond, WA 98052

liuj@microsoft.com

Elaine Cheong
Department of EECS

University of California
Berkeley, CA 94720

celaine@eecs.berkeley.edu

Feng Zhao
Microsoft Research
One Microsoft Way

Redmond, WA 98052

zhao@microsoft.com

ABSTRACT
Microservers are networked embedded devices that accept user tasks
on demand and execute them on real world information collected
by sensors. Sharing intermediate sensing and computing results
among these tasks is critical for optimal resource utilization. This
paper presents a service-oriented microserver runtime — SHARE
and its semantics-based task management design. Event semantics
checking and conversion are based on a signal type system (STS)
that captures both data values and service triggering. Based on the
compatibility of event semantics, redundant computations in un-
coordinated tasks are removed from the runtime. A prototype of
SHARE has been experimented with a parking garage sensor net-
work executing three uncoordinated user queries.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems; F.3.3 [Studies of Pro-
gram Constructs]: Type structure

General Terms
Design

Keywords
Type system, sensor network, service-oriented runtime

1. INTRODUCTION
Technology advances have greatly changed the landscape of em-

bedded systems. Today, an embedded system may no longer be
limited to a single application. Embedded software is no longer de-
veloped once for the entire lifetime of a product. The ubiquity of
(wireless) networking has opened the gate for embedded systems
to participate in the larger digital world. They can be re-tasked, re-
configured, and reprogrammed on the fly. They can execute user
defined tasks on demand.

In this paper, we consider a particular class of networked embed-
ded devices calledmicroservers, which can gather physical infor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

mation through sensors and can respond to user defined tasks sent
over the network. Like application servers in Internet/enterprise
computing, microservers dynamically accept and host user tasks
that define the application logic. But, unlike business applications,
tasks on microservers are typically long-running and their inputs
are physical events and sensor data in real time.

Microservers can take various forms. For example, in a health-
care scenario, the cellphone an elderly person carries can be a mi-
croserver. It can accept tasks from family members and healthcare
providers sent through the cellular data link, and run them over
real-time data gathered from wearable sensors (e.g. location sens-
ing, activity sensing, and vital sign monitoring). The results can
be returned to the family members and caregivers wirelessly. A
telematics computer in a car can be a microserver. The car man-
ufacturers, the dealers, and the car maintenance shops may inject
different monitoring tasks into the microserver to gather specific
events tailored to their interests. The results of those tasks can be
sent back via a cellphone or a satellite link. In a retail warehouse,
portable RFID readers with WiFi links, possibly equipped with lo-
cation, temperature, and humidity sensors, can be microservers that
track products and their storage environments on demand. Inad
hocsensor networks, a mesh network of microservers can serve as
gateway nodes to connect resource-constrained embedded sensors
to larger network/data infrastructures.

A common challenge for these microservers is that they must
hostuncoordinated tasks, such as user queries, simultaneously. By
uncoordinated tasks, we mean that the tasks are injected by differ-
ent users at unpredictable times. These tasks may have different
life times depending on users’ interests. Since microservers are not
general-purpose computers, the information they collect and pro-
cess depends highly on their surroundings. It is very likely that
there are partial overlaps among simultaneous user tasks. For ex-
ample, in the health-care scenario, the caregiver may want to detect
certain walking patterns as an early sign of Alzheimer disease. The
daughter of the elderly person, seeing that the weather today is nice,
wants to set up a reminder that if her parent has not gone out for
a walk by 10AM, she will be notified so that she can give her par-
ent a call. The two tasks are independent and have very different
time scales — one is long running and the other expires at 10AM.
However, parts of the two tasks, namely detecting the behavior of
“walking” from various raw sensor data (e.g. from accelerometers
or cameras), can be shared.

Many microservers are battery-powered mobile devices; they are
constrained by CPU speed, memory size, communication band-
width, and energy storage. Thus, it is crucial for microservers to
find the maximum amount of overlapping sensing and computation
in uncoordinated tasks and reduce runtime redundancy. This is an
intermediate information reuseproblem. In order to achieve this, a

273

microserver runtime system must:

I. identify overlapping operations from multiple tasks;
II. suppress parts of a task but keep the rest active;

III. share intermediate results from one task with another.

In this paper, we describe the architecture and task management
design of SHARE with an emphasis on enabling intermediate infor-
mation reuse1. SHARE has a component-based architecture. Each
task is built using a set of event-driven components, calledservices.
The communication between services has a publish/subscribe se-
mantics. A user task is sent to a microserver as a service composi-
tion graph (SCG). For each incoming user request, the runtime sys-
tem examines the existing tasks and tries to find out whether parts
of the new request can be fulfilled by existing computations. If so,
the redundant services are not instantiated, and their downstream
services are subscribed to corresponding existing publishers.

There are several approaches to promote the sharing of interme-
diate results across tasks. For example, some commonly used ser-
vices can be manually started and their outputs published in a local
tuple space. New tasks can then subscribe to these intermediate
results, so that they are computed only once. However, this intro-
duces run-time overhead if those data are not used by any tasks. It is
also hard to draw the line between what services should be system
provided versus user defined. Another approach is to compare syn-
tactically the composition of services. This is the most conservative
and rigid approach. Two subtasks are considered redundant only if
they are exactly the same, including service composition topology,
service parameters, and internal states. For example, if taskA uses
a servicevehicleSpeedDetection to compute both the presence and
the speed of a vehicle, and taskB plans to usevehicleDetection to
obtain only the vehicle presence information, thenB cannot use the
outputs fromvehicleSpeedDetection even though its outputs con-
tain all the informationB needs.

