
From Multi- clocked Synchronou s Processes
to Latency-insensitive Modules ∗

Jean-Pierre Talpin Dimitru Potop-Butucaru Julien Ouy Benoit Caillaud
INRIA - IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

FirstName.LastName@inria.fr

ABSTRACT
We consider the problem of synthesizing correct-by-constru-
ction globally asynchronous, locally synchronous (GALS)
implementations from modular synchronous specifications.
This involves the synthesis of asynchronous wrappers that
drive the synchronous clocks of the modules and perform
input reading in such a fashion as to preserve, in a certain
sense, the global properties of the system. Our approach is
based on the theory of weakly endochronous systems, which
gives criteria guaranteeing the existence of simple and effi-
cient asynchronous wrappers. We focus on the transforma-
tion (by means of added signalling) of the synchronous mod-
ules of a multiclock synchronous specification into weakly
endochronous modules, for which simple and efficient wrap-
pers exist.

Categories and Subject Descriptors: D.2.2: CASE

General Terms: Algorithms, Reliability, Verification.

Keywords: separate compilation, compositional mapping.

1. INTRODUCTION
We start our presentation with a summary of the theory

under consideration. We refer the reader to the continu-
ation of the present work in [4] for motivating examples,
throughout relation to previous works and applications to
separate compilation and distributed code generation. The
micro-step automata theory under consideration is a par-
ticular class of concurrent automata equipped with syn-
chronous product and synchronous and asynchronous FIFO
models allowing to represent computation and communica-
tion causality as well as communication through read/write
primitives over given communication channels. A detailed
description of this theory can be found in [3].

Micro-step automata communicate through signals x ∈ X.
The labels l ∈ LX generated by the set of names X are
represented by a partial map of domain from a set of signals

∗This work is partly funded by the ARTIST2 Network of
Excellence and the Regional Council of Brittany

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

X noted vars(l) to a set of values V ⊥ = V ∪ {⊥} and tags.
The label ⊥ denotes the absence of communication during a
transition of the automaton. We note l′ ≤ l iff there exists
l′′ disjoint from l′ such that l = l′∪l′′ and then l\l′ = l′′. We
say that l and l′ (resp. t and t′) are compatible, written l ./ l′,
iff l(x) = l′(x) for all x ∈ vars(l) ∩ vars(l′) and, if so, note
l∪ l′ their union. We write supp(l) = {x ∈ X | l(x) 6= ⊥} for
the support of a label l and ⊥X for the empty support.

Definition 1. An automaton A = (s0, S, X,→) is defined
by an initial state s0, a finite set of states S noted s or x = v,
labels LX and by a transition relation → on S × LX × S.
The product A1 ⊗A2 of Ai = (s0

i , Si, Xi,→i) for 0 < i ≤ 2
is defined by ((s0

1, s
0
2), S1×S2, X1∪X2,→) where (s1, s2) →l

(s′1, s
′
2) iff si →l|Xi s′i for 0 < i ≤ 2 and l|Xi the projection

of l on Xi. An automaton A = (s0, S, X,→) is concurrent
iff s →⊥ s for all s ∈ S and if s →l s′ and l′ ≤ l then there

exists s′′ ∈ S such that s →l′ s′′ and s′′ →l\l′ s′.

Synchronous automata account for primitive communica-
tions using read and write operations ondirected communica-
tion channels pairing variables x with directions represented
by tags. Emitting a value v along a channel x is written
!x = v and receiving it ?x = v. We write vars(D) for the
channel names associated to a set of directed channels D.
The undirected or untagged variables of a synchronous au-
tomaton are its clocks noted c.

Definition 2. A synchronous automaton (s0, S, X, c,→)
of clock c ∈ X is a concurrent automaton (s0, S, X,→) s.t.

1. s →l s implies l = c or c 6≤ l
2. s0 →c s0

3. s →c s′ implies s′ →c s′

4. if si−1 →li si and li 6= 1 for 0 < i, j ≤ n then vars(li)∩
vars(lj) = ∅ iff i 6= j.

