
The Formal Verification of a Reintegration Protocol

Lee Pike
Formal Methods Group

NASA Langley Research Center

lepike@indiana.edu

Steven D. Johnson
Department of Computer Science
Indiana University, Bloomington

sjohnson@cs.indiana.edu

ABSTRACT
We report the first formal verification of a reintegration pro-
tocol for a safety-critical distributed embedded system. A
reintegration protocol increases system survivability by al-
lowing a transiently-faulty node to regain state. The proto-
col is verified in the Symbolic Analysis Laboratory (SAL),
where bounded model-checking and decision procedures are
used to verify infinite-state systems by k-induction. The
protocol and its environment are modeled using a recently-
developed explicit real-time model. Because k-induction has
exponential complexity, we optimize this model to reduce
the size of k necessary for the verification and to make k
invariant to the number of nodes. A corollary of the verifi-
cation is that a clique avoidance property is satisfied.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification

General Terms: Verification

Keywords: reintegration protocol, infinite-state systems,
real-time, formal verification, infinite-state bounded model-
checking

1. INTRODUCTION
Digital control systems (i.e., “x-by-wire”) are now be-

ing designed for use in safety-critical environments such as
automobiles, commercial aircraft, and piloted space vehi-
cles. In a single vehicle, many systems require reliable real-
time intercommunication. Highly-reliable fault-tolerant vir-
tual buses are being designed for this purpose, including
the Time-Triggered Architecture, SAFEbus, FlexRay, and
NASA Langley’s SPIDER [12].

These buses (Rushby notes that the term ‘bus’ “under-
states their complexity, sophistication, and criticality” [12])
are themselves implemented as synchronized distributed sys-
tems. A node in the distributed system may suffer a tran-
sient fault causing it to lose its volatile state but suffer no
permanent damage. Although such a node may be fault-
free, its state no longer is coordinated with that of the oper-

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

ational clique, the set of non-faulty nodes with coordinating
states that provide the system services.1 For a transiently-
faulty node to regain correct state, it executes a reintegra-
tion protocol. Its main purpose is to allow the reintegrating
node (called the reintegrator) to resynchronize its local clock
with those of the nodes in the operational clique. This is a
necessary precondition for it to regain other state (e.g., the
dynamic schedule).

We present a formal verification of the SPIDER Reinte-
gration Protocol [14]. This is the first formal verification of a
reintegration protocol. Pfeifer and Rushby each have stated
that the formal analysis of reintegration remains important
future work for TTA, one of the most mature and fully
formally-verified fault-tolerant buses in development [9,13].
This work should be immediately extensible to the formal
verification of reintegration protocols for other fault-tolerant
systems.

The approach builds on recent developments in real-time
system verification involving explicit real-time models in
which the current time is tracked with a variable, and dis-
crete events have real-time bounds on when they can oc-
cur [5, 7] (in [7], only explicit discrete-time models are con-
sidered). This contrasts with implicit (or clock-based) real-
time models, such as timed automata [1]. The attraction
of explicit real-time models is that their syntax is simple
(time constraints are essentially inqualities over the reals),
and they require no special semantics for verification. Fur-
thermore, parameterized specifications can be verified. For
example, in this verification, the maximum clock skew π is
modeled as an uninterpreted constant, so the verification
holds for any value of π.

This work extends results in using bounded model-checking
and decision procedures to verify infinite-state real-time sys-
tems using k-induction, a generalization of the ordinary in-
duction principle over transition systems. This is done in
the generic (i.e., there are no special provisions for model-
ing real-time systems) model-checker SAL [4]. Because the
technique is exponential with respect to k (where k is the
length of trajectories over which induction is taken), a focus
of this work is to reduce the size of k and make it invariant
to the number of nodes modeled. Our two approaches are
to optimize a recently-developed explicit real-timed model
called timeout automata [5] and to provide a time-triggered
model of event-triggered systems.

