
Dynamic Online Reconfiguration for Customizable and
Self-Optimizing Operating Systems ∗

Simon Oberthür, Carsten Böke, Björn Griese
Heinz Nixdorf Institute

University of Paderborn
Fürstenallee 11

D-33102 Paderborn, Germany
simon@oberthuer.net, cboeke@upb.de, bgriese@hni.upb.de

ABSTRACT
When applications adapt their behavior to the requirements of the
environment, their resource usage can change dramatically. The re-
source usage implies the services that the applications require from
the operating system. Thus, the operating system must either pro-
vide all services that are totally required over time or reconfigure
itself. Reconfiguration of the operating system means to support on
demand services or the possibility to degrade services. We present
an approach where we extend our offline customizable operating
system in order to be dynamically reconfigurable during run-time.
Additionally, we describe the procedure how the operating system
is aware of the current required services. We claim that the re-
source usage between the applications and the operating system is
optimized. Thus, we derive aself-optimizing real-time operating
system(SO-RTOS). This work concentrates on theintegrationof
theconfigurator, which models the design space and controles the
low-level reconfiguration, and theresource manager, which is re-
sponsible for the timeliness and optimality. An optimization case
study realized on a prototype validates our approach.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Real-time systems and embedded
systems

General Terms
Design, Management, Performance

Keywords
Real.time operating system, self-optimizing

1. INTRODUCTION
In the area of distributed systems a new trend can be observed.

Applications adapt themselves to the requests from their environ-

∗
This work was developed in the course of the Special Research Initiative 614 “Self-optimizing Concepts and Structures

in Mechanical Engineering” – University of Paderborn, and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

ment. Therefore, applications support reconfiguration of their ser-
vices. This reconfiguration helps to improve the application’s QoS,
which can lead into an improvement of the system’s overall quality.
Besides this aspect, the resource usage can be optimized. Thereby,
resources that are only required for high level QoS functions can
be released, when a lower level QoS is satisfying the currently re-
quested constraints.

When the applications change their behavior and their resource
requests dynamically during run-time, then the underlying oper-
ating system (OS) should reconfigure also its QoS in form of
the current provided services. For example, a specific protocol
stack should only be present in the OS, when applications re-
quest this protocol for their communication. I.e., that a reconfig-
urable/customizable OS includes only those services that are cur-
rently required by its applications. Hence, services of the OS must
be loaded or removed on demand. Thus, the OS also releases valu-
able resources that can be used by other applications.

In embedded systems, the reconfiguration is critical. These sys-
tems often run under hard or soft real-time constraints. The real-
time operating system (RTOS) always has to assure a timely and
functional correct behavior and has to support the required services.
Thus, the reconfiguration underlies the same deadlines as the nor-
mal operation of the applications. To handle exactly this problem,
we reuse our real-time capableProfile FrameworkandFlexible Re-
source Manager. It models the reconfiguration and the transaction
of the reconfiguration under real-time constrains. An acceptance
test for the reconfiguration requests assures these constraints.

2. PREVIOUS WORK

2.1 TEReCS
Operating systems and run-time platforms for even heteroge-

neous processor architectures can be constructed from customiz-
able components (skeletons) out of the DREAMS’s (Distributed
Real-time Extensible Application ManagementSystem) library
[4]. By creating a configuration description all desired objects of
the system have to be interconnected and afterwards fine-grained
customized. The primary goal of that process is to add only those
components and properties that are really required by the applica-
tion.

The creation of a final configuration description forDREAMS

was automated during the project TEReCS (Tools for Embedded
Real-Time CommunicationSystems) [1]. During that project a
methodology was developed in order to synthesize and configure
the operating system for distributed embedded applications.

TEReCS distinguishes strictly between knowledge about the ap-
plication and expert knowledge about the customizable operating

335

system. Knowledge about the application is considered as a re-
quirement specification. This requirement specification is input to
the configurator. The requirement specification abstractly describes
the behavior of the application and some constraints (deadlines),
which have to be assured. The behavior of the application is defined
by the operating system calls it requests. It specifies which process
calls which primitive at what time. Especially the communication
channels between the processes have to be specified including their
properties (max. data size, period, etc.).