We assume that a channel x connects at most one emitter
with at most one receiver. Multicast will however be used
in examples and is modeled by substituting variable names
(one !x = v and two ?x = w1,2 will be substituted by two
!x = v, !x2 = v and two ?x = w1 ?x2 = w2 by introducing
a local signal x2). For an automaton A, we define a trace
t ∈ T = L∗X by a finite sequence of labels, write |t| for its
length and refer to ti as the ist label in t and TA(s) as the set
of traces accessible by A from state s. For a synchronous
automaton of clock c, we write s →∗

t s′ iff there exists a
series (si)0≤i≤n with n = |t| such that s0 = s, si−1 →ti si

for 0 < i ≤ n and sn = s′. We note s0 �t s iff s →∗
t s′ with

ti 6= c for 0 < i ≤ |t| and s|t| →c s.

282

The composition of automata is defined by synchronized
product, using first-in-first-out buffer models to represent
communication through synchronous and asynchronous chan-
nels. Synchronous communication is modeled using 1-place
synchronous FIFO buffers. The synchronous FIFO of clock
c and channel x is noted sfifox

c and the asynchronous FIFO
buffer of channel x is written afifox. A synchronous FIFO
buffer serializes the emission event !x = v followed by the re-
ceipt event ?x = v within the same transition (the clock tick
c occurs after). Silent transitions si →⊥ si for 0 ≤ i ≤ 2 are
left implicit as sfifox

c is assumed to be a concurrent automa-
ton. The model of an unbounded and asynchronous FIFO
buffer is similarly defined by the repetition of the commu-
nication pattern of the synchronous buffer and by induction
on its storage size represented by a word w ∈ V ∗.

sfifox
c

def
=

0@s0, {s0..2}, {?x, !x, c}, c, s0c 99
!x=v// s1

?x=v// s2

c

__

1A
afifox def

=

ε, V ∗,∪v∈V {?x = v, !x = v} ,

∪n≥0

n
vw

?x=v−→w
!x=v−→wv | v ∈ V, w ∈ V n

o!
Two synchronous automata are composable if their tagged

variables are mutually disjoint. This rule enforces the point-
to-point communication restriction previously mentioned and
non-overlapping of clocks. The synchronous composition of
two automata consists of its synchronous product with the
synchronous FIFO buffer model instantiated for all channels
x common to the vocabulary of the composed automata.
The clocks c1,2 of both automata are synchronized to the
clock c of the FIFO (by the substitution Ai[c/ci] of ci by c
in Ai). Similarly, the asynchronous composition consists of
the synchronous product of the composed automata with in-
stances of asynchronous FIFO buffers for all common chan-
nels x and, this time, without clock synchronization.

Definition 3. Let Ai = (s0
i , Si, Xi, ci,→i)i=1,2 be two com-

posable synchronous automata and c a clock and write A[c2/c1]
for the substitution of c1 by c2 in A. Synchronous com-
position A1 || cA2 at clock c and asynchronous composition
A1 ‖ A2 are defined by:

A1 || cA2 =
“N

i=1,2 Ai[c/ci]
”
⊗
“N

x∈∩i=1,2vars(Xi)
sfifox

c

”
A1 ‖ A2 =

“N
i=1,2 Ai

”
⊗
“N

x∈∩i=1,2vars(Xi)
afifox

”
If A = (s, S, X, c, T) then the restriction A/x is defined by

(s, S, X/{x}, c, {s1 →l/x s2 ∈ T ′ | s1 →l s2 ∈ T}.

2. MICRO-STEP SEMANTICS OF SIGNAL
Micro-step automata provide an expressive operational se-

mantics framework for the multi-clocked data-flow specifica-
tion formalism Signal under consideration. In Signal [2], a
process p is an infinite loop that consists of the synchronous
composition p || q of simultaneous equations x = y f z over
signals noted x, y, z. Restricting the lexical scope of a signal
name x to a process p is noted p/x. A network of syn-
chronous processes is noted P and P ‖ Q stands for the
asynchronous composition of P and Q.

p, q ::= (x = y f z) | p || q | p/x P, Q ::= p |P ‖ Q

A delay equation p=def(x = y pre v0) corresponds to an au-
tomata composed of four micro-states s0..3

v and for each
value v of the signal x and starting from an initial state

s0
v0 with the initial value v0. The automaton concurrently

performs both receive ?y = w and send !x = v actions and
then issues a clock transition c to the state s0

w where the
next reaction takes place.

