
Cutpoints for Formal Equivalence Verification
of Embedded Software ∗

Xiushan Feng Alan J. Hu
Department of Computer Science, University of British Columbia

{xsfeng, ajh}@cs.ubc.ca

ABSTRACT
Like hardware, embedded software faces stringent design con-
straints, undergoes extremely aggressive optimization, and there-
fore has a similar need for verifying the functional equivalence of
two versions of a design, e.g., before and after an optimization.
The concept of cutpoints was a breakthrough in the formal equiva-
lence verification of combinational circuits and is the key enabling
technology behind its successful commercialization. We introduce
an analogous idea for formally verifying the equivalence of struc-
turally similar, “combinational” software, i.e., software routines
that compute a result and return/terminate, rather than executing
indefinitely. We have implemented a proof-of-concept cutpoint ap-
proach in our prototype verification tool for the TI C6x family of
VLIW DSPs, and our experiments show large improvements in run-
time and memory usage.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Verification

Keywords
embedded software, equivalence checking, formal verification

1. INTRODUCTION
Embedded software shares with hardware — and differs from

desktop and enterprise software — the frequent need for extreme
optimization. The software must hit hard performance, power
consumption, and code-size targets. Code that is slightly too
big might necessitate moving to a larger, more expensive de-
vice, or code that is slightly too slow might result in unaccept-
able, non-real-time performance. Therefore, very aggressive op-
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timization is the norm, including possible manual tuning of synthe-
sis(hardware)/compiler(software) output. Compounding the prob-
lem, the underlying embedded processor is often designed with
similar optimization goals – maximum performance at lowest cost
or power, with minimal consideration to the ease of writing or
understanding code. Embedded processors (including DSPs) of-
ten are highly non-orthogonal, have many specialized instructions,
and perform many operations in parallel, with the resulting arti-
facts (exposed pipelines, long branch delays, VLIW, etc.). All
of these features enable very highly optimized, high-performance
code, but they also greatly complicate code generation and opti-
mization. Finally, the embedded market is less tolerant of defective
software than some other software markets, because patching em-
bedded software in the field can be too difficult, too expensive, or
unacceptable to customers. All of these factors point toward very
demanding verification requirements. We focus on a particular ver-
ification problem: verifying the functional equivalence of two sim-
ilar segments of low-level code, as would be needed, for example,
after hand-tuning compiler-generated code.

Automatic formal verification of software has been enjoying a
renaissance lately, with much of the focus on extending finite-state
model checking [10] — which has been successfully applied to se-
quential circuits, protocols, and other reactive systems — to soft-
ware, viewed at a system-level as a reactive (non-terminating) sys-
tem (e.g., [2, 17, 27]). A complementary line of work, more rel-
evant to this paper, has focused on formally verifying the equiv-
alence of low-level code, e.g., to higher-level specifications [26,
1, 16], to other versions of low-level code [12, 15], or to hard-
ware [9, 23]. This line of research typically verifies a relatively
small segment of code as a transformational rather than reactive
system, i.e., the code computes a result and terminates, analogous
to a combinational circuit in hardware. The basic approach is to
use symbolic execution of the code to compute the formal relation-
ship between inputs and outputs, and then prove that the outputs
are always equivalent. The lower-level emphasis is well-suited for
the verification of optimizations needed for embedded systems, and
indeed, we have demonstrated this approach successfully verifying
(or finding bugs in) code optimization for complex embedded pro-
cessors [12, 15]. Unfortunately, the basic approach is not scalable:
the representation of the input/output relationship or the complex-
ity of deciding equivalence blows up in memory, runtime, or both.
In one embarrassing example, a 47-line assembly language routine
required 15 hours to verify [12]! (Granted, the dynamic instruction
count after loop-unrolling was a few thousand instructions, and the
verification would have run much faster had certain expensive, but
unnecessary, optimizations been disabled.)

The formal equivalence verification of combinational hardware
went through a similar evolution. Symbolic simulation [8] auto-
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Figure 1: Simple Cutpoint Example. To introduce cutpoint x,
we first verify that (b∧ c)∧d is equivalent to b∧ (c∧d). Then,
we can verify that f is equivalent to g because both are equal to
a⊕ x.
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Figure 2: False Inequivalence. Cutpoint verification fails be-
cause f 6= g when b = 0 and x = 1. However, this is a false
inequivalence, because if x = 1, then b must be 1.

matically computes the input/output relationship for the circuits,
which are then compared. BDDs [7] showed considerable promise
as an empirically efficient, canonical representation for Boolean
functions, but capacity limits prevented the basic approach from
scaling to industrial-size problems.

