
QoS Control for Optimality and Safety

Jacques Combaz1,2, Jean-Claude Fernandez1, Thierry Lepley2,
Joseph Sifakis1

1Verimag, Centre Equation - 2 avenue de Vignate F38610 Gières, France
2STMicroelectronics Central R&D 850, rue Jean Monnet 38921 Crolles Cedex, France

ABSTRACT
We propose a method for fine grain QoS control of real-time
applications. The method allows adapting the overall sys-
tem behavior by adequately setting the quality level param-
eters of its actions. The objective of the control policy is to
meet QoS requirements including three types of properties:
1) safety that is, no deadline is missed; 2) optimality that
is, maximization of the available time budget; 3) smooth-
ness of quality levels. The method takes as input a model of
the application software, QoS requirements and platform-
dependent timing information, and produces a controlled
application software meeting the QoS requirements on the
target platform. This paper provides a complete formaliza-
tion of the quality control problem. It proposes a new con-
trol management policy ensuring safety, near-optimality and
smoothness. It also describes a prototype tool implement-
ing the quality control algorithm and experimental results
about its application to a video encoder.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (func-
tional) Programming; D.2.3 [Software Engineering]:
Coding Tools and Techniques

General Terms
Algorithms, Performance, Reliability

1. INTRODUCTION
There exist currently two diverging approaches in systems

engineering.
• Critical systems engineering based on worst-case analysis,
using conservative approximations of the system dynamics
and static resource reservation. This approach is applied
whenever a system’s correctness means no violation of criti-
cal conditions such as missing a deadline or reaching a dan-
gerous state.
• Best effort engineering based on average-case analysis,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

seeking efficient use of resources without addressing critical
behavior issues, e.g., optimization of speed, jitter, memory,
bandwidth, power. This approach is applied to applications
where some degradation or even temporal denial of service
is tolerated e.g., telecommunications.

These two approaches are currently disjoint. They corre-
spond to different research communities and different prac-
tices. They adopt different computing paradigms, use spe-
cific execution platforms, middleware and networks. It is of-
ten advocated that such a separation is inevitable, especially
for embedded systems with uncertain execution and exter-
nal environments. Meeting critical properties and making
optimal use of available resources seem to be two conflicting
requirements. To ensure critical properties worst-case esti-
mates must be used and this may lead to inefficient use of
resources if they are statically pre-allocated as is the case
in the current standard practice. The existing gap between
critical and best effort approaches often leads to costly and
unreliable solutions.

To bridge the gap between the two approaches, it is es-
sential to develop design techniques for adaptive systems
meeting both critical and best effort properties. Such tech-
niques should allow to control the overall system behavior so
as to meet critical properties while making the best possible
use of resources, in spite of the difference between average
and worst-case behavior.

This paper contributes to bridging the gap by proposing a
method for QoS control allowing optimal use of computing
resources without missing deadlines. The method targets
multimedia applications. Usually, to meet given QoS re-
quirements, these applications require a significant amount
of experimentation on virtual or real prototypes, involving
fine tuning of parameters of their software components. Af-
ter tuning, the behavior of application software can be mod-
ified only by changing user-defined input parameters. Thus,
adaptability is coarse grain, because it can be achieved only
by modifying global parameters. Furthermore, some delay
is necessary for adaptation due to the limited controllabil-
ity of the application software over the underlying execu-
tion system. For these applications, uncertainty about ex-
ecution times dictates the use of control-based techniques
[2],[13],[11].

The proposed method allows adapting the overall system
behavior by adequately setting the quality level parameters
for its actions. The objective of the control policy is to
meet QoS requirements including three types of properties:
1) safety that is, no deadline is missed); 2) optimality that is,
maximization of the available time budget); 3) smoothness

90

of quality levels. The method takes as input an application
software, QoS requirements and platform-dependent timing
information and produces a controlled application software
meeting the QoS requirements on the target platform, as
follows (see figure 1).
• The initial application software cyclically performs in-
put/output transformations of data streams. It is described
by a precedence graph modeling dependency between ac-
tions (C-functions), and from which all the possible execu-
tion sequences can be extracted. Its execution during a cycle
can be controlled by choosing quality levels, which are pa-
rameters of its actions. We assume that the execution times
of actions are increasing with quality.
• We consider single-threaded implementations of the ap-
plication software on a platform for which it is possible, by
using timing analysis and profiling techniques, to compute
estimates of worst-case execution times and average execu-
tion times of actions for the different quality levels. Action
execution is assumed to be atomic. A compiler is used to
generate the controlled software from the initial application
software, for given QoS requirements and execution times.

The controlled software can be considered as the compo-
sition of the initial application software with a controller
(see figure 3). The controller monitors the progress of the
computation within a cycle of the application software. At
any state of the cycle, it chooses the next action to be exe-
cuted and its quality level, guided by a quality management
policy. This is a constraint guaranteeing safety and embody-
ing an optimality criterion. The optimality criterion is used
to compute ”best schedules” for different quality parameter
levels. The controller chooses amongst these schedules, a
feasible one which maximizes quality.

Our method significantly differs from existing ones for
QoS control and adaptive scheduling. The main difference
is fine grain control of the execution. Existing control tech-
niques act at task level e.g., at the beginning of a cycle,
and their reactivity is slow. They do not require any deep
knowledge of the data-flow structure of the application soft-
ware. Our method consists in controlling execution during
a cycle; the controlled software is produced by compilation
(automatic code instrumentation).

Another important difference is that fine granularity al-
lows combination of optimality and safety of the produced
schedules. Most control techniques are applied at system or
task level, focus on optimality criteria and are adequate only
for soft real-time. The integration of safety criteria is useful
in applications where quality should remain above some min-
imal level [8],[4], e.g., home TVs, or where hard deadlines
must be respected. Buttazzo et al.’s elastic tasks model [5],
as well as slack scheduling [7], [10] and gain time techniques
[3] are proposed in order to adapt a system to its actual
behavior, but they are only based on worst-case execution
times and do not deal with quality smoothness. A common
and simple way to treat CPU overload is to skip an instance
of a task [9]. Lu et al. [11] propose a feedback scheduling
based on PID controllers, but deadline misses remain possi-
ble. Steffens et al. [13],[12] minimize deadline misses of an
MPEG decoder by applying a Markov decision process and
reinforcement learning techniques, combined with structural
load analysis.