Ap =

0BBBBBBBBBB@

s0
v0 , {s0..3

v , | v ∈ V }, {x, y}, c,∪v,w∈V0BBBBBBBB@

s1
v

?y=w

��

s0
v

c
88

!x=v
??

?y=w ��

?y=w!x=v
// s3

v

c // s0
w

s2
v

!x=v

??

1CCCCCCCCA

1CCCCCCCCCCA
A sampling equation p=def(x = y when z) starts from its

initial state s0 and concurrently performs either of two re-
ceive actions ?y = v and ?z = w. If either y or z is absent
or if z equals 0 then the automaton performs a clock transi-
tion to the initial state s0. Otherwise, it performs the send
action !x = v. This means that x is causal to both y and z.
Notice that all intermediate states are parameterized with
the value v under consideration.

Ap =

0BBBBBBBBB@

s0, {s0..2, s3..5
v | v ∈ V }, {x, y, z}, c,∪v∈V0BBBBBBB@

s5
v

!x=v
//

s4
v

?z=1oo

c

��

?z=0 ''

s0

c

��
?z=1 //

?y=v
oo

?z=0
}}

s1
?y=v

//

c

��

s3
v

!x=v
oos2

c

OO

1CCCCCCCA

1CCCCCCCCCA
A merge equation p=def(x = y default z) performs two

concurrent receive actions ?y = v and ?z = w. If y is present
then the send action is always !x = v to s4. If only z is
present (in s2) then the send action is !x = w to s4 before
a clock transition back to s0. Otherwise the only choice is
a silent transition at s0. Again, all intermediate states are
parameterized with the possible pairs (v, w) ∈ V 2.

Ap =

0BBBBBBBBBBB@

s0, {s1
v, s2

w, s3..4
v,w | v, w ∈ V }, {x, y, z}, c,∪v,w∈V0BBBBBBBB@

s1
v

?z=w

��

!x=v

��

s0c
88

?y=v @@

?z=w
��

?y=v?z=w
// s3

v,w
!x=v// s4

v,w
c // s0

s2
w

?y=v

__

!x=w

??

1CCCCCCCCA

1CCCCCCCCCCCA
Composition p || q or P ‖ Q and restriction p/x are defined

by structural induction starting from the previous axioms
and by using equivalent composition concepts of the model
of micro-step automata.

Ap || q = Ap || cAq Ap/x = (Ap)/x AP‖Q = AP ‖ AQ

3. FORMAL PROPERTIES
To address this issue, the property of weak endochrony [3]

defines the class of deterministic micro-automata which sat-
isfy insensitivity to latency.

Definition 4. Let us write s �t iff there exists s′ such
that s �t s′. A micro-automaton A = (s0, S, X, c,→) is
weakly-endochronous iff it is synchronous and:

1. deterministic: if s →l s1 and s →l s2 then s1 = s2

283

2. step-independent: if s →l1 s1, s →l2 s2 and supp(l1)∩
supp(l2) = ∅ then there exists s′ such that s1 →l2 s′,
s2 →l1 s′ and s →l1∪l2 s′

3. clock-independent: s →c s′ implies

(a) if s
t−→
∗

and c 6∈ supp(t) then s′
t−→
∗

(b) if s �t s′′ then s′ �t s′′

(c) if s′ �tt′′ then s �tt′ and t′ ≤ t′′

(d) if s �t and s �t′ and t ./ t′ then s �t(t′\t)

4. choice-independent: if supp(l1) = supp(l2), s
t1l1−→

∗
,

s
t2l2−→

∗
and t1 ./ t2 then s

t1l2−→
∗

and s
t1l2−→

∗

Let (Ai)0<i≤n be weakly endochronous automata, if the
synchronous composition || cAi, 0 < i ≤ n is non-blocking
(i.e. s →l s′ ⇒ s �lt) then the (Ai)0<i≤n are weakly
isochronous. Weakly isochronous automata satisfy the de-
synchronization correctness criterion of [3].