A major practical breakthrough came with the introduction of
cutpoints [4, 6]. Given two combinational circuits, presumed to
be structurally similar, whose functional equivalence needs to be
verified, the idea is to look for points in the two circuits that can
be proven to be equivalent. The equivalent logic is cut out of the
circuits and is replaced by a new primary input. (Figure 1.) If we
can repeat this process all the way to the primary outputs, we have
proven the two circuits equivalent, thereby reducing the original
verification problem into a sequence of simpler verification prob-
lems. Note that the method is conservative: if we fail to prove
the circuits equivalent, we cannot conclude that they are inequiva-
lent without further computation. (Figure 2.) Minimizing the cases
where the method is unable to prove the equivalence of equivalent
circuits (called “false negatives” or “false inequivalence”) has been
an active research area. The general solution is to re-introduce con-
straints on the cutpoints, either in advance [6] or as needed [18,
19].

In this paper, we introduce cutpoint-style analysis to the formal
equivalence verification of embedded software. Although many
concepts are similar to their hardware-verification analogues, we
address several novel problems as well: how to define cutpoints for
software, how detailed will the cutpoint analysis be, how to find
candidate cutpoints, and how to reduce false inequivalences. We
have implemented the ideas in our proof-of-concept verification
tool targeting the Texas Instruments C6x family of VLIW DSPs.
Our preliminary experiments show large improvements in memory
usage and runtime over earlier methods.

2. BASIC VERIFICATION APPROACH
The present work is built on an existing formal software veri-

fication paradigm, which we briefly review here. More extensive
introductions are available elsewhere (e.g., [5, 11]).

The verification task is to take two assembly-language routines,
which compute some values and terminate, and verify that they are
equivalent. The user specifies what inputs are initially equal and
what outputs should be equal when the routines terminate. The as-
sumption is that the two routines have very similar control-flow.
If this assumption is violated, the verifier might declare inequiv-

alent two routines that really compute the same value, but it will
not claim equivalence for two routines that are not. As in our pre-
vious work [12, 15, 11], some additional simplifying assumptions
are needed (e.g., no self-modifying code, no recursion, no arith-
metic performed on the program counter, etc.); we do not repeat
them here.

The verification procedure requires a simple model of the pro-
cessor at the instruction set architecture level, and then uses this
model to simulate the two routines. However, instead of computing
actual values, the simulator is symbolic and computes expressions
that denote the values as a function of the initial inputs and states.
For example, consider the following (TI C6200) code segment:

ADD .L2 B1, B0, B2 ; B2:=B1+B0
ADD .L2 B2, B0, B3 ; B3:=B2+B0

If we denote the initial values of registers B0, B1, and B2 as B00,
B10, and B20, then after these two instructions execute, the simula-
tor will compute the “values” in registers B2 and B3 to be symbolic
expressions “B10 +B00” and “(B10 +B00)+B00”.

We dub the above style of symbolic simulation the “functional
translation”, because it computes the values at each point as a func-
tion of the initial values. An alternative, which we dub the “re-
lational translation”, computes for each instruction a clause that
relates the values before and after execution. For example, for
the above code, we would generate (B21 = B10 + B00)∧ (B31 =
B21 + B00), where the subscripts indicate different versions of the
registers at different times.1 The functional translation can have
worst-case exponentially-sized expressions; the relational transla-
tion guarantees an expression size linear in the length of the execu-
tion sequence, but at the cost of many more variables, which blows
up the complexity of deciding equivalence. Others have argued for
the superiority of the relational translation [5]; we will revisit this
issue later.

To keep the equivalence of symbolic expressions decidable, only
constant propagation and linear arithmetic (i.e., symbolic expres-
sions can be added together and multiplied by constants) are in-
terpreted. More complex operations (e.g., multiplication of sym-
bolic expressions, or any arbitrarily complex operations) are treated
as uninterpreted functions, i.e., a function about which nothing is
known other than its name and that it is a function in the mathe-
matical sense (different calls with the same input values produce
the same result). This abstraction hides datapath complexity and
is safe, but sometimes too conservative — being unable to prove
the equivalence of a shift and a divide-by-2, for example — so ad-
ditional domain-specific rewriting rules are needed to handle those
cases. We also use special interpreted functions read — which
given a memory and an address, denotes the value at that address
— and write — which given a memory, an address, and a value,
denotes an updated memory in which the value has been written to
the address. The key axiom is that

read(write(m,a1,v),a2) =

{

v if a1 = a2
read(m,a2) otherwise

To successfully verify low-level code, we have found it necessary
to model memory layout accurately. In particular, when verifying
software written in a high-level language, arrays are often assumed