SHARE takes a different and more flexible approach by allowing
users to annotate semantics of the data transmitted between ser-
vices. We rely on a runtime signal type system (STS) to check and
automatically convert between data semantics whenever possible.
In fact, the input SCG may not be followed verbatim, if the run-
time system can find existing alternative services that provide in-
termediate results with compatible semantics. This is more subtle
than simply giving each piece of data a name and matching names
at runtime. Since services are event driven, the events passing be-
tween services not only carry their value information, but also serve
as triggers for service execution. For example, a service that ex-
pects temperature reading sampled at 10Hz cannot be triggered by
a 100Hz event source. A big advantage of STS is that it handles this
sequencing property naturally within the type system and performs
trigger rate conversions as well as data type conversions.

The rest of the paper is organized as follows. In Section 2 we
present the architecture of SHARE, focusing on the features that
enable information reuse. We then focus on the signal type system
in Section 3, defining signal types and show how type checking
and type conversion mechanisms can help identify and reduce re-
dundant computation. Section 4 presents a testbed deployment of
the runtime system in a parking garage microserver. Section 5 dis-
cusses related work. Section 6 concludes the paper and points out
future directions.

2. SHARE ARCHITECTURE
We assume that microservers have computational power and mem-

ory sizes similar to cell phones or PDAs. That is, they can run an
1SHARE stands for Service sHAring Runtime Environment.

A B D

C

E

SHARE

Runtime core

Receptionist
1

Receptionist
2

Receptionist
n

User 1

User 2

User n

... ...

Figure 1: An illustration of S HARE . SHARE creates a Reception-
ist for each user and the receptionist performs semantics-based
task trimming. The runtime core manages the service executions
for all users.

embedded operating system and a modern virtual machine such as
JVM or a .NET framework. Figure 1 illustrates the architecture for
SHARE. It consists of a runtime core and a set of receptionists. A
receptionist is created for each user connected to the microserver.
The tasks injected by the users are already componentized and the
receptionists perform semantics-based task trimming, as described
in later sections, before submitting the tasks to the runtime core.
When existing intermediate computation results can be reused, the
tasks submitted to the runtime core is “smaller” than the task in-
jected by the user. The runtime core manages the execution of the
services regardless of their originators.

2.1 Service and Composition
In order to facilitate the reuse of intermediate computation re-

sults, we must introduce some building blocks for creating user
tasks. In SHARE, an atomic piece of computation is called aser-
vice. Services have input and outputports. Input ports accept
events, and output ports produce events for other services. A ser-
vice may have internal state, and its behavior depends on both input
events and its internal state. To this extent, services are similar to
actors in Ptolemy II [4], element classes in Click [17], actions in
UML’s action semantics extension [20], among many component-
based frameworks.

There is no global state in a task other than the data communi-
cated between services. The communication has a publish/subscribe
semantics. Conceptually, all outputs from services go into an event
mediator that is visible to all other services. If one of the services
is interested in processing an event in the mediator, itreactsto a
copy of that event. Events are not cached. After it is delivered to
every subscriber’s input port, it is garbage collected. Since the me-
diator separates the publishers and subscribers, a service does not
care from where its inputs come nor to where its outputs go. Thus
intermediate computation results can be easily shared across tasks.

Since all services are local to the microserver, the publish/subscribe
semantics are efficiently implemented using an event/delegate mech-
anism [15] in SHARE. Objects called Relations2 are introduced to
serve as mediators for publishers and subscribers. However, instead
of having a single mediator for all publishers and subscribers, there
is one relation per event type. The relation connects to one or more
output ports (publishers) and zero or more input ports (subscribers).
It maintains a list of all connected input ports, and registers itself
to every connected output port as an event handler. Once an event
is sent by an output port, the relation sends a copy of the event

2The name is influenced by Ptolemy II.

274

A B D

C

A B E

A B D

C

E

+

Task1:

Task2:

Runtime
Image:

(a) Merging two overlapping tasks.

A B E

Task 1
has

finished

(b) Garbage collecting partial tasks.

Figure 2: Task management in SHARE .

to every connected input port. The connections between ports and
relations are established only once — when a user task is first in-
jected to the microserver — and remain unchanged throughout the
lifetime of that task. Since tasks on microservers are usually long-
running, this implementation greatly reduces the overhead of data
pattern matching in typical publish/subscribe architectures [6].

In SHARE, service executions are event-driven. Some events
may carry time stamps, but service executions are triggered by the
presence of events in the input ports. This kind of reactive execu-
tion is usually more resource efficient when the inputs are sparse,
which is the case for many embedded applications such as wireless
sensor networks. In SHARE, each service has its own thread. It re-
acts to every input event on a first-come-first-serve basis. Once trig-
gered, it performs a finite piece of computation, which may change
its internal state and may produce outputs, and then go to an in-
active mode waiting for the next input event. An input port has a
FIFO queue that triggers the service until the queue is empty.