Theorem 1. If the automata Ai, 0 < i ≤ n are weakly
isochronous then their desynchronization is correct.

4. FLOW ANALYSIS
In order to define decision criteria, section 5, to validate

definition 4 and meet the property of theorem 1, we consider
an intermediate representation of multi-clocked specification
that exposes its control and data-flow properties for the pur-
pose of their analysis.

A process p is represented as a data-flow graph G. In this
graph, a vertex g is a data-flow relation that partially defined
a clock or a signal. A signal vertex c ⇒ x = f(y1..n) partially
defines x by f(y1..n) at the clock c. We note ĝ the clock c of
a signal vertex g, use(g) its set of used signal names {y1..n},
def(g) its defined signal name x, vars(g) = use(g) ∪ def(g)
and fun(g) its function f , which can either be the identity,
a boolean function (∧,∨ or ¬) or the delay operator pre .

G, H ::= g | (G ||H) |G/x g, h ::= x̂ = e | c ⇒ x = f(y1..n)

A clock vertex x̂ = e defines a relation between two clocks.
A clock c defines a condition upon which a data-flow relation
can be executed. It expresses control. The clock x̂ defines
when signal x is present (its value is available). Clocks x and
¬x mean that x is true and false, respectively, and hence
present. A clock expression e is Boolean expression that
defines the way a clock is computed. 0 means never.

c ::= x̂ |x | ¬x e ::= 0 | c | e1 ∨ e2 | e1 ∧ e2

The decomposition of a process into the synchronous com-
position of clock and signal vertices is defined by induction
on the structure of p. Each equation is decomposed into
data-flow functions guarded by a condition, the clock x̂ of
the output. This clock will need to be computed for the
function to be executed. Notice the particular decomposi-
tion of a merge equation. The partial equations x = y and
x = z are differentiated by the true and false value of a
boolean signal δ, which we call a differential clock. A sub-
tlety is that the sub-clock ¬δ is not locally defined while δ̂
and δ are. It is non-constructively defined by the difference
between ẑ and ŷ.

G[x=y pre v]=(x̂ ⇒ x = pre (y, v)) || (x̂ = ŷ)
G[x=y when z]=(x̂ ⇒ x = y) || (x̂ = ŷ ∧ z)

G[x=y default z]=((δ ⇒ x = y) || (δ̂ = x̂)
|| (¬δ ⇒ x = z) || (δ = ŷ)

|| (x̂ = ŷ ∨ ẑ))/δ
G[p || q]=G[p] ||G[q] G[p/x] = G[p]/x

For the sake of a clear separation of concerns, the form of
the graph Gp of a process p is decomposed into its clock ver-
tices Cp, that defines its control and timing model, and sig-
nal vertices Sp, that define its (untimed) data-flow. The set
of bound signal names Xp of Gp is further extracted by com-
mutativity and for any substitution (G/x) ||H = ((G[y/x])
||H)/y of x by y 6∈ vars(G)∪vars(H) in G to yield the decom-
position of the graph Gp of a process p as Gp=def(Cp ||Sp)/Xp.

The remainder requires a couple of notations to be de-
fined: we write G |= e = f iff the system of Boolean equa-
tions Cp in G implies that e = f always holds. In addition,
and for all process p and all boolean signal x in p, we assume
that Cp |= x̂ = x∨¬x and Cp |= x∧¬x = 0. We note c ≤ d
for syntactic clock inclusion: x < x̂ and ¬x < x̂ and x̂ ≤ x̂.
We write vars(p) for the set of free signal names of a process
p. The free signals of a process are those which appear in
equations and whose scope is not bound by restriction. The
free output signals out(p) of a process p are free signal names
occurring on the left-hand side of equations. The free input
signals in(p) of a process p are the remainder vars(p)\out(p).
The state variables state(p) of a process p are bound signals
x ∈ Xp defined by a delay equation.

The flow analysis of graphs Gp comprises control-flow as-
pects whose aim is to determine signal clocks from the infor-
mation available to the process p: its input signals interface
and its clock relations Cp. To this end, the relation c ≺ C is
defined between a clock c and the set of supposedly known
clocks C is can be deduced from in order to express it by a
Boolean function f that satisfies Cp |= c = f(C).