1The relational translation may remind some readers of the well-
known static single assignment (SSA) form [13], but recall that the
simulation is of a dynamic execution trace. A closer analogy is
dynamic single assignment form, but since we are considering a
single execution trace at a time, the translation is trivial versus the
standard computation of DSA [14].
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to be disjoint, so the read/write functions can be applied to each ar-
ray separately (e.g., a write to an array A does not change the state
of array B). In contrast, we model all of memory (or each bank of
memory in a system with multiple banks) as a single array with all
reads and writes directed at this array. This approach leads to large
symbolic expressions, so we rely on some rewriting optimizations
to try to keep expression size manageable [12, 11]. Efficient de-
cision procedures exist for this combined logic (linear arithmetic,
uninterpreted functions, and read/write); we use the Stanford Va-
lidity Checker (SVC) [3].

We use simple techniques to handle control flow. These
techniques proved adequate to handle the bottom-level, highly-
optimized computational kernels we are targeting. For backward
branches, we essentially unroll loops: if the decision procedure
can prove that the branch is taken, we take the branch; if the de-
cision procedure can prove that the branch is not taken, we don’t
take it; otherwise, we declare that the code contains branching that
we do not handle. All fixed-count loops, which are the common
case in low-level DSP code, can be handled this way. For forward
branches, we again first try to prove the branch certainly taken or
certainly not taken. Otherwise, we case-split. Based on our as-
sumption that the two routines being compared have similar control
structure, we require that the two routines encounter “compatible”
forward branches in the same order: the two branches must always
branch the same way or always branch opposite ways (to allow re-
ordering taken/not-taken paths). If so, our tool proceeds to verify
that the routines are equivalent along both paths. If not, our tool
declares that it cannot verify the routines equivalent. In the C6x
family, all instructions are predicated, so we rarely encounter for-
ward branches.

Overall, we have found it straightforward to build symbolic sim-
ulators, even for complex processors [15]. The basic verifica-
tion approach works well on small, intricately optimized code seg-
ments. However, as mentioned earlier, the basic approach does not
scale well to longer segments of code.

3. CUTPOINTS FOR SOFTWARE
Analogously to formal equivalence verification of combinational

circuits, we would like to use cutpoints to gain scalability. Obvi-
ously, the method needs to be conservative — it should not declare
equivalence when the code segments are inequivalent — but we
must also avoid introducing too many false inequivalences.

The most fundamental question is how to define cutpoints for
software. In a combinational circuit, values flow along wires, from
the inputs to the outputs, with gates performing computation along
the way. Similarly, in software, values flow through the code in the
program state (variables for high-level software; registers, internal
buffers, memory, and other machine state for low-level software),
with each instruction performing some computation on the values
as they pass by. Thus, a cutpoint in software is some part of the
program state at some point in a program, which is provably equal
to some part of the program state at some point in the other pro-
gram. In a combinational circuit, we can ignore the logic driving
the cutpoint and insert a new primary input. Similarly, for software,
we can discard the symbolic expression we computed for the value
at the cutpoint and replace it with a new symbolic variable. If we
can verify equivalence using the cutpoint, then the original circuits
or programs were equivalent.

Control flow adds a wrinkle to the above definition. In combina-
tional hardware, every wire always has a value for every possible
input value. In software, some instructions may never be executed
for some input values, and other instructions may be executed mul-
tiple times; the value of the program state at a given point in a

program isn’t always well-defined. The solution is to define soft-
ware cutpoints dynamically, based on each dynamic execution path,
rather than on the static code. We will use our existing verification
approach to enumerate paths, and we will attempt to use cutpoints
to make the verification of each path more efficient.