The paper improves and extends results presented in [6]
in several directions. It provides a complete formalization
of the quality control problem. It proposes a new control

management policy ensuring better quality smoothness. Fi-
nally, it provides a framework for studying how safety and
optimality are related depending on system dynamics.

The paper is organized as follows. Section 2 presents a for-
malization of the quality control problem. Section 3 presents
an abstract and generic control algorithm parameterized by
a quality management policy. The choice of such policies for
safety and quality smoothness is studied in Section 4. Sec-
tion 5 deals with optimal use of the computing resources.
It is shown that safety and optimality are two conflicting
requirements and that utilization may differ from the opti-
mal one by a constant depending on the difference between
worst-case and average behavior as well as on the granular-
ity of control. Section 6 reports on experimental results. A
prototype tool is presented for generating controlled appli-
cation software, as well as a non trivial example.

Tool

Tables
Library

C Functions

Cav , Cwc, D

Timing Functions

G, Q

Application Software

Compiler

Application SW

Controlled

Quality Manager

t ≤ tX
s

Precomputed αq =
Best SchedX (α, q)

Parameterized System PS(C)

Partially

Figure 1: Implementation of the prototype tool

2. THE QUALITY CONTROL PROBLEM
Let A be a finite set of actions. We denote by A∗ the set

of all finite sequences of actions. For a sequence of actions
α = α(1) . . . α(n) of length n = |α| we define:
• α[i, j] = α(i) . . . α(j) for any i ≤ j; otherwise α[i, j] = ε
• for 0 ≤ i ≤ |α|, iα = α[1, i] (resp. αi = α[i, |α|]) is the
prefix (resp. suffix) of length i (resp. |α| − i + 1), and
0α = α|α| = ε
• set(α) is the set consisting of all the elements of α that is,
set(α) = {α(1), . . . , α(n)}.

Definition 1. For a finite set of actions A, a prece-

dence graph is a pair G = (A,≺) where ≺⊆ A × A is
a partial order. A trace of G is a sequence of actions
α = α(1) . . . α(n) such that:
• i 6= j ⇒ α(i) 6= α(j)
• for any 1 ≤ i ≤ |α|, set(iα) is backwards closed that is,
a ∈ set(iα) and a′ ≺ a implies a′ ∈ set(iα).
A trace of length |A| is a schedule of G. We denote by
Sched(G) the set of all schedules of G.

For a precedence graph G = (A,≺) and a set of actions
B ⊆ A, we write G/B for the precedence graph restricted
to the actions of B that is, G/B = (B,≺ ∩(B × B)). For a
trace α, G/α is a notation for G/set(α).

The following definition introduces parameterized systems
which are models of an application software with quality

91

level parameters, worst-case execution times and deadline
constraints for its actions. It is parameterized by a function
representing the unpredictable, actual execution time.

a3

D(a2) = 10

a2

D(a1) = 10

a1

a4

D(a4) = 10

D(a3) = 2

Figure 2: Example of parametarized system.

Definition 2. A parameterized system PS(C) is a
tuple PS(C) = (G, Q,Cwc, C, D) where:
• G is a precedence graph
• Q = [qmin, qmax] is a finite interval of integers; integers
of Q correspond to quality levels
• Cwc : A × Q → R+ (R+ denotes the set of non-negative
reals) is a function giving the worst-case execution time
Cwc(a, q) of action a for quality level q. We assume that,
for all a ∈ A, q 7→ Cwc(a, q) is a non-decreasing function
• C : A×Q → R+ is a parameter, function giving the actual
execution time C(a, q) of a for quality level q. We assume
that C ≤ Cwc and, for all a ∈ A, q 7→ C(a, q) is a non-
decreasing function
• D : A → R+ is a function giving for any action a its
absolute deadline D(a).

A quality assignment is a partial function θ : A → Q
giving for any action a, its quality level θ(a). We denote by
Θ the set of all the quality assignments, and by ⊥ the quality
assignment undefined everywhere. For a quality assignment
θ and an action a, θ[a → q] is the quality assignment such
that, for any a′ ∈ A, a′ 6= a, θ[a → q](a′) = θ(a′), and
θ[a → q](a) = q.

Functions of the form CX : A×Q → R+ are called execu-
tion time functions. We extend execution time functions to
obtain partial functions A∗×Θ → R+. For a sequence of ac-
tions α and a quality assignment θ defined on set(α) we take:
if α 6= ε, then CX(α, θ) =

P

1≤i≤|α| C
X(α(i), θ(α(i))) else

CX(ε, θ) = 0. Notice that CX(α, θ) gives the time elapsed
when the sequence α is executed with quality θ. We extend
any deadline function D : A → R+ to non-empty sequences
of actions, D(α) = D(α(|α|)) that is, D(α) is the deadline
of the last action of α.

Definition 3. Given a parameterized system PS(C) =
(G, Q, Cwc, C, D) we need the following definitions.
• A state is a tuple (α, θ, t) such that α is a trace of G, θ
is a quality assignment defined on set(α) and t = C(α, θ)

• The labelled transition relation (α, θ, C(α, θ))
(a,q)
−→

(α′, θ′, C(α′, θ′)) relates two states (α, θ, C(α, θ)) and
(α′, θ′, C(α′, θ′)) if there exists (a, q) such that α′ = αa and
θ′ = θ[a → q].
• An execution sequence of length n is a sequence of con-
secutive states of the form:

(ε,⊥, 0)
(a1,q1)
−→ (α1, θ1, t1)

(a2,q2)
−→ . . .

(an,qn)
−→ (αn, θn, tn).