Definition 5. The clock c is computable from the input
signals in(p), written c ≺ C, iff

- if x ∈ in(p) and c ≤ x then c ≺ {c}
- if x ∈ state(p) and x̂ ≺ C and c < x̂ then c ≺ {c}
- if c1 ≺ C and Cp |= c1 = c2, then c2 ≺ C
- if c1 ≺ C1, c2 ≺ C2 and Cp |= d = c1 ∨ c2 or d = c1 ∧ c2

then d ≺ C1 ∪ C2

The clocks of p are computable iff for all bound signals x ∈
Xp of p and all c ≤ x there exists C such that c ≺ C.

Data-flow analysis relates the vertices of a graph G by a
scheduling relation g � h. It is defined iff the name defined
by g can eventually be used by h. Two non-causal vertices
are said independent, noted g ≶ h, and then they are ei-
ther exclusive, written g#h, synchronous, written g ∼ h, or
concurrent, written g � h.

Definition 6. Two signal vertices g, h ∈ Sp are causal,
written g � h, iff def(g) ∈ use(h), fun(h) 6= pre and Cp |=
ĝ ∧ ĥ 6= 0; independent, written g ≶ h, iff g 6� h and
h 6� g. Two independent vertices g and h are exclusive,
written g#h, iff Cp |= ĝ ∧ ĥ = 0; synchronous, written

g ∼ h, iff Cp |= ĝ = ĥ. Two independent vertices g and

h are either connected, written g#̃h, iff g#h or g ∼ h;
concurrent, written g � h, iff ¬g#̃h.

Definition 6 provides a complete structure for the vertices
of a data-flow graph: two vertices are either causal or inde-
pendent. Two independent vertices are either concurrent,
synchronous or exclusive.

A notion of grammar establishes the duality between the
automaton and the graph of a process p by linking these
representations. The grammar Mp of a process p consists of
signal vertices related by the connectors �, # ∼ and �. It

284

can be viewed as a refinement of data-flow graph Gp which
make the event structure implied by the clock relations Cp

explicit.

M, N ::= g |M � N |M#N |M ∼ N |M �N

To construct the event grammar of a process, we make use
of a few functions to manipulate the graph structure implied
by the relation of causality. The immediate successors and
predecessors of a vertex g in a graph G are noted succg(G)
and predg(G) and their transitive closures succ∗g(G) and
pred∗g(G), respectively. The minimal and maximal vertices
of a graph g are noted min(G) and max(G). The neighbors
of g in G are nextg(G) = ∪h∈predg(G)succh(G).

predg(G)={h∈G |h�g}
succg(G)={h∈G | g�h}

min(G)={g∈G | ∀h∈G, h 6�g}
max(G)={g∈G | ∀h∈G, g 6�h}

Definition 7. The grammar M is defined from the signal
vertices of a graph S by the function fork(S). We write
forkg(S) for the prefix of g in the grammar fork(S).

fork(S) = let �m
i=1(#̃

ni
j=1gi,j) = (max(S))#̃

in �m
i=1

“
#̃ni

j=1 (fork (pred∗(gi,j))) � gi,j

”
The partition S#̃ = (Si)

n
i=1 of a set of independent signal

vertices S into exclusive vertices is defined by S =]n
i=1Si

and, for all 0 < i, j ≤ n, for all (g, b) ∈ Si × Sj, (g#̃h ⇔
i = j) and (g � h ⇔ i 6= j).

A sequential component of M is a sub-grammar that does
not contain a concurrency or synchrony relation (only �
or #). A thread T is a sequence of signal vertices that
represents the possible scheduling of a transition. We call
|T | its length and Ti its ist element. The threads join(M)
of a grammar M are constructed by structural induction.

join(g)=g join(M#N) = join(M) ∪ join(N)
join(M � N)={TU | (T, U) ∈ join(M)× join(N)}
join(M ∼ N)=join((M � N)#(N � M))
join(M �N)=join((M ∼ N)#M#N)

5. DECISION PROCEDURES
The control and data-flow analysis of a process define an

event structure represented by a grammar Mp that allows
us criteria upon which a process p can be guaranteed to
be weakly-endochronous. First, we show that checking a
process p deterministic and step independent amounts to
the satisfaction of clock relations in Cp, some of which being
related to the causal structure implied by its graph Gp.