The complete and valid design space of the customizable operat-
ing system is specified by a so-called AND/OR service dependency
graph in a knowledge base [3]. This domain knowledge contains
options, costs, and constraints and defines an over-specification by
containing alternative options. The configuration process removes
some domain specific knowledge by exploiting knowledge about
the application. Thereby, a configuration for the run-time platform
will be generated. The integration of the domain and application
knowledge defines a knowledge transfer from the application down
to the operating system.

The complete valid design space of the configurable operating
system is specified by an AND/OR graph:

• Nodes representservicesof the operating system and are the
smallest atomic items, which are subject to the configuration

• Mandatory dependencies between services are specified by
AND edges

• Optional or alternative dependencies between services are
specified by OR edges

• Services and their dependencies have costs and can be prior-
itized

• Constraints(preferences, prohibitions, enforcements under
specific conditions) for the alternatives can be specified

• Root nodes of the graph are interpreted assystem primi-
tives/system callsof the operating system

The main objective of the configuration process is to remove all OR
dependencies from the graph (over specification→ complete and
non-ambiguous specification). The configuration can be interpreted
as a sub-graph without any alternatives.

The system primitivesare the root nodes of the service depen-
dency graph. Each of these primitives point to one concrete service.
The service dependencies span a complete graph. The leaf nodes
can refer to hardware devices. These devices are communication
devices, which again refer to communication media.

The algorithm works, e. g. for communication primitives, as fol-
lows: A path can be found through the complete graph from the
sending primitive down to the sending device, considering the rout-
ing and then up to the receiving primitive. The services that are
visited on this path have to be installed on the appropriate nodes of
the service platform. Thereby, the path should create minimal costs
by the use of the services.

Such paths will be searched for all primitives that are used in the
requirement specification. Because only a subset of all primitives is
normally used, especially the particular selection is responsible for
the instantiated services and its parameterization. The primitives
can be considered as the strings of a puppet. Depending on which
strings are pulled, the “configuration” of the puppet will change ac-
cordingly. The service dependencies can be compared to the joints
of the puppet. The algorithm is named“Puppet Configuration”[1].

2.2 Flexible Resource Manager
Part of ourFlexible Resource Manager(FRM) is the Profile

Framework. We only give a brief overview about the concepts
within this section. A formal description can be found in [7].

By means of this framework the developer can define a set of
profiles per application. Profiles describe different service levels of
the application, including different quality and different resource
requirements. The resource manager then tries to find an appro-
priateresource assignmentat run-time which optimizes the system
behavior and resource utilization.

A single profile contains the following information:
Resource requirements:Themaximumandminimum resource us-
ageper resource of the application when the profile is active.
Maximal assignment delay: All resource allocation of an appli-
cation require an announcement to the FRM. The maximal delay is
the worst case time the assignment of the resource can be delayed
by the FRM from the announcement until its allocation.
Switching conditions: The information between which profiles
can be switched and the worst-case execution times (WCET) of
the enter and leave functions of the profiles.
Profile quality: By help of this value the profiles of an applica-
tion can be ordered according to their quality. So the FRM knows
which profile to prefer when trying to increase the system quality
by selecting a profile for activation.

The major goal of the FRM is to optimize the resource utiliza-
tion and the over-all system quality by selecting profiles for acti-
vation under the current conditions. To maximize the utilization
the FRM puts the resources that are held back for worst case re-
source requirements of an application at other application’s dis-
posal. Normally, an application acquires as much resources as it
requires for worst-case scenarios. On this base the application has
always enough resources for its tasks and can fullfill its service at
any time. Yet, these resources are only required when the worst-
case scenario occurs. Thus, the FRM also tries to minimize this
internal waste of resources.

Actual, the FRM framework extends the ideas of the ARM
middleware [5]. While the latter assumes a system-wide defined
constant switching time, FRM supports transition specific WCET
times and additionally supports temporaryover-allocationof the
resources. The definition and design of the profiles for the FRM
with their resource usage is already integrated into the design phase
for embedded applications [2].