• A schedule is a pair (α, θ) where α ∈ Sched(G) and θ is
a quality assignment defined on A.
• A schedule α is feasible if, for all k, C(kα, θ) ≤ D(kα)
that is, all the actions of α complete their execution before

their deadline. We denote by Sched(PS(C)) the set of all
the schedules of PS(C), and Feas(PS(C)) the set of all the
feasible ones.
• The feasibility can be characterizes by a schedule func-

tion ts : A∗ × Θ → R+ which gives for a schedule (α, θ),
its margin that is, the latest time at which the schedule
(α, θ) should start in order to meet its deadlines. We
take ts(α, θ) = min1≤k≤|α| ts(α, θ)(k), where ts(α, θ)(k) =

D(kα)−C(kα, θ). Then, the feasibility of (α, θ) can be char-
acterized by 0 ≤ ts(α, θ).

Consider a parameterized system PS(C) =
(G, Q, C, Cwc, D) with four actions A = {a1, a2, a3, a4} and
two quality levels Q = {0, 1}, such that G and D are given in
figure 2. The sequences α1 = a1a2a3a4 and α2 = a1a3a2a4

are schedules of G. Let θ0 be the constant quality assign-
ment θ0 = 0. Notice that, if C(ai, q) = Cwc(ai, q) = 2q + 1
for all ai, then the schedule (α1, θ0) is not feasible, whereas
the schedule (α2, θ0) is feasible.

Definition 4. Given a parameterized system PS(C), a
controller Γ is a function Γ(α, θ, t) = (a, q) such that αa
is a trace of G and q ∈ Q.
We denote by PS(C)||Γ the controlled parameterized system

characterized by the labelled transition relation (α, θ, t)
(a,q)
−→

(α′, θ′, t′) such that (α, θ, t) and (α′, θ′, t′) are states of
PS(C), and (a, q) = Γ(α, θ, t).

Notice that a controller determinizes the behavior of
PS(C) by selecting, for each state (α, θ, t), the next action
to be executed and its quality level. Thus, for a given C, it
computes a schedule (α, θ).

Definition 5 (quality control problem). Given
a parameterized system PS(C) = (G, Q,Cwc, C, D), find
a controller Γ such that, for any actual execution time
function C, it computes an optimal feasible schedule

(α, θ) that is:
• the overall execution time C(α, θ) is maximal with
respect to all feasible schedules of PS(C) that is,
C(α, θ) = max { C(α′, θ′) | (α′, θ′) ∈ Feas(PS(C)) }
• (α, θ) is a feasible schedule of PS(C).

In addition to feasibility and optimality, we require
smoothness for the computed schedules. Informally, for a
schedule (α, θ), smoothness means low fluctuation of the
quality assignment θ along the sequence α. We do not for-
malize this property which is essential for most multimedia
applications.

3. THE ABSTRACT CONTROL
ALGORITHM

In the rest of the paper, PS(C) is the parameterized sys-
tem PS(C) = (G, Q, Cwc, C, D).

3.1 Quality Control for Known C

We provide preliminary results about the quality control
problem when C is known. In that case, Cwc is not useful
for computing feasible schedules.

Definition 6. Given PS(C), we denote by Best Sched
any function which, for any quality assignment θ, gives the

92

schedule αθ = Best Sched(θ) of G such that (αθ , θ) maxi-
mizes the schedule function ts that is:

ts(αθ, θ) = max { ts(α, θ) | (α, θ) ∈ Sched(PS(C)) }.

Notice that, for any schedule (α, θ) of PS(C), the overall
execution time C(α, θ) is independent of α. We define the
binary relation � on Θ by θ � θ′ ⇔ C(α, θ) < C(α, θ′)
for each schedule α. The relation � is a strict total order
on classes of quality assignments { θ | C(α, θ) = constant }.

Proposition 1. Given PS(C), an optimal feasible
schedule (αθM

, θM) is computed by:
for all θ ∈ Θ do αθ := Best Sched(θ) od

θM := max� { θ | 0 ≤ ts(αθ, θ) }
return (αθM

, θM)
where max� is the function giving an element of the max-
imal class of its arguments according to �.

Proof: Assume that there exists (α, θ) such that (α, θ) is
feasible and θM � θ. Then 0 ≤ ts(α, θ) ≤ ts(αθ, θ) because
αθ = Best Sched(θ) maximizes ts. We conclude that (αθ, θ)
is a feasible schedule, so θ � θM . (Contradiction). 2

The following results can be used to reduce the compu-
tation of Best Sched to the computation of EDF schedules
for G.

Definition 7 (EDF schedule). Given PS(C) with a
precedence graph G and a deadline function D, we denote
by D∗ the deadline function:

D∗(a) = min { D(a′) | a ≺ a′ }.

We say that a schedule α of G is an EDF schedule if, for
all i < j, D∗(iα) ≤ D∗(jα). We denote by EDF (G, D) the
set of the EDF schedules of PS(C).

Notice that Feas(PS(C)) = Feas(PS∗(C)) where
PS∗(C) = (G, Q,Cwc, C, D∗) as both PS(C) and PS∗(C)
have the same set of critical deadlines.

Proposition 2. For a quality assignment θ, the EDF
schedules maximize ts(α, θ) that is, for any schedule α, there
exists an EDF schedule α′ such that ts(α, θ) ≤ ts(α

′, θ).

The above proposition allows to compute, for known C, an
optimal feasible schedule (α, θM), by statically computing an
EDF schedule α and checking its feasibility for the different
quality assignments θ.

Lemma 1. Let α be a schedule such that there exist two
consecutive and independent actions a = α(i) and b = α(i+
1) (two actions a and b are independent if a ⊀ b and b ⊀ a),
such that their deadlines are inverted that is, D(a) ≥ D(b).
For the schedule α′ in which a and b are swapped that is,
α′(j) = α(j) for all j /∈ {i, i+1}, α′(i) = b and α′(i+1) = a,
we have:

ts(α
′, θ) ≥ ts(α, θ).