Definition 8. Let (g, h) two signal vertices of a graph Gp.

If g � h then (ĝ ∧ ĥ) ⇒ def(g) �∗ def(h). If e1 ⇒ x �∗ y
and e2 ⇒ x �∗ y then (e1 ∨ e2) ⇒ x �∗ y. If e1 ⇒ x �∗ y
and e2 ⇒ y �∗ z then (e1 ∧ e2) ⇒ x �∗ z. A process p is
schedulable iff e ⇒ x �∗ x implies Cp |= e = 0 for all x.

A process p is predictable iff its clocks are computable and
all distinct vertices g 6= h of Sp such that def(g) = def(h)
are exclusive g#h.

Second, grammars provide the necessary framework to
finitely explore the state-space of a process and define de-
cision procedures for the properties of clock and choice-
independence.

Definition 9. Thread T is compatible with U on I, written
T .I U , iff for all x ∈ I and 0 < i ≤ |T |, there exists

0 < j ≤ |U | s.t. T̂i ⇒ x̂, Ûj ⇒ x̂ and T̂i ∧ Ûj 6= 0.
Two threads T and U are compatible on I, written T ./I

U , iff T .I U and U .I T . Two grammars are compatible,
written M ./I N , iff T ./I U for all (T, U) ∈ join(M) ×
join(N). Two processes p and q are compatible I = vars(p)∩
vars(q) iff Mp ./I Mq.

We write S|I for the restriction of S on vertices that have
used or defined variables in I.

Definition 10. A process p is conflit-free iff, for all g, h ∈
S = (Sp)|vars(p), (1) if g �h then for all (g′, h′) ∈ predg(S)×
predh(S), g′ 6= h′, use(g′)∩use(h′)∩vars(p) = ∅ and g′ ≶ h′

and (2) if g#h and forkg(S) ./vars(p) forkh(S) then there
exists (g′, h′) ∈ nextg(S)× nexth(S), g ∼ h′ and h ∼ g′.

A conflict-free process p is clock and choice independent:
for instance, the grammar of the switch restricted to its
free variables is conflict-free: (gx1

1 #gx1
2) � (gx2

1 #gx2
2). At

last, Definition 11 summarizes the above and defines a no-
tion of weak controllability that is sufficient for a process
to be weakly endochronous and a pair of processes weakly
isochronous.

Definition 11. A process p is weakly controllable iff it is
schedulable, predictible and conflict-free. Two processes p
and q are mutually controllable iff p and q are compatible
and p || q is schedulable.

Our main result is in accordance to this definition.

Theorem 2. If p is weakly controllable then Ap is weakly
endochronous. If p and q are weakly and mutually control-
lable then Ap and Aq are weakly isochronous.

6. CONCLUSIONS
The micro-step automata theory of [3], and with the data-

structure and analysis we introduce, allow us to attack a cen-
tral issue of desynchronization: to locally and composition-
ally minimize synchronization constraints. It preludes opti-
mized code generation and communication synthesis schemes
to be accordingly defined. In this aim, a subsequent tech-
nical report [4] defines a procedure for compositionally syn-
thesizing a weakly-endochronous automaton and modularly
generating C-like code starting from the intermediate repre-
sentation of a weakly controllable process p.

7. REFERENCES
[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le

Guernic, and R. de Simone. The Synchronous Languages Twelve
Years Later. Proceedings of the IEEE. IEEE Press, 2003.

[2] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for
system design. Journal of Circuits, Systems and Computers.
World Scientific, 2003.

[3] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specification. In Application of Concurrency to System Design.
IEEE Press, 2005.

[4] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, B. Caillaud.
Compositional synthesis of latency-insensitive systems from
multi-clocked synchronous specifications. Research Report
n. 1730. IRISA, June 2005.

285