3. DYNAMIC RECONFIGURATION
The main idea is to release resources of system services by de-

activating or activating basic versions of these services. Hence, a
dynamic online reconfigurator for our operating system is required.

3.1 From offline TEReCS to online TEReCS
The TEReCS configurator has originally been developed for the

offline configuration of operating systems comprising very fine-
grained optional components that are customizable at source code
level.

We have integrated the configurator into the operating system for
online reconfiguration. In conrast to the offline case, the basic idea
is to configure only coarse-grained components for the online case.
Thus, the overall decision space is more restricted and the time,
spent for the selection of the appropriate components and their pa-
rameters, can be shortened.

The advantage of TEReCS to define a hierarchy on the valid de-
sign space [3] made the reuse of the configurator for the online case
possible. For the online case the definition of a hierarchy leads
to clusters at leveln + 1, e. g. for the system hierarchy, memory
management, scheduling, communication, etc., of tightly coupled
components of the leveln.

Tightly coupled components form a cluster, when their pre-
configured source code can be compiled. Thus, all inheritance and

336

DREAMS_OS

MyApplication

DREAMS_Com

DREAMS_Thread

ZeroDREAMS

Task

API_Thread

MultiThread

CToolsThread

Thread

Activity BASE

NativeThread-

Stack

StackSeg

OS

OS Hierarchy

with options

Options

Scheduling

Communication

DREAMS_OS

MyApplication

ZeroDREAMS

Task

API_Thread

Thread

Activity BASE

NativeThread-

Stack

OS

OS Hierarchy

without

multi-threading

DREAMS_OS

MyApplication

DREAMS_Thread

ZeroDREAMS

Task

API_Thread

MultiThread

Thread

Activity BASE

StackSeg

OS

OS Hierarchy

with

multi-threading

Scheduling

A

B C

Figure 1: OS cluster with its lower level optional components
and two pre-defined configuration examples.

membership relations for the object-oriented design of the RTOS
that had been customizable for the offline case must be fixed for
the online case. Only calling dependencies to functions of other
objects in other clusters are allowed.

Each of these clusters can – more or less – be configured without
interference to its neighboring clusters. The dependencies between
the clusters can be mapped tointernal primitives. They become
root nodes to the cluster and are triggered/used by other clusters.
Thus, independent offline configuration of the clusters for different
use cases is possible.

For each of the clusters there exist different pre-configured solu-
tions, which can be implemented. Thus, the leveln+1 with its pre-
defined solutions defines again a valid design space for TEReCS.
The solutions of the clusters made at the lower level become op-
tions at the higher level. Normally, the design space at the higher
level is smaller than on the lower level, because of the hierarchy.

The online configuration makes use of pre-defined solutions that
have been configured offline. Thus, it is up to the online configu-
ration phase to identify the use cases, for which the solutions have
been created. This can be seen as a kind ofcase-based reasoning
(CBR). For our scenario the identification is simple. The same pro-
cess, which selects the appropriate options, can be reused. Thus,
the complete configuration process works identically to the offline
case.

In detail the identification process for the current case and the
predefined case is trivial. Basis for the configuration decisions in
TEReCS is the use of thesystem primitivesthat trigger theuseof
services/components. For the predefined case a specific subset of
the primitives and specific access parameters is assumed. It is clear
that the same assumptions must hold for the current online case
and the pre-defined one in order to identify their similarity. In fact,
similarity here means identity.

TEReCS especially supports this identification. The same sys-
tem primitives that have been used to create a pre-defined solution
should lead to the selection of that solution component in the higher
design space level. This condition must be assured during the spec-
ification of the abstract design space for the pre-defined solutions.
This problem must be solved by the system expert also offline. This
procedure is legal, because TEReCS’s main ideology obliges the
encapsulation of all expert knowledge in the design space descrip-
tions.