2.2 Task Management
A user task is sent to a microserver as a set of services and the

connections among their ports, called a service composition graph
(SCG). It is given to SHARE as an XML document. For most of
the paper we use a graphical representation as shown in Figure 2.
Services are shown as blocks with their names annotated. Service
ports are implicit. Connections between ports are indicated by ar-
rows. A relation is implicit if it connects exactly one output port
and one input port, otherwise, it is shown as a diamond.

Once given to the runtime system, the SCG may not be followed
verbatim. It can be merged with existing tasks. Figure 2 illustrates
the desired optimization result. IfTask1 is already running on a
microserver, andTask2 is later injected, we would like the run time
image to be the bottom part of the Figure 2(a). WhenTask1 has
finished, not all its elements are garbage collected, although they
may have been started byTask1. Some can continue being used by
other active tasks, as show in Figure 2(b).

Service lifetime management is achieved bydemand analysis.

Each service is individually started and stopped. A service main-
tains a list of tasks that demand it. When a service subscribes
to a relation, the subscriber’s task is propagated to all services
backward-reachable from the relation. That is, all services that are
used to generate the data that the subscriber needs becomes part
of the task. When a task terminates, its corresponding entry is re-
moved from all services it demands. When the list is empty, the
service wraps up and hands itself to the garbage collector. Thus,
requirements (II) and (III) introduced in Section 1 can be relatively
easy to achieve in our service-oriented architecture. The rest of the
paper focuses on achieving requirement (I) — how to maximally
identify redundant sensing and computation in an efficient way.

3. A SIGNAL TYPE SYSTEM
The approach we take to reducing runtime redundancies is based

on event semantics. To reiterate, events in event-driven systems
serve two roles: carrying values and triggering downstream ser-
vices. When reusing events, we must consider both properties. The
mechanism by which we capture and reason about event semantics
is a signal type system (STS). The goal of the STS is to capture
the property that events produced from an output port “contain all
the information needed” by an input port. This section first defines
the signal types and then describes how the STS is used to help
information reuse.

3.1 Signal types
Inspired by the tagged signal model [14], we define an event as

a pair: atag and avalue. A signal is simply a sequence of events.
Thus, a signal type consists of two parts: its value type and its tag
type.

Value types: In STS, we treat the values of an event as a record,
and its type is a tuple:

v = (name,{(n1, t1),(n2, t2), ...,(nk, tk)}) (1)

where,

– namerepresents the name of the signal;

– (ni , ti) is called afield type, whereni is the name of the field
andti is a primitive data type3.

A name in STS serves as an identifier for data. It can encode
the ID, location, or object identity information, among others. For
example, the outputs of a relative humidity(RH)/temperature sensor
in room 102 may have value type:

("room102", {("RH", float), ("temp", float)}) (2)

We use the setV to represent all value types. The compatibility
relation between value types is a simple extension of record types
in programming languages (see e.g. [16]). Letv= (name,{(n1, t1),
(n2, t2), ...,(nk, tk)}), v′ = (name′,{(n′1, t

′
1),(n

′
2, t

′
2), ...,(n

′
m, t ′m)})∈

V, we sayv is compatiblewith v′, written asv≤ v′ if the following
holds:

– name= name′;

– for each(n′, t ′) of v′, there exists(n, t) of v, such thatn′ = n′

andt ≤ t ′. By t ≤ t ′ we meant is a subclass oft ′, or for prim-
itive types convertingt into t ′ will not lose data precision.

That is, the fields inv′ need to be a subset of that inv subject to
primitive type compatibility. For example, if a service requests a

3Here, we use the term primitive types loosely. It represents both
primitive data types, likeint and double, and objected-oriented
classes as well.

275

Continuous-Time
Signals

Discrete Time
Continuous Signals

(Timed) Discrete Event
Signals

Sequence Signals

Figure 3: A coarse-grained signal type system based on signal
continuity.

temperature reading in room 102 as("room102", {("temp", double)}),
then the type in (2) is compatible with it.

Tag types: Tags represent timing and ordering relations among
the events in a signal. To deal with real world signals, especially
sensor outputs, we assume tags take values fromR , the set of reals.
In particular, we focus on the following subsets ofR

• R is the whole connected set.

• Z 0 ⊂ R is the set of non-negative integers.

• D ⊂ R is discreteif it can be order-preserved and bijectively
mapped to a subset of integers [12]. We denote this mapM D ,
which is unique for everyD .

• P (t0, p) = {t|t = t0 + i · p, i ∈ Z 0, andt0, p ∈ R } is the set
of integer multiples ofp starting fromt0. This is a periodic
discrete set with periodp. We also writeP (p) if the start
time is understood, sayt0 = 0.

The tag sets form the basis of tag types. However, they alone
are not sufficient to differentiate sampled continuous signals from
periodic discrete event signals such as a clock. For this reason, we
extend the tag type system to capture the notion of continuity of
underlying signals. We introduce a class of signals calleddiscrete-
time continuous signals(DTCSs). A DTCS has a discrete set as
its tags, but represents a continuous signal. One implication of the
underlying continuity is that we can approximate data values (e.g.
through interpolation) even though they are not present in the sig-
nal. A DTCS is different from a (timed) discrete event signal (DES)
even though they may have the same tag set, because DES cannot
be interpolated.