Example: For a simple example, consider a short loop that ze-
roes out a 1024-word block of memory. To further simplify the
example, we will verify the equivalence of the loop to itself. Ignor-
ing the loop induction variable, the dynamic instruction stream is
just 1024 store instructions:

STW .D1 A0, *A4++
STW .D1 A0, *A4++
...
STW .D1 A0, *A4++

where register A0 has been initialized to 0, and register A4 indexes
through the memory block using auto-increment. Using our basic
verification approach, after i iterations, the symbolic expression for
memory will be:

write(. . .write(write(m0,A40,0),A40 +4,0) . . . ,A40 +4(i−1),0)

where m0 and A40 are the initial values of memory and register A4.
The expression is growing linearly with iteration count. Using the
relational translation would also give linear-size expressions (lin-
ear number of constant-size clauses), plus a linear number of new
variables. However, if we use cutpoints, we find that, amazingly
enough, the machine states of the “two” programs (the two copies
of itself) agree completely after each instruction. Hence, after each
instruction, we could introduce a new cutpoint memory variable mi
and a new cutpoint address value A4i, and then at the next instruc-
tion have to prove only the equivalence of write(mi,A4i,0) in the
two code segments.

Granted, the above example is contrived, but it serves to high-
light the key design decisions in trying to apply cutpoints to soft-
ware:

• Where and how fine-grained to look for cutpoints? In the
above example, after every instruction, the entire machine
state matched between the programs being compared, so we
could cut the entire state between instructions. That would
work for the example, but would produce false inequivalence
for anything non-trivial. On the other extreme, we could try
to match each register and memory location, or even each bit
of each register and memory location for interpreted values,
as a possible cutpoint. Finer-grained cutpoints allow more
flexibility, improving the possibility of matches, but also ex-
ploding the set of possible matches to be considered. Also,
we may not want to look for or insert cutpoints for some parts
of the state: for example, in the simple example, if we make
the loop induction variable a cutpoint, we lose the ability to
prove termination.

• How to find cutpoints? In the simple example, the two pro-
grams were synchronized in lock-step, so we could execute
a single instruction from each and find matching cutpoints.
In general, however, computations will be reordered and in-
structions will be optimized away, so we need techniques to
look for possible cutpoints.

• Whether to do the cut? This is the dynamic version of the
first question. Once we find (and prove) a cutpoint, we may
heuristically choose not to use it, perhaps to avoid false in-
equivalences.
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• How to do the cut? By definition, we create a new sym-
bolic variable to take the place of the expression computed
for the cutpoint. But how aggressively do we propagate this
new cutpoint variable? By the time the tool discovers a cut-
point, the symbolic simulator may have already computed
other symbolic expressions, for other parts of the machine
state, based on the symbolic expression being cut out. Should
we track down these dependent expressions? How?

• How to reduce false inequivalences? The previous questions
will affect the false negative rate, but this question is impor-
tant enough to consider independently. Should we add con-
straints on newly introduced cutpoint variables? Are there
other ways to reduce false inequivalences?

Any implementation of software cutpoints must answer the above
questions. Ultimately, the real question is “Do the answers to the
above questions allow verifying real code more efficiently and with
an acceptable level of false inequivalences?”

3.1 Proof-of-Concept Implementation
To test the effectiveness of software cutpoints, we have imple-

mented an instance of the idea. Our proof-of-concept implemen-
tation is just an initial exploration of the cutpoint idea, so we have
strived for the simplest heuristics that seemed reasonable for each
of the design questions raised above. The implementation is built
on top of our existing tool, which uses the basic verification ap-
proach from Section 2 and targets assembly code for the Texas In-
struments’ C6x family of VLIW DSPs [15].

Where and how fine-grained to look for cutpoints? We check
the symbolic expressions for only the memory. We do not look
for cutpoints between registers or other parts of the machine state.
Furthermore, we treat the entire memory as a single possible cut-
point. Our experience indicated that the symbolic expressions for
memory are the primary source of blow-up in the basic verification
approach, so we chose to focus on memory. Treating the memory
as a single possible cutpoint greatly simplified the task of searching
for cutpoints. Leaving registers out of the cutpoint analysis avoids
the possibility of loop induction variables being cut.

How to find cutpoints? Checking only the entire memory makes
this task much easier. The symbolic expression for memory
changes only after a store instruction, so we keep a history buffer
of the memory expressions from the last k stores, for some depth k.
The verification tool simulates one program through k stores, then
the other program through k stores, then calls the decision proce-
dure to find the most recent match (if any) of the k2 possibilities.
A larger value of k handles greater reordering (thereby reducing
false inequivalences), but can slow down the tool if there aren’t any
recent matches. We chose k = 10 arbitrarily, and it seemed work
reasonably.

Whether to do the cut? When we find a cutpoint, we always do
the cut. Again, this is motivated because memory expressions tend
to blow up, and because we are matching only memory, so loop
induction variables in registers won’t be cut.