The Figures 1 and 2 sketch an example for two pre-defined clus-
ter options (B+C). The primitivesSchedulingandCommunication

Board Devices

Communication

Memory

Management

Scheduling

OS

Hierarchy I

OS CreateThread

Interrupting

SynchronizationJava VM Data Structures

MsgSendTimedFcnPeriodicFcn

Interrupting

SynchronizationJava VM Data Structures

MsgSendTimedFcnPeriodicFcn

OS

Hierarchy II

Options

Figure 2: OS design space at2nd level with integrated options
for pre-defined solutions of clusters.

in Figure 1 are used by the equally named clusters from Figure 2.
The option B is generated from A, if the primitiveSchedulingis
not used. The option C is generated alternatively. In Figure 2, the
pre-generated solutions B+C are included as theOS Hierarchy Op-
tion I and II . Except the clusterSchedulingall other clusters can
use both options alternately. Only the clusterSchedulingexplicitly
requires the solution of theOS Hierarchy II, which supports for
multiple threads. If the primitiveCreateThreadwill be used, then
the clusterSchedulingis requested. Thus, the request of primitive
CreateThreadfrom an application requests for the clusterSchedul-
ing to be instantiated. Moreover, this requests for the option ofOS
Hierarchy II to be instantiated instead of theOS Hierarchy I.

3.2 Integration of TEReCS and the FRM into
the RTOS

SO-RTOS

Application/

Middleware

Configu-

rable

RTOS

Compo-

nents

Flexible

Resource

Manager

Online

TEReCS

Application 1

Profile

FrameworkReconfi-

guration

Profiles

Distribu-

tion

U
s

e
s

Profiles

…

Basic Communication/Storage

Com-

ponent

Cache

Figure 3: Integration of TEReCS and the FRM framework into
the RTOS.

TheFlexible Resource Manager(FRM) was primary developed
to optimize the resource utilization between dynamic applications.
Now, additionally recourses of RTOS components are considered
by modeling them with our profile framework.

The different options of the RTOS implementation are modeled
as different profiles. The resources that are required within the pro-
files are thesystem primitives. Initially TEReCS holds each prim-
itive. When an application arrives or wants to use a primitive it
has to claim for an appropriate profile, which is able to access the
primitive. Thus, the FRM forces TEReCS into a profile, where it
does not use the primitive. The meaning for TEReCS of holding
the access to a primitive is reverse to the meaning of an applica-
tion: TEReCS holding a primitive means that the primitive is not

337

required and must not be implemented. The other way round, when
an application holds a primitive, TEReCS has to provide the prim-
itive’s code.

As sketched in Figure 3 the reconfiguration of the RTOS cluster
components is completely managed by TEReCS. The reconfigu-
ration options are modeled as optional profiles that are offered by
TEReCS and managed by the FRM. Each profile defines exactly,
which primitive is used and, which is not used by the applications.
Thus, the FRM needs not to distinguish between the RTOS and
normal applications. The FRM mediates thesystem primitives(re-
sources) between all the applications and the RTOS. Thus, it han-
dles the competition between the applications and the reconfigu-
ration options of the RTOS. Real-time constrains are respected by
modeling the reconfiguration time of the RTOS in the switching
conditions of the profiles and the acceptance test in the FRM.

Applications must define all real-time constrains regarding their
future resource allocations. Additionally, an application can only
allocate resources in the ranges of the profile, which is currently
active. With this information the FRM guarantees by courtesy of
the acceptance test that all resource allocations can be performed in
the maximal assignment delay. The FRM forces TERECS only to
deactivate a system service if it can be activated “in time” to provide
the resources. This means, that the maximum assignment delay of
the applications according to a resource of a system service must
be greater than the reconfiguration time to re-activate this system
service. Otherwise the system service could not be deactivated.

The online reconfiguration model that has been presented arises
some questions concerning its implementation.

The creation of pre-defined solutions for the clusters can be done
automatically. For each combination of possible requests or dis-
missals ofsystem primitivesand internal primitivesa configura-
tion is generated. For the optimization and the reduction of the de-
sign space of the operating system, a system expert might restrict
the combinations of parallel instantiated system primitives to only
those ones that make sense in a way that they cover other solutions
and – with high probability – are used not simultaneously.

A repository stores all pre-defined solutions of the clusters. A
cache will temporarily store the code and description of optional
configurations for clusters, in order to speed up the loading of re-
quired cluster implementations. The cache might be able to retrieve
other configuration’s implementations from a background storage
(hard disk) or from the network (see Fig. 3).