We call untimed signalssequences, and their tags areZ 0.
We further introduce a base type calledcontinuous-time signal

(CTS), which can never be instantiated in a digital computer, but
serves as the bottom of our type lattice. The CTS is the only signal
that has tag typeR .

With these notions, we define the followingcoarse-grainedsig-
nal types lattice, as shown in Figure 3. Intuitively, a CTS can be
sampled to get a DTCS and can generate DESs through event de-
tections. A DTCS can be treated as a discrete event signal by losing
the notion of underlying signal continuity. A DES can be converted
to a sequence by applyingM D , i.e. losing its timing properties.

The coarse-grained type lattice can be further refined by the con-
tainment relations among tag sets, for example,P (p) ⊃ P (2p) ⊃
P (6p).... In general, we useC for DTCS tags andD for DES
tags. LetC(p) represent a DTCS whose tag set isP (p), andD(p)
be a discrete event signal with the same periodic tags. The fine-
grained tag type lattice, denoted asT is shown in Figure 4, where
C1,D1,D2 are aperiodic andC1 andD1 have the same tag set.T is

�C(p)

C(2p)

C(4p)

C(3p)

C(6p)

C(q)

C(2q)

D(p)

Z0

D1

...

...
...

...

...

...
...

...

D(2p)
D(3p)

D2

...

...

DTCS

DES

C1

...

CTS

Sequences

Figure 4: A lattice for tag types. Without loss of generality, we
assumeq > p; q is not a integer multiple of p; C1, D1, and D2
are aperiodic.

an infinite lattice. We denoteσ : T → R the function that maps a
tag type to its underlying tag set.

Using this lattice, we define compatibility on tag types: letτ1,τ2∈
T , τ1 ≤ τ2 if τ1 is lower in the lattice thanτ2. For example, accord-
ing to this type lattice, a continuous-time temperature waveform is
compatible with its 10Hz sampling, which is compatible with its
1Hz sampling, which is compatible with a discrete set of temper-
ature events defined on the same time instances, which in turn is
compatible with untimed temperature sequences.

We call the overall type system that captures both tag types and
value types thesignal type system(STS). In STS,s= (τ,v) is com-
patible withs′ = (τ′,v′) (i.e. s≤ s′) if τ ≤ τ′ andv≤ v′.

3.2 Using STS in SHARE

In SHARE, STS is used by the receptionists to check for infor-
mation reusability. Intuitively, if an input portI of serviceA re-
quests events of type(τ′,v′), and an (existing) output portO pro-
duces events of compatible type(τ,v), then by connectingI andO,
each eventA receives will contain all the data fieldsA needs for a
correct reaction, andA will be triggeredat leastas often as it is
expected. ForA to be triggered exactly as often as it expects, we
must haveσ(τ) = σ(τ′).

3.2.1 Signal Type Specification
Task SCGs are sent to microservers in an XML format, called

Microserver Tasking Markup Language (MSTML), which is an ex-
tension of MoML [4]. A MSTML file has four sections: Sock-
ets, Services, Relations, and Connections. Sockets, which do not
necessarily mean TCP sockets, are interfaces to other devices: mi-
croservers, wireless sensors, or actuators; the services section spec-
ifies the services used in this task, including a list of all ports and
parameters for each service; the relations section specifies the me-
diators to connect the ports, and the connections section lists which
port connects to which relation. The semantics annotation is part
of the port declaration in the services section.

Figure 5 shows a segment of the services section in MSTML.
Signal types are annotated as properties of ports. For example, the
figure shows an instance ofMagVehicleDetection service that de-
tects the presence of vehicles using magnetometer readings. The
service has two ports: “in” and “out.” The input port needs a sam-
pled magnetometer signal at 10Hz. Each data sample is an integer.
The service produces an output whenever a vehicle is detected. The
vehicle detections are timed discrete events with a fieldtimeStamp.

276

<service name="Detector" type="MagVehicleDetection">
<port name="in">

<property name="input"/>
<property name="signalType">

<signalName value="magnetometer"/>
<tagType value="C(0.1)"/>
<field name="magneticField", value="int"/>

</property>
</port>
<port name="out">

<property name="output"/>
<property name="signalType">

<signalName value="vehicle"/>
<tagType value="D"/>
<field name="timeStamp", value="long"/>

</property>
</port>

</service>

Figure 5: Markup of a Detector service in MSTML. Signal
types are annotated as properties of ports.

A task can also specify that certain signals should not be sub-
stituted by omitting its signal type properties, so that parts of the
SCG must be followed verbatim. This feature is important since
not all tasks are aimed at getting the final output. For example,
one can use theMagVehicleDetection service to check whether the
magnetometer is working correctly. Replacing it with other vehicle
detection mechanisms defeats the purpose.

3.2.2 Type Checking
The goal of reusing services from existing tasks is achieved by

type checking the newly injected MSTML specification against ex-
isting signals. We assume that each application, when given to
SHARE, is already type checked for correctness, and is self-contained.
When an MSTML file is injected, the STS checks that for each in-
put port i in the new task and for the collection of existing output
portsO, there existso∈ O such thattype(o) ≤ type(i). This boils
down to matching the names of the signals, checking the subset re-
lations among the fields, checking the primary types compatibilities
in each field, and most importantly checking the tag type compati-
bility.