1The operational clique is not necessarily equivalent to the
set of non-faulty nodes: for example, a reintegrating node is
a non-faulty node outside the operational clique. This dis-
tinction can be subtle and is in fact responsible for an error
in the previous design of another SPIDER protocol [11].

292286

2. EXPLICIT REAL-TIME VERIFICATION
First, we describe the SAL toolset used. Next, we describe

the formal timing model used in the verification (for space
considerations, the model is described informally; see [10]
for more details).

2.1 SAL
The protocol is specified and verified in SAL, developed

by SRI, International [4]. SAL is a toolset that includes
explicit-state, symbolic, and bounded model-checkers, an in-
teractive simulator, as well as other tools. A single language
serves as the input to the verification tools. The fundamen-
tal building block in the language is a module specifying
a state machine. Modules can be synchronously or asyn-
chronously composed, and they communicate via shared
variables. SAL has provisions for both finite and infinite
types, uninterpreted and interpreted constants and func-
tions, and quantification over finite domains.

The verification tools used were SAL’s bounded model-
checker in conjunction with the Integrated Canonizer and
Solver (ICS), a decision procedure for a quantifier-free, first-
order theory of equality, the terms of which include uniter-
preted functions, linear arithmetic, products, arrays, fixed-
sized vectors, etc. [4].2 Together, these tools can be used
to prove state invariants hold in infinite transition systems.
The invariants do not need to be strictly inductive; SAL sup-
ports k-induction, a generalization of the ordinary induction
principle (over transition systems) [3].

Definition 1. For a transition system with a set of states
S, a set of initial states S0 ⊆ S, and a binary transition re-
lation →, a property P is k-inductive if for each trajectory
s0 → s1 → . . . → sk of length k, if s0 ∈ S0, then P holds at
every state on the trajectory (the base case), and if P holds
at states s0 through sk−1, then P holds in sk (the induction
step).

The ordinary induction principle is the special case when
k = 1. The benefit of k-induction is that, as k increases,
weaker invariants may be provable. Furthermore, SAL al-
lows previously-proved invariants to be used as lemmas in
k-induction proofs. A lemma strengthens the antecedents in
the base case and induction step so that only states satisfy-
ing the lemma are considered.

2.2 Timeout Automata
Dutertre and Sorea develop an explicit real-time model

called timeout automata for k-induction verification of infinite-
state real-time systems in SAL. Timeout automata were mo-
tived by the model of execution used in discrete-event simu-
lation [2]. The model includes a set of state variables (which
potentially range over infinite sets) and a set of timeout vari-
ables ranging over the reals. These denote when some por-
tion of the state is to update. Additionally, there is a clock
variable ranging over the reals that denotes the current time.
In the transition system constructed, there are two kinds of
transitions. In discrete transitions, some portion of the state
variables update. These transitions are enabled if the clock
value is equal to the appropriate timeout In each of these
transitions, the timeout is (usually nondeterministically) up-
dated to a new value strictly greater than its current value.
In time transitions, the clock is updated to the minimum of
the timeouts.
2It is possible to use other decision procedures with SAL.

Whereas in timed automata clocks measure how much
time has elapsed since their last reset, in timeout automata,
timeouts measure how much time will elapse until the next
discrete transition. Very loosely speaking, timeout automata
and timed automata are dual with respect to their perspec-
tive of time.

Proofs by k-induction have a complexity that is exponen-
tial with respect to k (by solving the equivalent boolean
satisfaction problem). The initial timeout automata models
of the SPIDER Reintegration Protocol required k-induction
at infeasible depths. We therefore optimize the model in two
ways to reduce size of k required to prove by k-induction.

1. The semantics of timeout automata (and other real-
time models) include time and discrete transitions.
However, the only purpose of the clock variable is to
record the current time. This can be implicitly de-
termined by the least-valued timeout. Thus, we can
remove this variable as well as the corresponding time
transitions. Then the model contains only discrete
transitions, and a discrete transition is enabled just
in case the corresponding timeout is the minimum of
the timeouts.