The technical exchange of two configurations during run-time
is based on dynamic online linking. The configuration uniquely
identifies a specific pre-configured cluster component. The com-
ponent’s code is attached to the appropriate ELF headers. Addi-
tionally, the already instantiated system’s code is also described by
appropriate ELF headers. Thus, re-linking of new code is possi-
ble during run-time by a modified ELF object code linker, which is
included into theOnline TEReCS.

The FRM tries to optimize the system according to the current
resource requirements of the components (system services and ap-
plications) and the quality information of the profiles. To do this
theFlexible Resource Managementrequests the application and
TEReCS (which manages the RTOS profiles) to change the current
profiles. This results into a reconfiguration of the RTOS and a op-
timization of the resource usage between the applications and the
operating system.

The capabilities for the optimization are exploited by TEReCS
during offline generation of the pre-defined cluster configurations
for specific use cases. Additionally, the optimization is done always
by the FRM based on the quality values.

The FRM includes the definition of quality values per profile.

Thus, the FRM can not only reason about the optimality of appli-
cation profiles, but it can additionally reason about the optimality
of the RTOS configuration.

4. VALIDATION
To validate our approach we have implemented the FRM and

the Online TEReCS component on top of our RTOS DREAMS
and tested the system with an realistic application example from
our self-optimizing context. For the purpose of a case study [6]
we selected a component of the real-time communication system
(RCOS): A reconfigurable ethernet switch.

5. CONCLUSION
In this paper, we have shown the extension of an offline OS con-

figurator to the online case. The combination of the model of the
OS reconfiguration options and the management concerning differ-
ent resource profiles of the applications has been presented. By
the integration of TEReCS and the FRM into a RTOS we derived
a self-optimizing real-time operating system (SO-RTOS). A simple
prototype of our SO-RTOS validate that our approach is function-
ally working and has a benefit for the executed applications with an
increase of the resource utilization. For the future we plan to apply
our approach to larger examples.

6. REFERENCES
[1] C. Böke.Automatic Configuration of Real-Time Operating

Systems and Real-Time Communication Systems for
Distributed Embedded Applications. Phd thesis, Faculty of
Computer Science, Electrical Engineering, and Mathematics,
Paderborn University, Paderborn, Germany, 2003.

[2] S. Burmester, M. Gehrke, H. Giese, and S. Oberthür. Making
mechatronic agents resource-aware to enable safe dynamic
resource allocation. InFourth ACM International Conference
on Embedded Software (EMSOFT’2004), 27 - 29 September
2004.

[3] R. P. Chivukula, C. Böke, and F. J. Rammig. Customizing the
Configuration Process of an Operating System Using
Hierarchy and Clustering. InProc. of the5th IEEE
International Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 280–287, Crystal City,
VA, USA, 29 April – 1 May 2002. IFIP WG 10.5. ISBN
0-7695-1558-4.

[4] C. Ditze.Towards Operating System Synthesis. Phd thesis,
Department of Computer Science, Paderborn University,
Paderborn, Germany, 1999.

[5] K. Ecker, D. Juedes, L. Welch, D. Chelberg, C. Bruggeman,
F. Drews, D. Fleeman, and D. Parrott. An optimization
framework for dynamic, distributed real-time systems.
International Parallel and Distributed Processing Symposium
(IPDPS03), page 111b, April 2003.

[6] B. Griese, S. Oberthür, and M. Porrmann. Component case
study of a self-optimizing rcos/rtos system: A reconfigurable
network service. InProceedings of International Embedded
Systems Symposium 2005, Manaos, Brazil, 15 - 17 August
2005.

[7] S. Oberthür and C. Böke. Flexible resource management - a
framework for self-optimizing real-time systems. In
B. Kleinjohann, G. R. Gao, H. Kopetz, L. Kleinjohann, and
A. Rettberg, editors,Proceedings of IFIP Working Conference
on Distributed and Parallel Embedded Systems (DIPES’04).
Kluwer Academic Publishers, 23 - 26 August 2004.

338