For aperiodic signals, the tag type checking can simply use the
coarse-grained type lattice in Figure 3:C ≤ D ≤ Z 0. For periodic
signals, it is possible to perform finer grained checking such as
checking the sampling rate. For example,C(p) ≤C(k× p) for any
natural numberk, and similarly for discrete events.

3.2.3 Type Conversion
Notice that type compatibility does not imply that an input port

in one task can connect to an output port in another task. To ensure
correct triggering, the tag types must be equal. This is achieved
by type conversion of compatible types, based on type checking
results. To simplify discussion, we assume that when a service
accesses data values from its input events, it always uses the name
of the field and casts it to its local type, e.g.

int magValue = (int)event.getValue("magneticField");

In this section, we focus on the conversion of tag types.
The purpose of type conversion is to provide an input port with

exactly what it expects, for both the data values and the triggering

Producer
Original

Consumer

New
Consumer

C(p)

C(p)

C(k x p)

Producer
Original

Consumer

New
Consumer

K-
Downsampler

(a) (b)

Figure 6: Lossless type conversion in SHARE . Down samplers
are automatically inserted to convert tag types.

times. Analogous to conversions in data type systems, we have
developed similar notions of lossless and lossy conversions in STS.
A losslessconversion preserves both value and tag precisions in
the output signal, when the input events are a subset of the output
events. Here, we only consider conversions of periodic signals.

Let output porto and input porti be type compatible, e.g.τ(o) =
C(p), andτ(i) = C(k× p), then the type converter inserts a
k-DownSampler service, which for everyk input events, produces
one output event, as shown in Figure 6. Similar conversions can be
performed for periodic DESs.

Lossy conversions change event values in order to match tag
types. It applies only to DTCSs, taking advantage of the under-
lying continuity of the signal it represents. By using a lossy con-
version, the input port will be triggered exactly as requested, but
the values of the input events are only approximations to the real
values. The accuracy of this approximation depends on the con-
tinuity of the underlying signal and the sampling rate at both the
output port and the input port. AnInterpolator service performs
lossy conversion. There can be many interpolator services based
on different interpolation algorithms. In SHARE, we use a linear
interpolator. In order to reduce approximation errors, we perform
lossy conversion only when the output signal has a lower sampling
period than the input requirement. Letτ(o) = C(p), τ(i) = C(q),
andp < q andq 6= k× p. A LinearInterpolator starts with an in-
ternal counterm set to 0. It is activated by every output event from
o. It produces itsm-th output when receiving thek-th input, where
k satisfies(k−1)p < mq≤ kp. The value of them-th output event
is

y′0 = y0

y′m = yk−1 +(yk−yk−1)
mq− (k−1)p

p
,k≥ 1.

wherey are the input values andy′ are the output values.
Conceptually, an interpolator first converts the DTCS to its un-

derlying continuous-time signal, and then re-samples it according
to the frequency required by the downstream input port. For this
reason, lossy conversion does not apply to timed discrete event sig-
nals.

3.3 More on signal names
Notice that the compatibility of event values defined so far means

that when a service reacts to its input event, it can cast all the ex-
pected data fields without runtime exceptions. There are still ques-
tions of whether events with the same name actually have the same
meaning.

For example, a servicecounter in taskA produces a signal with
namevehicleCount, and another service in taskB also expects a
signal calledvehicleCount. Is it correct to connect them together?
Although the presence of a vehicle is a physical fact, it is possi-

277

ble thatA counts vehicles starting at 9AM, whileB expects the
counting to start at 10AM. The encoding “vehicleCount” is not a
unique identifier for the semantics. On the other hand, names like
vehicleCountFromUTC1-1-2005:09:00:00 and
vehicleCountFromUTC1-1-2005:10:00:00 will differentiate them.

In general, in order to uniquely identify events, the names of the
signals must be universal and rich. That is, uncoordinated users
must first agree on how to name physical and virtual events in the
particular application domain, and secondly, the name should re-
flect runtime information such as time duration, space, units, and
precision. Very likely, the name is a structure rather than a simple
string.

Recent movements in semantic web services propose ontologies
for various application domains [3, 2]. In the sensor communi-
ties, IEEE 1451.2 [1] and OGC SensorML [21] are both attempts
to standardize semantic descriptions of sensor outputs. Currently,
these standards do not include high-level information interpreta-
tions, but further extensions are possible.

Another approach to prevent users from specifying arbitrary data
semantics is to have an automatic service composition engine as the
front end for microservers. Instead of having users directly com-
posing services, which would be difficult for non-technical users,
one can provide users with a high-level query interface. Users
can specify something like “give me a histogram of vehicle arrival
times starting from 9AM today” through a query language; and a
query processor generates a SCG with unified signal types anno-
tated. A query language and its processing engine, based on con-
straint logic programming, has been prototyped for SHARE [25].

4. EXAMPLE
SHARE has been prototyped on the .NET framework using C#.

The runtime system, without the service library, is less than 100KB,
in addition to the standard .NET framework.

We also built an experimental setup in a parking garage to pro-
totype our service-oriented networked embedded computing archi-
tecture and SHARE. The testbed allows users to run multiple simul-
taneous queries on real-time parking garage sensor data.