Proof of proposition 2: We apply lemma 1 as follows.
Let α be an arbitrary schedule, and αEDF be an EDF
schedule. It is possible to obtain αEDF from α by com-
muting successively two consecutive independent actions
with inverted deadlines D∗. Thus, EDF schedules maxi-
mize min1≤k≤n D∗(αk) − C(kα, θ) = min1≤k≤n D(kα) −
C(kα, θ) = ts(α, θ). 2

Scheduler

αq = Best SchedX(α, q)

Quality Manager

(α, q) αq

qM := max
˘

q | t ≤ tX
s (αq, q)

¯

t = C(α, θ)

System

Controller

:= (αqM
(1), qM)

(α, θ, t)

Γ(α, θ, t)

Figure 3: Controller’s architecture

3.2 Quality Control under Uncertainty
We propose a control algorithm allowing the incremen-

tal online computation of schedules (α, θ) of PS(C). The
control algorithm is a dynamic adaptation of the proposi-
tion 1. It uses appropriate approximations tX

s of ts, and
Best SchedX of Best Sched.

Definition 8. For an execution time function CX : A∗×
Θ → R+, we define the corresponding schedule function tX

s :

tX
s (α, θ)(k) = D(kα) − CX(kα, θ)

tX
s (α, θ) = min1≤k≤|α| tX

s (α, θ)(k).

This definition of tX
s generalizes definition 3 of ts. In the

proposed control algorithm, functions Best SchedX will be
used in a similar manner as functions Best Sched in algo-
rithm 1. Nevertheless, Best Sched and Best SchedX do
not have the same profile. We denote by Best SchedX a
function which, for any trace α and quality level q, gives a
sequence αq = Best SchedX(α, q) such that ααq is a sched-
ule of G. The functions Best SchedX will be chosen so as
to maximize tX

s . Finding adequate functions Best SchedX

is a non trivial problem discussed in 5.2.

Definition 9 (abstract control algorithm).
Given PS(C), a schedule function tX

s and a function
Best SchedX , we define the controller Γ such that, for any
state (α, θ, t), Γ(α, θ, t) is computed as follows:

for all q ∈ Q do αq := Best SchedX(α, q) od

qM = max { q | t ≤ tX
s (αq , q) }

return Γ(α, θ, t) := (αqM
(1), qM).

Figure 3 shows the controller’s architecture. It is com-
posed of a Scheduler computing Best SchedX , and of a
Quality Manager applying the quality management policy
t ≤ tX

s . From a given state (α, θ, t),
• The Scheduler computes for each quality level q ∈ Q, a se-
quence of actions αq = Best SchedX(α, q). The pair (αq , q)
is a schedule for the remaining actions.
• The Quality Manager computes the maximal quality level
qM meeting the quality management policy that is,

qM = max { q | t ≤ tX
s (αq, q) }.

In the rest of the paper, we present theoretical and experi-
mental results concerning the choice of tX

s and Best SchedX

for the controller to compute feasible, near-optimal and
smooth schedules. In the following section, we propose qual-
ity management policies for safety and smoothness.

93

4. QUALITY MANAGEMENT POLICIES

4.1 Quality Management Policies for Safety
Definition 10. Given PS(C), we introduce the safe

schedule function tsf
s corresponding to the safe execution

time function Csf : A∗ × Θ → R+ defined by:

Csf (α, θ) = Cwc(α(1), θ) + Cwc(α2, qmin).

Notice that t ≤ tsf
s (α, q) guarantees feasibility for ex-

ecuting the first action α(1) of α with quality q and
the rest of the actions of α with quality qmin under the
worst-case assumption. This implies that the schedule
(α, θ[α(i) → qmin, i > 1]) is feasible for any C.

Proposition 3 (safety). Consider the parameterized
system PS(C) and a schedule α0 such that (α0, qmin) is a
feasible schedule of PS(Cwc). For any controller with quality
management policy t ≤ tsf

s , the computed schedules are fea-
sible if Best Schedsf gives for minimal quality EDF sched-
ules that is, for any α, αqmin

= Best Schedsf (α, qmin) ∈
EDF (G/αqmin

, D).

It can be shown that the above proposition also holds
when tsf

s is replaced by any schedule function tX
s such that

tX
s ≤ tsf

s with tX
s (α, qmin) = tsf

s (α, qmin), and Best SchedX

meets the same properties as Best Schedsf . This result is
used in the next section to find other quality management
policies that are not only safe but also smooth.

Lemma 2. For any controller Γ satisfying the assump-
tions of proposition 3, we have qmin ∈ {q | t ≤ tsf

s (αq, q)}
at any reachable state (α, θ, t) of PS(C)||Γ, where αq =
Best Schedsf (α, q).

Proof of proposition 3: By the lemma 2, we have qmin ∈
{q | t ≤ tsf

s (αq, q)} at any state of PS(C)||Γ that is, {q | t ≤
tsf
s (αq, q)} is a non-empty set. Let (α, θ, t) and (α′, θ′, t′) be

two states of PS(C)||Γ such that (α, θ, t)
(a,qM)
−→ (α′, θ′, t′),

and let αq = Best Schedsf (α, q) be the planed schedule for
the quality level q. Then we have t ≤ tsf

s (αqM
, qM) and the

action a = αqM
(1) meets its deadline:

t ≤ tsf
s (αqM

, qM) = min1≤k≤|αqM
| tsf

s (αqM
, qM)(k)

⇒ t ≤ tsf
s (αqM

, qM)(1)

⇒ t ≤ D(a) − Cwc(a, qM)

⇒ t′ ≤ t + Cwc(a, qM) ≤ D(a).

This demonstrates that any action a meets its deadline that
is, the schedule (α, θ) is feasible. 2

4.2 Improving Smoothness
We discuss the influence of three quality management poli-

cies on quality smoothness. The influence is illustrated by
an example and confirmed by experimental results in sec-
tion 6.4. It is not treated formally as we do not have yet a
completely worked out framework.