How to do the cut? We could conceivably match a memory ex-
pression k stores earlier, which could be an unbounded number of
(non-store) instructions in the past. It’s hard to imagine trying to
compute directly the effect of introducing the cut variable on all
the values (and control flow!) that may have been computed subse-
quently. Furthermore, the C6x family have very deep pipelines, so
searching through all the symbolic expressions in the pipeline and
reasoning about any pipeline interactions is a daunting task. In-
stead, we simply leverage the fact that we already have a symbolic
simulator for the processor. After each store instruction, we record

in the history buffer the entire machine state, not just the expression
for memory. When we find a cutpoint, we roll back the simulation
to the cutpoint, and re-simulate any subsequent instructions.

How to reduce false inequivalences? This is the most complex
question to answer. The simplest answer is to do nothing special.
We initially implemented that choice and found that it worked suc-
cessfully, and very efficiently, on a few examples (e.g., the embar-
rassing 47-line industrial example mentioned in the introduction,
ported to the TI C6x), but produced too many false inequivalences
in general (e.g., on the software pipelining example in Section 4).
The fundamental problem is the inability to handle reordering of
independent memory accesses. For example, consider verifying

LDW .D1 *A3++, A1
NOP 4 ; 4 cycle NOP for load to complete
STW .D1 A0, *A4++

versus

STW .D1 A0, *A4++
LDW .D1 *A3++, A1
NOP 4 ; 4 cycle NOP for load to complete

If we know that registers A3 and A4 point to different locations,
then the two code segments are equivalent, and the basic verifi-
cation approach would successfully verify that. Using our sim-
ple cutpoint approach, however, we would introduce a cutpoint af-
ter the STW instructions. The value of A1 at the end of the first
code segment, therefore, will be based on the pre-cutpoint memory
expression, e.g., read(mold,A30), whereas the value of A1 at the
end of the second code segment will be based on the post-cutpoint
memory expression, e.g., read(mnew,A30), which aren’t equiva-
lent. The verification returns a false inequivalence.

We introduced two ways to eliminate these false inequivalences.
We call the first “memory look-through”. In this approach, the ver-
ification tool records the address written for every store instruction.
For each load instruction, the tool tries to prove the independence
of the address being read from the addresses that have been writ-
ten. The read expression that is generated can read from any ver-
sion of memory back to the most recent store that cannot be proven
independent of the address being read. For our implementation, it
turned out to be faster to first ask SVC to prove that the load address
is independent of all stores, in a single decision procedure call. If
this succeeds, the read expression reads from the initial memory.
In the example above, if the address ranges for A3 and A4 prov-
ably never overlap, then the value loaded into A1 will always be
read(m0,A3i), where m0 is the initial memory. This method re-
duces, but does not eliminate false inequivalences.

The other approach we tried completely eliminates false inequiv-
alence (from the cutpoints — obviously, false inequivalence from
other aspects of the verification approach, such as the uninterpreted
functions, remain). When a new cutpoint variable is introduced,
we add an assertion to the decision procedure that the new cutpoint
variable is equal to one of the two (proven equivalent) expressions
that it is replacing. This assertion guarantees that the cutpoint vari-
able will always be properly constrained. We call this approach
“memory assertions”, and it is analogous to the combinational cir-
cuit equivalence technique in which, rather than introducing a new
primary input at the cutpoint, we simply drive the cutpoints in both
circuits from the same circuitry in one [6]. In the example above,
we would assert that mnew = write(mold,A40,A00); this constraint
preserves the relationship between mold and mnew, eliminating
false inequivalences, but complicating the task of the decision pro-
cedure.

With plausible answers to all the design decisions, we can pro-
ceed to the real question: does it work on real code?
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Figure 3: Software Pipeline Results. The relational translation times out even for minuscule numbers of iterations, and the func-
tional translation with cutpoints and memory assertions times out quickly, too. Our previous functional translation method without
cutpoints is fastest, but the memory usage blows up. The new cutpoint method with memory look-through is almost as fast and uses
very little memory.

4. EXPERIMENTAL RESULTS
We have run experiments using several test cases. They are all

small computational kernels, performing computations over arrays,
where we can scale the difficulty of the example by adjusting the
loop count. In each case, we verified the equivalence of unopti-
mized and highly optimized versions of the code. We compare
the performance of four different methods: the basic verification
approach, using the functional translation; the basic verification
approach, using the relational translation; the functional transla-
tion with cutpoints, using memory look-through; and the functional
translation with cutpoints, using memory assertions. For the func-
tional translation methods, we use memory rewriting optimizations
to try to reduce blow-up [12, 11], but we enable only the rewrites
that actually help in the examples. Doing so helps the basic func-
tional translation, but makes no difference for the cutpoint methods,
so we have a fair baseline to compare the cutpoints against.