The testbed is located near the entrance of the second floor in
a parking garage with one-way traffic, as shown in Figure 7. The
focus of the network was a 4x5 meter area directly in front of an
elevator. All vehicles entering this floor of the parking deck pass
through this area, as do most pedestrians using the elevator.

There are three types of sensors in the system: a network cam-
era, a magnetometer and infrared breakbeam sensors. A breakbeam
sensor bounces an infrared beam against a distant reflector. When
an object comes between the sensor and the reflector, it detects that
the beam has been broken; when the object moves away it detects
that the beam has been re-detected. This is the same type of sensor
that might be found at a store entrance to detect customers entering
and leaving.

The breakbeam sensors and the magnetometer are each connected
to a micaZ mote4. Each of these motes is equipped with a 2.4GHz
IEEE 802.15.4 (ZigBee compliant) radio. Five infrared breakbeam
sensors are placed in a row across the area, 1m apart and about .5m
from the ground, such that the beams are broken in succession by
any passing human or vehicle. Each blocking or unblocking event
generates an interrupt to the mote. Slightly down traffic from the
breakbeam sensors, we installed a magnetometer-equipped mote
that can detect the changing magnetic field of a moving vehicle. A
headless Cappuccino EZ-GO small form-factor PC5 with a 1.0GHz

4Available from Crossbow Tech. (www.xbow.com).
5Available from www.cappuccinopc.com

Elevator Well

infrared
reflector

PARKING SPACES

PARKING SPACES

corpnet

Ethernet

mote with
magnetometer

mote with
infrared breakbeam

microserver

camera

Figure 7: A garage sensor network deployment.The breakbeam
sensors were laid out in a row on the wall in the focus area. The
digital camera was focused on the same area. The magnetometer
was placed several meters downstream near the microserver.

Pentium III equivalent processor and 256MB memory is used as a
microserver that communicates with the micaZ motes via a 802.15.4
radio, while connected to the company intranet via wired Ethernet.
The Axis2100 network camera6, with an embedded web server, is
also connected to the Ethernet.

We run the following three queries in the system:

Task T. Traffic engineer Todd wants photographs of all vehicles mov-
ing faster than 25mph.

Task E. Employee Emma wants to know at what time she should ar-
rive at work in order to get a parking space on the first floor
of the parking deck.

Task C. Corp security officer Cory wants to collect magnetic field
signatures whenever there is a moving object (human or ve-
hicles) passing through the section.

There are two ways to detect a vehicle in our system: by using
the breakbeam sensor array or by using the magnetometer. The
breakbeam sensors can estimate the speed of the vehicle, while the
magnetometer cannot. To detect a vehicle, Task E only needs to
sample the magnetometer at 16Hz, while to collect the magnetic
field signature, the magnetometer needs to be sampled at 256Hz.

As a prototype, we use Ptolemy II as a graphical interface for
users to build their tasks and annotate data semantics. Each user
builds the task from his/her own standpoint, without considering
possible resource sharing. For example, Todd’s must detect the ve-
hicles using the breakbeam array since he wants speed information.
His application is shown in Figure 8(a). Emma may find using mag-
netometers to detect vehicles more straightforward, so she builds an
application as shown in Figure 8(b). She sets the magnetometer to
sample at 16Hz. Cory turns on the magnetometer at 256Hz and logs
the data in a running buffer. The buffer triggered by object detec-
tions from the breakbeams to output corresponding magnetometer

6Available from wwww.axis.com

278

T1

T2 T3 T4 T5

(a) Todd’s application (Task T)

E1 E2 E3 E5E4

(b) Emma’s application (Task E)

C1 C2

C3

C4

C5 C6

(c) Cory’s application (Task C)

Figure 8: Three tasks are sent to the parking garage mi-
croserver. Some port names are labeled in circles.Todd uses
the breakbeam array to detect speeding vehicles. Emma intends
to use magnetometer at a low sampling rate (16Hz) to detect en-
tering vehicles. In Cory’s application, high sampling rate magne-
tometer readings are sent to a circular buffer. Object detections
trigger the buffered data to send to Cory.

readings. It uses the speed estimate to calculate which section of
the buffer is sent back to Cory. Cory’s application is shown in Fig-
ure 8(c).

The semantics of the data are also annotated in the model. For
example, using a short notation, in Task T:

type(T3) :=(D, "sortedEdges",{("timeStamps", long[])});

type(T4) :=(D, "vehicle",

{("timeStamp", long),("speed", double)});

in Task E:

type(E2) :=(C(1/16), "magnetometer",

{("magneticField", int)});

type(E4) :=(D, "vehicle",{("timeStamp", long)});

Figure 9: A conceptual run-time image when all tasks are run-
ning. The tasks are injected in particular order: Task C, Task E,
and Task T. Notice that if they are injected in a different order,
the run-time image may be different.

in Task C:

type(C1) :=(D, "sortedEdges",{("timeStamps", long[])});

type(C2) :=(D,"movingObject",

{("timeStamp", long),("speed", double)});

type(C4) :=(C(1/256), "magnetometer",

{("magneticField", int)});

STS derives the following type relations, among others:

type(T3) = type(C1) (3)

type(T4) < type(E4) (4)

type(C4) < type(E2) (5)

Note that using a syntax-based approach, only (3) can be de-
tected. The semantics-based approach gives better information reusabil-
ity. For example, when Task T is already running and Task E is in-
jected, neitherMagnetometer norMagVehicleDetection services are
instantiated. The inputE4 is subscribed to the outputT4. If Task C is
already running when Task E is injected, a16-DownSampler service
is automatically inserted betweenC4 andE2. If the magnetometer
in Task C were set to a sampling frequency that is not a multiple
of 1/256, aLinearInterpolator service would be inserted to per-
form a lossy conversion. When Task C, Task E, and Task T are
injected in that order, the runtime image looks like the one shown
in Figure 9.