2. Communication between subsystems (each specified by
a module) is modeled with shared variables SAL. In the
original timeout automata semantics, the modules are
asynchronously composed, and two sequential discrete
transitions are taken: a sender updates a shared vari-
able, then the receiver updates its state based on the
value of the variable. This can be reduced to a single
transition by synchronously composing the modules.
In a synchronous composition in SAL, the transition
a module can be a function of the next-state values
for the state variables of another module. Thus, the
receiver updates its state concurrently with the sender
writing the shared variable.

These optimizations reduce the state space and significantly
reduce the size of k required in a proof. For example, ver-
ifying by k-induction a safety property for the ubiquitous
train-gate-controller real-time system can be reduced from
k = 14 to k = 5 when these optimizations are made [10].

3. THE REINTEGRATION PROTOCOL
In the following, we describe both the reintegration pro-

tocol and the system assumptions that must hold for it to
execute correctly.

During the reintegration protocol, the reintegrator mon-
itors its communication links for echos. Echos are mes-
sages sent by nodes during the SPIDER Clock Synchroniza-
tion Protocol, a formally-verified fault-tolerant protocol in
which operational nodes periodically synchronize their local
clocks [8]. The period from one execution of the protocol to
the next is called a resynchronization frame. The correct-
ness of the reintegration protocol depends on the following
two properties holding:

1. The frame property ensures that frames are long enough
for the reintegration protocol to behave correctly, and
is a function of the reintegrator’s accusations. If the
reintegrator observes faulty behavior from a monitored
node, it accuses it, and then ignores its subsequent
messages. The frame property is that P > lπ + 2π,

287

where P is the length of each frame, l is the number of
unaccused faulty nodes, and π is the maximum clock
skew between operational nodes.

2. The Majority Property is that the majority of the nodes
that have not been accused by the reintegrator during
the protocol are operational nodes. The property en-
sures that enough of the unaccused monitored nodes
are non-faulty for the protocol to work. It serves as
the maximum fault assumption for this protocol.3

The reintegration protocol is given in Fig. 1. It is com-
prised of three modes of operation: preliminary diagnosis,
frame synchronization, and synchronization capture. These
modes are executed sequentially as shown in Fig. 1.

The following state variables determine the state of the
reintegrator during the execution of the protocol. Let i
range over the indices of the nodes the reintegrator mon-
itors. Let accs and seen be arrays of booleans and integers,
respectively, where accs[i] is true if the reintegrator accuses
node i, and seen[i] is a counter marking how many echo
messages the reintegrator has observed from i. Real-valued
variables include clock , fs finish, and pd finish, such that
clock is the current value of the reintegrator’s local clock,
fs finish is a timer for the frame synchronization mode, and
pd finish denotes the time at which the preliminary diagno-
sis mode completes. State variables are initialized as shown
in Fig. 1. The predicate “when echo(i)” holds at the moment
the reintegrator receives an echo message from node i.

The purpose of preliminary diagnosis is to acquire diag-
nostic data to recognize faulty nodes early in the protocol
by monitoring echo messages for the duration P + π. The
purpose of the frame synchronization mode is to determine
a time at which all operational nodes have already issued an
echo message in some frame and before any operational node
issues an echo in the next frame. Frame synchronization pro-
vides the reintegrator with a coarse-grained synchronization
with the operational clique. The purpose of the synchroniza-
tion capture mode is to allow the reintegrator to synchronize
with an echo from some operational node. It does so by syn-
chronizing when it has received echos from at least half of
the nodes it has not accused (or has not already seen in this
mode).

4. TIME-TRIGGERED MODELING
One particular challenge is modeling faulty nodes so that

arbitrary behaviors are possible, while ensuring k-induction
proofs are feasible. Because the reintegrator is unsynchro-
nized and event-triggered, in a näıve model of the entire
system, the reintegrator would make a transition whenever
it receives an echo from a monitored node. In a formal
model, this amounts to updating its timeout to the time at
which the next echo message is observed and updating its
state accordingly, for every successive echo message. How-
ever, because a faulty node may issue multiple echos before
being ignored by the reintegrator, this model can quickly
lead the reintegrator to make a large number of state tran-
sitions. For k-induction to succeed, a more sophisticated
model is required.