4.2.1 Simple Quality Management Policy
Consider PS(C) with three actions, four quality levels

Q = {1, . . . , 4}, and a single deadline D = 9 (for all i,
D(α(i)) = 9). We assume that PS(C) has a schedule α
such that the actual and the worst-case execution times are
identical for all actions, as given in the table of figure 4. The

computed quality assignment for α by using the safe policy
t ≤ tsf

s is not smooth (figure 4). We can improve smoothness
by combining worst-case and average behavior. We define
the average execution time function Cav : A × Q → R+.
Average execution times can be estimated by static analysis
and/or profiling techniques. Denote by tav

s the correspond-
ing schedule function.

In [6], we define the simple quality management policy
t ≤ tsp

s , where tsp
s = min { tsf

s , tav
s }. Notice that using tsp

s

also leads to feasible schedules. For the previous example,
the schedule computed by using t ≤ tsp

s is smoother than
the one computed by using t ≤ tsf

s (figure 4).

3

2

1

α(3)α(1) α(2) α

4

θ

safe policy
Execution times

q Cwc C

= Cav

1 1 1
2 5 2
3 6 3
4 7 5

3

2

1

α(3)α(1) α(2) α

4

θ

mixed policy
3

2

1

α(3)α(2) α

4

θ

simple policy

α(1)

Figure 4: Comparison between different policies

4.2.2 Mixed Quality Management Policy
The simple management policy may lead to a drastical

reduction of the quality before a critical deadline. Even if
actual time follows exactly average time (i.e C = Cav), the
quality may need to be decreased along a sequence of actions
where Csf > Cav. We propose the mixed quality manage-
ment policy which is robust with respect to this phenomena.

We define the function δ = Csf − Cav. Let δmax(α, θ) =
maxi≥1 δ(αi, θ). Given (α, θ), the value δmax(α, θ) char-
acterizes the difference between worst-case and average be-
havior. The schedule function tmx

s corresponds to the mixed
execution time function Cmx defined by Cmx = Cav +δmax.
For the example given in figure 4, the schedule computed by
using the mixed policy t ≤ tmx

s is the smoothest one (θ is
constant).

5. RESULTS FOR OPTIMALITY
As the functions tX

s and Best SchedX approximate ts and
Best Sched, the computed schedules may not be optimal.

5.1 Conditions for Optimality
We provide bounds relating actual execution time for com-

pleting a sequence of actions α and the corresponding dead-
line D(α), which is the available time budget, for two differ-
ent quality management policies:
• The average policy t ≤ tav

s which does not take into ac-
count worst-case behavior. For this case, we show that if
C = Cav the difference between the time for completing α
and the corresponding deadline D(α) is less than a constant
∆ characterizing the granularity of control.
• The mixed policy t ≤ tmx

s which jointly takes into account
average and worst-case behavior. For this case, we show
that if C = Cav the difference between the time for com-

94

pleting α and the corresponding deadline D(α) is less than
a constant depending on ∆ and δmax.

5.1.1 Average Behavior – Speed Diagram fort ≤ tav
s

Consider PS(C) with a controller applying the quality
management policy t ≤ tav

s . Let (α, θ, t) be a state of the
PS(C)||Γ, and (αq, q) be the planed schedule from this state.
We show that the quality management policy t ≤ tav

s ad-
mits a geometric interpretation in terms of relative speeds
between actual and average execution time.

We introduce the following abbreviations for 1 ≤ k ≤ |αq |:
c = Cav(α, θ), dk(q) = D(kαq) and ck(q) = c + Cav(kαq , q).
We represent system’s evolution in a two-dimensional space
(figure 5) with coordinates t (actual time) and y(q) the nor-
malized average time with respect to the deadline dk defined
by:

y(q) =
c

ck(q)
· dk(q).

As a result of the normalization, points on the diagonal (45
degree slope) correspond to optimal behavior. Points below
the diagonal correspond to states where the actual compu-
tation is late with respect to average time. For points above
the diagonal, the computation goes faster than estimated.

dk

y

t dk

vopt−sf

vopt

δmax∆

vidl(q)

1
2

3

Figure 5: Speed diagram

We introduce two notions of speed (ratio y(q)/t) to explain
the quality management policy t ≤ tav

s of the controller.
• The ideal speed vidl(q) which is the speed when C = Cav

that is, in the ideal case where the actual time is equal to
the average time:

vidl(q) =
y(q)

t
=

dk(q)

ck(q)
.

• The optimal speed vopt(q) at point (t, y(q)) is equal to the
slope of the segment from this point to (dk(q), dk(q)) that
is, this is the slope allowing to reach the deadline when it
expires:

vopt(q) =
dk(q) − y(q)

dk(q) − t
=

dk(q)

ck(q)
·
ck(q) − c

dk(q) − t
.

The optimal speed vopt(q) corresponds to an optimal be-
havior of the system in which the action αq(k) completes
exactly at dk(q). Figure 5 shows an example with three
quality levels in which y(q) and vopt(q) do not depend on q.

Proposition 4. Let (α, θ, t) be a state of PS(C)||Γ with
the quality management policy t ≤ tav

s . Given a quality level
q, a sequence αq and an index k, we have:

vidl(q) ≥ vopt(q) ⇐⇒ t ≤ tav
s (αq , q)(k).

Proof: vopt(q) ≤ vidl(q)

⇔
ck(q) − c(q)

dk(q) − t
≤ 1

⇔ t ≤ dk(q) − (ck(q) − c(q))

⇔ t ≤ D(kαq) − Cav(kαq , q)

⇔ t ≤ tav
s (αq, q)(k). 2

In the example of figure 5, the application of the average
quality management policy t ≤ tav

s amounts to choosing
quality corresponding to the speed vidl(1) which is the best
quality such that vidl(q) ≥ vopt(q).

In the ideal case where C = Cav, the average policy
t ≤ tav

s is sufficient to ensure feasibility of the computed
schedules. In this case, the next proposition explains that
the overall execution time can be estimated with a precision
of ∆, where ∆ depends on the granularity of control:

∆ = max { Cav(a, q + 1) − Cav(a, q) | q < qmax, a ∈ A }.