The first test case is taken from an article written by an expert
on DSP code optimization, explaining how to optimize code for
high-performance DSPs [22]. The example demonstrates software
pipelining a short loop, targeting the C67x. Software pipelining is
a powerful instruction scheduling technique that exposes additional
parallelism in loops, thereby improving performance [20]. The ba-
sic idea of software pipelining is to rearrange the computation such
that portions of different loop iterations execute at once, similarly
to hardware pipelining. A prologue is required to start the pipelined
computation, and an epilogue is required to “flush the pipeline” at
the end of the computation. Figure 4 shows the unpipelined code,
and Figure 5 gives the software pipelined code. The task is to verify
the equivalence of the two.

We had previously been able to verify this example, using the
basic verification approach (without cutpoints). Using cutpoints,
we were still able to verify equivalence of the two versions, taken
unmodified from the article. Because the cutpoint methods are
conservative, successfully proving equivalence shows the cutpoints
were sufficiently accurate and did not create false inequivalences.
Figure 3 shows the performance trends as we scaled the number
of loop iterations. The relational translation performs strikingly
poorly: the run time blows up immediately, but surprisingly, the so
does the memory usage. We do not have enough data to extrapo-
late the growth rate, but apparently the theoretically linear expres-

sion size growth of the relational translation is not competitive with
the savings possible with the memory rewriting tricks of the func-
tional translation. The method using cutpoints and memory asser-
tions also performs disappointingly. Apparently, forcing the deci-
sion procedure to reason about all the cutpoint variables is causing
blow-up, similar to the relational approach. Perhaps a newer deci-
sion procedure would help, as SVC is several years old. Nonethe-
less, cutpoints appear to provide a vast improvement in memory
usage at a small cost in run time.

The preceding experiment used compiler-optimized code. For a
harder experiment, we ran experiments on expert, hand-optimized
code. Texas Instruments provides the TMS320C67x DSP Li-
brary (DSPLIB), a freely downloadable library of commonly-
used DSP signal-processing routines hand-tuned by TI experts
to achieve optimal execution speed [25]. Furthermore, each li-
brary function includes an equivalent C reference model, which
we can compile using TI’s TMS320C6x ANSI C compiler to
get an equivalent, non-optimized version. For our experiments,
we selected three simple routines with numerous memory writes
(the main source of expression size blow-up) from the library:
block move (DSPF sp blk move, 43 lines of code), convolu-
tion (DSPF sp convol, 101 lines of code), and FIR filtering
(DSPF sp fir r2, 270 lines of code).

On our initial attempt to verify these examples, the cutpoint
methods failed immediately with false inequivalences. The prob-
lem is that the hand-tuned code’s subroutine linkage is different
from the compiler-generated code: caller state is saved and re-
stored slightly differently. This highlights the immaturity of our
initial heuristics. Trivial, obviously unimportant changes were able
to foil our cutpoint implementation. More sophisticated heuristics
will obviously be needed in practice.

Fortunately, the subroutine linkage code was easy to remove,
so we were able to try the verification (expert-hand-tuned vs.
compiler-generated) on only the computational kernels of each rou-
tine. We manually replaced the linkage code with NOPs, added as-
sertions to the decision procedure to initialize the two routines in
the same way, and re-ran the verification tool. This time, we were
able to verify equivalence fully automatically, demonstrating that
our cutpoint heuristics were accurate enough for the computational
kernels of our test cases. Figures 6, 7, and 8 show the performance
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(... linkage and initialization omitted.
B0 is the loop counter ...)

13 L12: ; PIPED LOOP KERNEL
14 LDW .D2 *B5++,B4
15 || LDW .D1 *A3++,A0
16 NOP 2
17 [ B0]SUB .L2 B0,1,B0
18 [ B0]B .S2 L12
19 MPYSP .M1X B4,A0,A0
20 NOP 3
21 STW .D1 A0,*A4++
(... subroutine return omitted ...)

Figure 4: Unpipelined Assembly Code. The vertical bars indicate instructions executed in parallel. LDW (load word) has 4 delay
slots, branches have 5 delay slots, and MPYSP (single-precision multiply) has 3 delay slots. The code point-wise multiplies two arrays,
storing the result in a third array. The code takes 10 cycles per iteration. (Listing taken from [22].)