A preferable model is one in which the reintegrator’s tran-
sitions are essentially time-triggered. This amounts to the

3Any proof of fault-tolerance requires an assumption about
the kinds of and maximum number of faults present.

for each i, accs[i] := false;

for each i, seen[i] := 0;
mode := prelim diag;

pd finish := clock + P + π;
while clock < pd finish do {

for each i, when echo(i) do {
if (seen[i] < 2 and not accs[i])
then seen[i] := seen[i] + 1
else accs[i] := true}};

for each i, if seen[i] = 0 then accs[i];
mode := frame synch;

for each i, seen[i] := 0;
fs finish := clock;
while clock − fs finish < π do {
for each i, when echo(i) do {

if (seen[i] = 0 and not accs[i])
then {fs finish := clock;

seen[i] := seen[i] + 1};
else accs[i] := true}};

mode := synch capture;

for each i, seen[i] := 0;
while |{i | seen[i] > 0}|

≤ |{i | not accs[i]}| /2 do {
for each i, when echo(i) do {

if (seen[i] = 0 and not accs[i])
then seen[i] := seen[i] + 1}};

clock := 0;

Figure 1: The Reintegration Protocol

reintegrator updating its timeout at regular intervals and
updating its state based on all of the echos received during
each interval. Care must be taken to make a time-triggered
model of event-triggered behavior conservative. In a time-
triggered timeout update, the reintegrator “observes” those
echos that come after its current timeout and no later than
the time at which it sets its next timeout. For example,
suppose the reintegrator were to update its state in a time-
triggered fashion as illustrated in Fig. 2, where reint_to is
the reintegrator’s current timeout, and reint_to’ is its up-
dated timeout. During this transition, it may observe echo,
but then the node issuing echo may issue another message,
echo’, that is unobserved by the reintegrator.

time
echoreint to reint to’echo’

undetected

Figure 2: Missed Echo Messages

Therefore, faulty nodes issue multiple echo messages in
a single transition. The model of faulty nodes must allow
them the possibility of non-faulty behavior. The echos are
nondeterministically updated so that they may be issued ar-
bitrarily far in the future. All of the echos a node issues that
are beyond the reintegrator’s updated timeout are ignored.
This models the full range of possible faulty behaviors.

288

5. VERIFYING THE PROTOCOL
There are two main theorems to prove: that the reinte-

grator accuses no operational nodes during the execution
of the protocol, and that the reintegrator successfully resyn-
chronizes with the operational nodes upon completion of the
protocol.

Theorem 1 (No Operational Accusations). For all
operational nodes i, accs[i] does not hold during the reinte-
gration protocol.

Theorem 2 (Synchronization Acquisition). For all
operational nodes i, |clock − echo(i)| < π upon termination
of the reintegration protocol.

The proofs of these theorems via k-induction requires a
number of supporting lemmas. Our strategy is to decompose
the verification into a verification of its constituent modes.
Each mode should guarantee certain postconditions. The
postconditions for a mode then serve as preconditions for
succeeding modes. This strategy can be followed through
the entire protocol making the proof of the above theorems
straightforward. This proof strategy is inspired by the proof-
by-abstraction techniques used in [5, 6].

For all but a few minor lemmas, the time-triggered mod-
eling approach makes the size of k required invariant to the
number of monitored nodes modeled. Rather, k depends on
the duration of a mode (i.e., for how many resynchroniza-
tion frames it is active) rather than on how many echos are
received in the mode. All lemmas are proved by k-induction
for k ≤ 4 for the verifications attempted.

The protocol has been verified for up to four monitored
nodes (no more than one of which can be faulty to satisfy the
Majority Property). The proofs took on the order of minutes
to complete on typical modern desktop CPU. Strengthening
the invariants would allow larger architectures to be verified.