On the microserver, MSTML parsing for these tasks takes about
30 milliseconds, while performing type checking and service in-
stantiation takes hundreds of milliseconds. Due to the limited com-
plexity of our tasks, the execution time of the tasks are negligible.
We plan to conduct studies with more complex tasks to examine the
improvement on systems’ response time, i.e. the time period from
receiving the corresponding sensor data to notifying the users.

Figure 10 shows the execution results for the tasks: a photo of a
speeding vehicle, a histogram of vehicle arrival counts for every 6
minutes, and a magnetometer signature of a vehicle.

5. RELATED WORK
Componentizing computation is a trend in networked systems.

It has the benefits of software reuse, information hiding, and some
degree of fault tolerance [23]. In Internet and enterprise comput-
ing, web services [5] are pre-built software components that can be
assembled across organizations and over the network to form new
applications. Component-based and service-oriented approaches

279

(a) Result for Task T: The photo of a speeding vehicle.

(b) Result for Task E: Vehicle arrival count for every 6 minutes.
(The x-axis is relabeled for privacy protection.)

(c) Result for Task C: A magnetic signature for a passing vehi-
cle.

Figure 10: Examples of execution results for the three tasks in
section 4.

to organizing embedded software is also emerging [24, 13, 9, 17].
Publish/subscribe models like those in LINDA [8], CORBA event
service [22], and JavaSpaces [6], are popular approaches to me-
diate uncoordinated tasks. Although caching and replication are
very common in these architectures, little work has been done on
removing redundant publishers.

Resource constraints have pushed sensor network development
environments to look into component sharing. SNACK [10] an-
alyzes nesC component compositions and try to “weave” appli-
cations together to share the same communication layers. It is a
compile-time approach and only performs syntactic analysis. The
IrisNet project [9] studies service composition in resource rich sen-
sor networks. It shares many commonalities with our vision, where
a network of sensor enabled embedded devices provides services to
end users, and the framework tries to remove redundant sensing and
computation at run time. IrisNet uses a caching-based approach for
data sharing [18]. In fact, it has a trace-based naming scheme such
that the name of the data encodes the sequence of functions that
has been applied to get the data. It is essentially an effective way to
achieve syntax-based redundancy removal.

Semantics-based type checking and conversion has been seen in
unit type systems, where the type system automatically converts
measurement units, for example from inches to centimeters, given
its understanding of their semantics (i.e. units) [19]. Treating time
and sampling rates as part of system semantics has been seen in
engineering design frameworks. Clock calculus in synchronous
languages such as Signal [7] and trigger analysis in time-triggered
languages such as Giotto [11] are both capable of reasoning about
sampling rates. However, these analyses are performed statically at
compile time. We formulate timing properties as part of the data
semantics, which allow dynamic information reuse at runtime.

6. CONCLUSION AND FUTURE WORK
Microservers need to respond to uncoordinated user tasks in a

resource efficient way. In this paper, we have presented a service-
oriented architecture in SHARE, and have shown the effectiveness
of using semantics information to help reduce redundant compu-
tation. We have defined a signal type system that makes data se-
mantics precise in terms of both data values and tag types. Using
the type system, we can check signal compatibility and perform
runtime adaptation using down sampling and interpolation.

A type system is a systematic way of encoding constraints to-
gether with efficient algorithms to solve them. It is a powerful con-
cept that puts semantics-based optimization into a formal frame-
work. Next, we discuss some of the limitations of SHARE and our
plans for future work.

Task injection order dependencies.As seen in Section 4, the
optimization results depend on the order in which the tasks are in-
jected to the microserver. This is because we only prune the new
tasks and keep the existing tasks unchanged. The advantage is that
it preserves the continuity of existing tasks. But the disadvantage
is that the final computation graphs may be sub-optimal. For ex-
ample, in our parking garage system, using five breakbeam sensors
to detect a car consumes more communication energy than using a
single magnetometer. It is a good idea to prune Task E if Task T is
already running. However, when Task T finishes, it is no longer re-
source optimal to continue using the breakbeam sensors. We plan to
further extend our data annotation to include the resources needed
to generate each signal in a SCG. Then SHARE will have the in-
formation needed to dynamically optimize resources based on cur-
rently running tasks.

Runtime type resolution. Currently, in SHARE all port types
are fixed at the time at which tasks are injected. This constrains our

280

capability to further reduce redundancy. For example, two tasks
may both need samples from sensorA, one with 5Hz sampling fre-
quency and the other with 2Hz sampling frequency. If the first task
is started before the second one, the sampling rate will be fixed at
5Hz, and the second task will receive interpolated input. Ideally,
when the second task is injected, we should changeA’s sampling
frequency to 10Hz and automatically down sample the outputs for
each task, such that no lossy conversion is necessary. This informa-
tion is readily captured in our STS. However, to effectively use it,
we need runtime type resolution capabilities. A service would only
specify constraints between its input tag types and output tag types,
(e.g. equality), rather than fixing it to a specific set. The runtime
system then solves the set of constraints, so that new constraints
can propagate through the SCG.