(... linkage and initialization omitted.
B0 is the loop counter ...)

15 L8: ; PIPED LOOP PROLOG
16
17 LDW .D2 *B5++,B4 ;
18 || LDW .D1 *A3++,A0 ;
19
20 NOP 1
21
22 LDW .D2 *B5++,B4 ;@
23 || LDW .D1 *A3++,A0 ;@
24
25 [B0] SUB .L2 B0,1,B0 ;
26
27 [B0] B .S2 L9 ;
28 || LDW .D2 *B5++,B4 ;@@
29 || LDW .D1 *A3++,A0 ;@@
30
31 MPYSP .M1X B4,A0,A5 ;
32 || [B0] SUB .L2 B0,1,B0 ;@
33
34 [B0] B .S2 L9 ;@
35 || LDW .D2 *B5++,B4 ;@@@
36 || LDW .D1 *A3++,A0 ;@@@
37
38 MPYSP .M1X B4,A0,A5 ;@
39 || [B0] SUB .L2 B0,1,B0 ;@@
40

41 ;** ------------------------------*
42 L9: ; PIPED LOOP KERNEL
43
44 [B0] B .S2 L9 ;@@
45 || LDW .D2 *B5++,B4 ;@@@@
46 || LDW .D1 *A3++,A0 ;@@@@
47
48 STW .D1 A5,*A4++ ;
49 || MPYSP .M1X B4,A0,A5 ;@@
50 || [B0] SUB .L2 B0,1,B0 ;@@@
51
52 ;** ------------------------------*
53 L10: ; PIPED LOOP EPILOG
54 NOP 1
55
56 STW .D1 A5,*A4++ ;@
57 || MPYSP .M1X B4,A0,A5 ;@@@
58
59 NOP 1
60
61 STW .D1 A5,*A4++ ;@@
62 || MPYSP .M1X B4,A0,A5 ;@@@@
64 NOP 1
65 STW .D1 A5,*A4++ ;@@@
66 NOP 1
67 STW .D1 A5,*A4++ ;@@@@
(... subroutine return omitted ...)

Figure 5: Software Pipelined Assembly Code. If the inputs are declared to be const, the compiler does software pipelining, improv-
ing performance to 2 cycles per iteration. But, does this do the same thing as Figure 4? (Listing taken from [22].)
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trends for these examples. On the block move example, the per-
formance is very similar to the software pipelining example: the
relational translation times out immediately; the cutpoints method
with memory assertions times out quickly, too; the basic functional
translation is fastest, but blows up in memory; and the cutpoint
method with memory look-through is almost as fast and doesn’t
suffer memory blow up. On the convolution and FIR examples,
though, the results are even more interesting: now, the cutpoint
method with memory look-through is roughly twice as fast as the
basic functional translation! The reason for this performance dif-
ference appears to be that in the hand-optimized convolution and
FIR examples, the computation is much more highly reordered, re-
sulting in a much harder equivalence expression for the decision
procedure. The overhead of finding cutpoints is swamped by the
savings of a simpler final verification problem. To test this hypoth-
esis, we ran experiments using larger convolutions and more FIR
filter coefficients and found that the performance advantage of the
cutpoint method increased. Conversely, the block move example
has no computation at all, simplifying the final verification prob-
lem, so the relative overhead of the cutpoints is higher.

In all the test cases, the cutpoint method with memory look-
through vastly reduced memory usage. Run time ranged from a mi-
nor increase to a significant decrease. Accuracy was good enough
to verify all of the computational kernels. Clearly, cutpoints can be
very effective.

Tables 1, 2, 3, and 4 give detailed results comparing the two com-
petitive methods: our original basic verification approach, without
cutpoints, using the functional translation and memory rewriting,
and our new cutpoint-based method, using the functional transla-
tion and memory look-through. All experiments were run on a
2.6Ghz Pentium 4 with 4GB of RAM. We have set the run time
limit to 1 hour.

5. CONCLUSION AND FUTURE WORK
We have introduced the concept of cutpoints to the formal equiv-

alence verification of low-level software. We have instantiated
the theory in a proof-of-concept implementation and demonstrated
large improvements in memory usage and comparable-or-better run
time versus previous approaches. Our heuristics for reducing false
inequivalences are immature, yet effective on the kernels of our ex-
amples.