Clique avoidance is the property that there exists exactly
one operational clique in the system [12]. If more than one
clique exists, the nodes in one clique will consider the nodes
in the other to be either faulty or recovering. SPIDER and
similar systems must satisfy clique avoidance. Theorem 1 is
a necessary condition for clique avoidance. It ensures that
if a clique exists, a non-faulty reintegrator cannot “ignore”
the clique. Barring a massive correlated failure of the nodes,
a second clique cannot be formed.

6. CONCLUSION
We have described a formal proof of a explicit real-time

model of the SPIDER Reintegration Protocol in the SAL
tool using k-induction. We have described improvements to
a novel explicit real-time formalism for infinite-state bounded
model-checking that has been successfully used now in two
industrial-scale verifications (including this work and that
presented in [5]). Furthermore, we have described a means
by which event-triggered behavior can be modeled as time-
triggered behavior.

The full SAL model, including a script to run the associ-
ated proofs, and an extended technical report [10] describ-
ing the modeling and verification can be found on-line at
http://shemesh.larc.nasa.gov/fm/spider/reint_sal/.

The formal specification and verification of the reintegra-
tion protocol did not reveal any flaws in the protocol. Nev-
ertheless, it was of value: No hand proofs existed to demon-
strate its correctness and previous versions had flaws, the

protocol is significantly different from the other SPIDER
protocols and most published distributed protocols, and the
formal verification strongly suggests that clique avoidance
is preserved. The assumptions used in the formal verifica-
tion generalize those stated in the design document [14] to
a small extent.

7. ACKNOWLEDGMENTS
The authors thank Wilfredo Torres-Pomales of NASA Lan-

gley for describing the reintegration protocol in detail and
repeatedly. Paul Miner, Jeffrey Maddalon, and Mahyar
Malekpour made helpful suggestions. Bruno Dutertre and
Leonardo de Moura provided helpful details concerning k-
induction in SAL.

8. REFERENCES
[1] R. Alur. Timed automata. In CAV, volume 1633 of

LNCS, pages 8–22, 1999.

[2] J. Banks and J. S. C. II. Discrete-Event Simulation.
Prentice-Hall, 1984.

[3] L. de Moura et al. Bounded model checking and
induction: From refutation to verification. In CAV,
volume 2725 of LNCS, 2003.

[4] L. de Moura et al. SAL 2. In CAV, volume 3114 of
LNCS, pages 496–500, 2004.

[5] B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using
calendar automata. In FTRTFT, volume 3253 of
LNCS, pages 199–214, Sept. 2004.

[6] B. Dutertre and M. Sorea. Timed systems in SAL.
Technical Report SRI-SDL-04-03, SRI, 2004.

[7] L. Lamport. Real time is really simple. Technical
Report MSR-TR-2005-30, Microsoft Research, 2005.

[8] P. Miner, A. Geser, L. Pike, and J. Maddalon. A
unified fault-tolerance protocol. In
FORMATS-FTRTFT, volume 3253 of LNCS, pages
167–182, 2004.

[9] H. Pfeifer. Formal Analysis of Fault-Tolerant
Algorithms in the Time-Triggered Architecture. PhD
thesis, Universität Ulm, 2003.

[10] L. Pike. Real-time system verification by k-induction.
Technical Report TM-2005-213751, NASA, 2005.

[11] L. Pike, P. Miner, and W. Torres. Model checking
failed conjectures in theorem proving: a case study.
Technical Report NASA/TM–2004–213278, NASA,
November 2004.

[12] J. Rushby. Bus architectures for safety-critical
embedded systems. In EMSOFT 2001, volume 2211 of
LNCS, pages 306–323, 2001.

[13] J. Rushby. An overview of formal verification for the
time-triggered architecture. In FTRTFT, volume 2469
of LNCS, pages 83–105, 2002.

[14] W. Torres-Pomales, M. R. Malekpour, and P. Miner.
ROBUS-2: A fault-tolerant broadcast communication
system. Technical Report NASA/TM-2005-213540,
NASA, 2005.

289