Proposition 5. Consider PS(C)||Γ with the quality
management policy t ≤ tav

s , and a single deadline D (con-
stant deadline function). If (α, θ) is a schedule computed by
the controller such that θ(α(1)) < qmax and C = Cav, then:

D − ∆ ≤ C(α, θ) ≤ D.

5.1.2 Worst-Case and Average Behavior – Speed Di-
agram fort ≤ tmx

s

In order to take into account average and worst-case be-
havior, a similar construction of a speed diagram can be car-
ried out for the mixed quality management policy t ≤ tmx

s .
Consider PS(C) with a controller applying the quality

management policy t ≤ tmx
s . Let (α, θ, t) be a state of

PS(C)||Γ, and (αq , q) be the planed schedule from this state.
If (t, y(q)) is the point of the speed diagram corresponding
to (α, θ, t), a notion of safe optimal speed can be defined as
follows:

vopt−sf (q) =
dk(q)

ck(q)
·

ck(q) − c(q)

dk(q) − δmax(q) − t
.

where δmax(q) is an abbreviation for δmax(kαq, q). As shown
in figure 5, vopt−sf (q) is the slope of the segment from the
considered point (t, y(q)) to (dk(q) − δmax(q), dk(q)). The
difference from the previous case comes from the require-
ment for feasibility with respect to the deadline dk. By
targeting point (dk(q) − δmax(q), dk(q)) the controller re-
spects a safety margin δmax(q) which is sufficient to ensure
termination before the deadline dk. This constant δmax(q)
characterizes a tradeoff between feasibility and optimality.

Proposition 6. Let (α, θ, t) be a state of PS(C)||Γ with
the quality management policy t ≤ tmx

s . Given a quality level
q, a sequence αq and an index k, we have:

vidl(q) ≥ vopt−sf (q) ⇐⇒ t ≤ tmx
s (αq, q)(k).

Proof: vopt(q) ≤ vidl−sf (q)

⇔
ck(q) − c(q)

dk(q) − δmax(q) − t
≤ 1

⇔ t ≤ dk(q) − δmax(q) − (ck(q) − c(q))

⇔ t ≤ D(kαq) − Cav(kαq, q) − δmax(kαq, q)

⇔ t ≤ tmx
s (αq , q)(k). 2

95

When C = Cav and the controller uses the schedule func-
tion tav

s , the proposition 5 gives an estimate of the overall
execution with a precision of ∆. The next proposition es-
tablishes that, when using tmx

s instead of tav
s , this precision

becomes ∆ + δmax(α, q + 1), where α is the schedule com-
puted by the controller and q the quality level of the first
action α(1).

Proposition 7. Consider PS(C)||Γ with the mixed
quality management policy t ≤ tmx

s , and a function
Best Schedmx such that it returns schedules that maximize
tmx
s . For a single deadline D, if (α, θ) is a schedule com-

puted by the controller such that q = θ(α(1)) < qmax and
C = Cav, we have:

D − ∆ − δmax(α, q + 1) ≤ C(α, θ) ≤ D.

5.2 Improving Best Schedmx

A crucial question for optimality is computing efficiently
schedules that maximize the schedule function for a consid-
ered quality management policy. Contrary to the results
of section 3.1 showing that arbitrary EDF schedules max-
imize ts (for known C), it is easy to see that this is not
true for quality management policies taking into account
worst-case behavior. To illustrate this fact, consider an ex-
ample for three actions A = {a1, a2, a3}, two quality lev-
els Q = {1, 2}, and a single deadline D = 30. Assume
that the precedence graph is empty (G = (A, ∅)), and that
execution times are such that, Cav(ai, q) = 4q for all i,
Cwc(ai, q) = 4q for i ∈ {1, 2}, and Cwc(a3, q) = 20. The
schedules α1 = a1a2a3 and α2 = a3a1a2 lead to different val-
ues tmx

s (α1, 2) = −6 < tmx
s (α2, 2) = 2. Thus, α2 is a better

schedule than α1 with respect to the mixed policy t ≤ tmx
s .

This section provides results for selecting amongst the EDF
schedules, the ones which maximize the mixed scheduling
function tmx

s .

Definition 11. We say that an EDF schedule α of G is
EDF-optimal with respect to the quality level q if:

tmx
s (α, q) = max { tmx

s (α′, q) | α′ ∈ EDF (G, D) }.

Proposition 8. The deadline function D∗ defined in
section 3.1 induces a partition A1 . . . AL such that D∗(A1) <
. . . < D∗(AL). Any EDF schedule α can be written as
α = α1 . . . αL, where αl ∈ Sched(G/Al). Then we have:
• If δmax(αl, q) is minimal, then αl is an EDF-optimal
schedule of G/Al with respect to the quality level q.
• If for all l, αl is EDF-optimal, then α is EDF-optimal.

For a given quality level q, the above proposition al-
lows to compute an EDF-optimal schedule by concate-
nation of EDF-optimal schedules αl. For each schedule
αl, EDF-optimality can be achieved by a minimization of
δmax. Proposition 9 gives three transformation rules that
can be used to decrease δmax(αl, q). These rules rely on
two characteristic values: η(a, q) = Cwc(a, q) − Cav(a, q),
which is the “uncertainty” of a for quality q, and β(a, q) =
Cwc(a, qmin) − Cav(a, q), which is related to the “fall-back
ability” of a for quality q.

Proposition 9 (minimizing δmax). Given a schedule
α and a quality level q, consider two consecutive actions
a = α(i) and b = α(i + 1) such that a ⊀ b. Let α′ be the
schedule in which a and b are swapped that is, α′(j) = α(j)

for j /∈ {i, i+1}, α′(i) = b and α′(i+1) = a. Then, we have
δmax(α′, q) ≤ δmax(α, q) in the following situations:
R1: η(a, q) < η(b, q), β(a, q) ≤ 0 and β(b, q) ≤ 0
R2: β(a, q) ≤ 0 and β(b, q) > 0.
R3: (η−β)(a, q) > (η−β)(b, q), β(a, q) > 0, and β(b, q) > 0.

For a given a quality level q, the conditions R1, R2, R3
define rules for getting, from an EDF schedule α, an EDF
schedule α′ such that tmx

s (α′, q) ≥ tmx
s (α, q).