Future work must try to further improve scalability, handle more
general control-flow differences, and reduce false inequivalences.
For scalability, our research has focused on improving efficiency
and accuracy for verifying paths in programs. An obvious direction
for future work is integration with complementary work on reduc-
ing the number of paths explored, e.g., by static analysis, analyzing
well-structured loop bodies [24], or exploiting information from
the compiler [21]. Such techniques will also be helpful for han-
dling greater control-flow differences. Beyond reducing the num-
ber of paths explored, static analysis might provide other useful
information. For example, a fast, approximate points-to analysis
might be able to quickly guarantee that certain loads and stores are
non-interfering, allowing faster confirmation of cutpoints.

For reducing false inequivalences, the main lines of future work
will be finer-grained analysis for cutpoints, and heuristics for
quickly finding candidate cutpoints. The instantiation of the the-
ory we have presented here is vulnerable to false inequivalences if
the programs make extraneous writes to memory or lay out data
in memory differently. Looking for cutpoints for only specific ad-
dresses or ranges of memory would be more accurate. User guid-
ance could be helpful, for example, by defining don’t-care regions
of memory. Finer-grained analysis, however, makes finding cut-

points much more expensive, necessitating better ways for find-
ing good candidates. For combinational circuits, the standard tech-
nique is to simulate the two circuits on a sequence of random in-
puts; wires that always agree during simulation are candidate cut-
points. Unfortunately, with uninterpreted functions, such an ap-
proach is meaningless. However, an exciting direction for future
work is to try our method on bit-accurate, fully interpreted (i.e.,
all operations are fully defined, rather than being abstracted) soft-
ware models. Not only would such analysis be much more accu-
rate, but there is also potential synergy between bit-accurate mod-
eling and cutpoints: the efficiency improvement of cutpoints makes
it conceivable to verify bit-accurate software models, and the bit-
accuracy might greatly simplify reasoning about cutpoints.
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Figure 6: Block Move Results. Performance trends are similar to Fig. 3, except that the time overhead of cutpoints is larger.
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Figure 7: Convolution Results. Here, not only does the cutpoint method with memory look-through have the lowest memory con-
sumption, but it is fastest, too. The runs were with the number of impulse response samples set to 8.
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Functional w/o Cutpoints Functional with Cutpoints
Loop Count Time(s) Memory(MB) Time(s) Memory(MB)

200 6.13 10.6 6.29 5.3
400 24.32 27.1 24.49 6.0
600 54.50 53.7 54.65 6.7
800 97.22 90.0 96.84 7.6
1000 149.96 132 150.13 8.7
2000 600.98 513 596.47 13.7
3000 1425.63 1150 1363.85 23.4
4000 2461.32 2023 2490.58 27.6
5000 mem out 3939.21 29.3

Table 1: Software Pipeline Detailed Results

Functional w/o Cutpoints Functional with Cutpoints
Loop Count Time(s) Memory(MB) Time(s) Memory(MB)

200 3.59 8.7 4.15 5.0
400 14.05 20.3 15.99 5.6
600 31.53 39.1 35.90 6.1
800 56.00 64.6 63.65 6.7
1000 87.22 96.5 99.04 7.3
2000 349.06 353 395.70 10.2
3000 793.32 796 903.46 16.1
4000 1420.66 1401 1665.15 19.3
5000 mem out 2615.88 21.0

Table 2: Block Move Detailed Results

Functional w/o Cutpoints Functional with Cutpoints
Loop Count Time(s) Memory(MB) Time(s) Memory(MB)

100 23.32 12.5 11.34 6.0
200 91.64 33.7 41.96 7.2
300 204.96 67.1 91.42 8.5
400 363.38 111 159.91 9.7
500 569.05 169 247.60 10.9
600 818.84 240 354.77 12.2
700 1109.54 323 481.52 13.4
800 1451.09 418 627.45 14.6
900 1836.78 526 792.95 15.9
1000 2267.42 646 976.55 17.1

Table 3: Convolution Detailed Results

Functional w/o Cutpoints Functional with Cutpoints
Loop Count Time(s) Memory(MB) Time(s) Memory(MB)

100 22.83 12.4 10.72 6.0
200 88.01 33.6 39.38 7.3
300 195.28 66.4 85.21 8.6
400 345.95 110 149.41 9.7
500 539.08 167 231.48 11.0
600 776.26 237 332.31 12.2
700 1058.00 320 451.26 13.4
800 1381.92 414 587.61 14.6
900 1752.31 521 742.46 15.9
1000 2216.26 640 915.77 17.1

Table 4: FIR Filter Detailed Results
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