Data fidelity. We described in Section 3.3 the need for enhanced
naming schemes to embrace richer semantics information. This
is particularly important when dealing with real world signals and
information processing. Vehicle detections are not crisp values.
Different detection schemes may have their own false alarm and
missed detection rates. We call this thedata fidelity. We are in-
terested in extending our type system to capture data fidelity con-
cerns. For example, the breakbeam array may have a higher false
alarm rate than the magnetometer in terms of detecting cars (e.g.
it may treat two people walking side-by-side as a vehicle.) So the
fidelity of the vehicle detection output using breakbeams is lower
than that of using the magnetometer. If the required detection fi-
delity in Task E is higher than what the breakbeam can provide,
then Task E cannot be pruned.

Work in these future directions will make the semantics-based
task optimization more powerful and practical.

7. ACKNOWLEDGMENTS
The authors would like to thank Prabal Dutta and Kamin White-

house for their contributions to the parking garage testbed deploy-
ment and service implementations.

8. REFERENCES
[1] 1451.2: A Standard for a Smart Transducer Interface for

Sensors and Actuators - Transducer to Microprocessor
Communication Protocols and Transducer Electronic Data
Sheet (TEDS) Formats. 1997.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference, 2004. W3C,
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[3] L. Cabral, J. Domingue, E. Motta, T. Payne, and
F. Hakimpour. Approaches to semantic web services: An
overview and comparisons.Lecture Notes in Computer
Science, 3053:225–239, 2004. Proceedings First European
Semantic Web Symposium (ESWS2004), Heraklion, Crete,
Greece.

[4] J. Davis, II, et. al. Ptolemy II: Heterogeneous concurrent
modeling and design in Java. Technical Memorandum
UCB/ERL M01/12, EECS, University of California,
Berkeley, Mar. 2001.

[5] T. Erl. Service-Oriented Architecture : A Field Guide to
Integrating XML and Web Services. Prentice Hall, 2004.

[6] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces:
Principles, Patterns, and Practive. Addison-Wesley, 1999.

[7] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A
declarative language for synchronous programming of
real-time systems. InProc. of a conference on Functional

programming languages and computer architecture,
Portland, OG, pages 257 – 277. Springer-Verlag, 1987.

[8] D. Gelertner. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[9] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan.
IrisNet: An architecture for compute-intensive wide-area
sensor network services.IEEE Pervasive Computing,
2(4):22–33, October 2003.

[10] B. Greenstein, E. Kohler, and D. Estrin. A sensor network
application construction kit (SNACK). InProceedings of the
2nd international conference on Embedded networked sensor
systems (SenSys’04), Baltimore, MD, pages 69–80,
November 2004.

[11] T. Henzinger, B. Horowitz, and C. Kirsch. Embedded control
systems development with Giotto. InProceedings of
Languages, Compilers, and Tools for Embedded Systems
(LCTES’01), June 2001.

[12] E. A. Lee. Modeling concurrent real-time processes using
discrete events.Annals of Software Engineering, 7:25–45,
1999.

[13] E. A. Lee. What’s ahead for embedded software?IEEE
Computer, 33(9):18–26, September 2000.

[14] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation.IEEE Transactions on
CAD, 17(12):1217–1229, Dec. 1998.

[15] J. Liberty.Programming C# (3rd. Ed.). O’Reilly, 2003.
[16] J. C. Mitchell.Foundations for Programming Languages.

MIT Press, 1996.
[17] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The

Click modular router.ACM Transactions on Computer
Systems, 18(3):263–297, August 2000.

[18] S. Nath, Y. Ke, P. B. Gibbons, B. Karp, and S. Seshan. A
distributed filtering architecture for multimedia sensors. In
First Workshop on Broadband Advanced Sensor Networks
(BaseNets), October 2004.

[19] G. S. Novak Jr. Conversion of units of measurement.IEEE
Transactions on Software Engineering, 21(8):651–661,
August 1995.

[20] Object Management Group. OMG unified modeling
language specification (action semantics). November 2002.
OMG Document #ptc/02-01-09.

[21] Open Geospatial Consortium, Inc.Sensor Model Language
(SensorML) for In-situ and Remote Sensors (v1.0.0 beta).
2004. doc# 04-019r2.

[22] C. O’Ryan, D. C. Schmidt, and J. R. Noseworthy. Patterns
and performance of a CORBA event service for large-scale.
International Journal of Computer Systems Science and
Engineering, CRL Publishing, 2001.

[23] C. Szyperski.Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1997.

[24] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer
electronics software.IEEE Computer, 333(3):78–85, March
2000.

[25] K. Whitehouse, F. Zhao, and J. Liu. Semantic Streams: a
framework for declarative queries and automatic data
interpretation. Technical Report MSR-TR-2005-45,
Microsoft Research, One Microsoft Way, Redmond, WA
98052, April 2005.

281