6. EXPERIMENTAL RESULTS

6.1 The Context – Tools and Case Study
We applied these results to an MPEG 4 encoder provided

by STMicroelectronics and written in C (more than 7000
loc). The encoder treats frames cyclically. Each frame is
split into N (396 ≤ N ≤ 1620) macroblocks of 256 pixels.

We developed a prototype tool allowing the generation of
controlled application software (figure 1). The inputs of the
tool are:
• the precedence graph G corresponding to the treatment of
a macroblock and its iteration parameter N ;
• tables describing the functions D, Cav and Cwc for the
actions of G.

From these inputs the tool computes:
• C code corresponding to statically precomputed sched-
ules;
• tables containing pre-computed values used by the con-
troller for the computation of the chosen quality manage-
ment policy.

A compiler is used to link the following items and to gen-
erate the controlled application software from:
• the schedule and the tables generated by the tool;
• application code for the actions of the schedule;
• a generic controller mainly consisting of a quality manager.

The overhead due to the instrumentation of the appli-
cation software in the size of the compiled code, memory
allocation, and overall execution time, is less than 2 %. For
all these estimates, we assume that the application software
runs on a single processor without OS and that it is possi-
ble to read a register counting the number of CPU cycles
elapsed. We provide experimental results for a platform
consisting of a single XiRisc processor [1]. The platform is
simulated by using the eliXim tool of STMicroelectronics.
We considered a benchmark of 582 frames, consisting of 9
sequences produced by a camera every P = 40 ms (single
deadline D = 40 ms).

6.2 Controlled Quality vs Constant Quality
The overall execution time is shown in figure 6, for con-

trolled quality and constant quality q = 3. In the latter case,
an input buffer of size 2 allows a maximal latency of 80 ms
(this corresponds to standard industrial practice). Notice
the presence in figure 6 of two kinds of jumps: eight jumps
corresponding to changes of video sequences (encoding of I-
frames); two bursts of jumps corresponding to frame skips
due to buffer overflow occurring for constant quality only.

Experimental results show that for constant quality level,
load fluctuation leads to a high amount of frame skips even
if an additional input buffer is used. On the contrary, con-
trolled quality completely avoids frame skips and overloads
lead to smooth reduction of the video quality.

96

0

10

20

30

40

50

0 100 200 300 400 500 600

en
co

di
ng

 ti
m

e
(m

s)

frames

quality = 3, buffer size = 2
controlled quality

Figure 6: Controlled quality vs constant quality

0

10

20

30

40

50

0 100 200 300 400 500 600

en
co

di
ng

 ti
m

e
(m

s)

frames

non-optimized EDF schedule
optimized EDF schedule

Figure 7: Optimization of Best Schedmx

6.3 Using Optimized Schedules
We have compared the controlled application running

with a non-optimized function Best Schedmx (high values
of δmax), and the same controlled application running with
a function Best Schedmx obtained by applying the three
optimization rules given in 5.2.

Figure 7 shows that the overall execution time is close
to the deadline of D = 40 ms when Best Schedmx is op-
timized, whereas approximately 7 ms are lost in average
when Best Schedmx is non-optimized. This corresponds to
the difference of the values δmax encountered during the ex-
ecution, between the optimized and the non-optimized case
(7.2 ms in average).

6.4 The Impact of Quality Management Policy
We have compared safe, simple and mixed quality man-

agement policies. We provide results for a static schedule α.
We build the speed diagram (see figure 8) for a particular
input frame.

For safe and simple quality management policies signifi-
cant speed discontinuities are observed at points A, B, C, D
and E. For the safe policy (resp. simple policy), the speed of
the system from point A (resp. B) to point C corresponds
to a choice of minimal quality. This drastically reduces the
video quality. On the contrary, for mixed policy we get al-
most uniformly constant speed which leads to significantly
improved video quality.

Figure 8: Speed diagram for different policies

7. CONCLUSION
The presented method uses fine grain control to meet

safety and best effort requirements. It overcomes limita-
tions of hard real-time approaches where strict respect of
deadlines implies poor time budget utilization. This is pos-
sible through fine grain control, which allows adaptation to
load changes during a cycle instead of using a priori known
global execution time estimates.

The method is founded on a solid theoretical basis. The
controller computes feasible schedules under reasonable as-
sumptions about the controlled system — the existence of
statically computable feasible schedules for minimal qual-
ity. The behavior of the controller is characterized by its
quality management policy and the associated Best Sched
function. Experimental results show that mixed quality
management policy significantly improves quality smooth-
ness with respect to the two other policies. Speed diagrams
provide a general framework for analyzing the controller’s
performance, admitting an intuitive geometric interpreta-
tion. The results show that even in the ideal case where
actual execution times agree with average execution times,
meeting safety requirements inherently limits achieving op-
timality. The actual execution time may not fill the entire
available time budget. The amount of the available time
which is lost must be lower than a constant, which depends
on the difference between average and worst-case behavior
as well as granularity of control . The way this constant
increases when actual and average execution time differ is
the subject of ongoing work. Finally, an important finding
is that all EDF schedules are not equivalent with respect
to the considered quality management policies. The rules
provided for computing the schedules which maximize the
corresponding schedule functions, define strategies for im-
proving predictability in the presence of uncertainty.

Experimental results confirm the interest of the method
and its low overhead. Given their importance, we actively
work in several directions to improve the prototype tool:
compositional generation of EDF schedules for iterative pro-
grams, efficient computation of Best Sched functions, and
application of learning techniques for better estimation of
the average execution times.

97

8. REFERENCES
[1] http://xirisc.deis.unibo.it/.

[2] K.-E. Arzen, B. Bernhardsson, J. Eker, A. Cervin,
K. Nilsson, P. Persson, and L. Sha. Integrated control
and scheduling. Technical report.

[3] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms
for enhancing the flexibility and utility of hard
real-time systems. In Real-Time Systems Symposium,
pages 12–21. IEEE, 1994.

[4] R. J. Bril, M. Gabrani, C. Hentschel, G. C. van Loo,
and E. F. M. Steffens. Qos for consumer terminals and
its support for product families. In Proceedings of the
International Conference on Media Futures, 2001.

[5] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task
model for adaptive rate control. In RTSS, pages
286–295, 1998.

[6] J. Combaz, J. Fernandez, T. Lepley, and J. Sifakis.
Fine grain qos control for multimedia application
software. In Design, Automation and Test in Europe
(DATE’05) Volume 2, pages 1038–1043, 2005.

[7] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling
slack time in fixed priority preemptive systems. In
Proceeding of the IEEE Real-Time Systems
Symposium, pages 222–231.

[8] D. Isovic, G. Fohler, and L. Steffens. Timing
constraints of mpeg-2 decoding for high quality video:
misconceptions and realistic assumptions.

[9] G. Koren and D. Shasha. Skip-over: Algorithms and
complexity for overloaded systems that allow skips.
Technical Report TR1996-715, , 1996.

[10] J. Lehoczky and S.Thuel. Algorithms for scheduling
hard aperiodic tasks in fixed-priority systems using
slack stealing. In Proceedings of the IEEE Real-Time
System Symposium.

[11] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback
control real-time scheduling: Framework, modeling
and algorithm. special issue of RT Systems Journal on
Control-Theoric Approach To Real-TIme Computing,
23(1/2):85–88, 2002.

[12] L. Papalau, C. M. O. Pérez, and L. Steffens. In
S. Goddard, editor, Work-In-Progress Session of the
16th Euromicro Conference on Real-Time Systems,
pages 33–36, 2004.

[13] C. C. Wüst, L. Steffens, R. J. Bril, and W. F.
Verhaegh. Qos control strategies for high-quality video
processing. In Euromicro Conference on Real-Time
Systems, pages 3–12. IEEE, 2004.

9. APPENDIX

9.1 Lemma 1
Proof of lemma 1: From the definition of ts, we have:

ts(α, θ)(i) ≥ ts(α, θ)(i + 1). (1)

We have ts(α
′, θ)(j) = ts(α, θ)(j) for j 6= i, i + 1, and:

ts(α
′, θ)(i) ≥ ts(α, θ)(i + 1) (2)

ts(α
′, θ)(i + 1) ≥ ts(α, θ)(i + 1). (3)

We conclude from (1), (2), (3), that ts(α
′, θ) ≥ ts(α, θ). 2

9.2 Lemma 2

Lemma 3. For any (α, θ), we have:

tsf
s (α, θ) ≤ tsf

s (α2, qmin) − Cwc(α(1), θ).

Proof of lemma 3: We have:

tsf
s (α, θ) ≤ min2≤k≤|α| tsf

s (α, θ)(k) (4)

where tsf
s (α, θ)(k) = D(kα) − Csf (kα, θ)

= D(kα) − Cwc(α(1), θ) − Cwc(α[2, k], qmin). (5)

For any k ≥ 2, we can rewrite (5) as:

D(k−1(α2)) − Cwc(k−1(α2), qmin) − Cwc(α(1), θ)

= twc
s (α2, qmin)(k − 1) − Cwc(α(1), θ)

= tsf
s (α2, qmin)(k − 1) − Cwc(α(1), θ). (6)

From (4), (6), tsf
s (α, θ) ≤ tsf

s (α2, qmin) − Cwc(α(1), θ). 2

Proof of lemma 2: The proof is made by induction on the
reachable states.
• initialization: state (ε,⊥, 0)
As there exists α0 such that (α0, qmin) is a feasible schedule
of PS(Cwc), we have:

0 ≤ twc
s (α0, qmin) = tsf

s (α0, qmin).

Let αqmin
= Best Schedsf (ε, qmin) be the planed schedule

for the lowest quality at initialization. It can be shown that
results of proposition 2 also hold for tsf

s and qmin. As αqmin

is an EDF schedule of G and α0 is a schedule of G, by
proposition 2 we obtain:

0 ≤ tsf
s (α0, qmin) ≤ tsf

s (αqmin
, qmin).

• induction: (α, θ, t)
(a,qM)
−→ (α′, θ′, t′)

Let (α, θ, t) be a reachable state of PS(C)||Γ, and (a, qM) =
Γ(α, θ, t). Let (α′, θ′, t′) be a state of PS(C)||Γ such that

(α, θ, t)
(a,qM)
−→ (α′, θ′, t′), αq = Best Schedsf (α, q), and

α′
q = Best Schedsf (α′, q). Let qM = max{q | t ≤

tsf
s (αq, q)}, and a = αqM

(1).
By induction hypothesis, we have qmin ∈

˘

q | t ≤

tsf
s (αq, q)

¯

that is, t ≤ tsf
s (αqmin

, qmin). As qM is the chosen

quality level, we have also t ≤ tsf
s (αqM

, qM). This condition
can be rewritten, by lemma 3:

t ≤ tsf
s (αqM

, qM)

⇒ t ≤ tsf
s (αqM

2, qmin) − Cwc(αqM
(1), qM)

⇒ t + Cwc(a, qM) ≤ tsf
s (αqM

2, qmin).

As C(a, qM) ≤ Cwc(a, qM) and t′ = t+C(a, qM), we obtain:

t′ ≤ tsf
s (αqM

2, qmin).

As α′
qmin

is an EDF schedule of G/α′
qmin

, and αqM

2

is a schedule of the same precedence graph, by proposi-
tion 2 applied to tsf

s and qmin, we have tsf
s (αqM

2, qmin) ≤
tsf
s (α′

qmin
, qmin), and obtain t′ ≤ tsf

s (α′
qmin

, qmin). This
demonstrates that, at the next state (α′, θ′, t′), we have
qmin ∈ {q | t′ ≤ tsf

s (α′
q , q)}.

Thus, for any reachable state (α, θ, t) of PS(C)||Γ, we
have qmin ∈

˘

q | t ≤ tsf
s (αq, q)

¯

. 2

98

9.3 Propositions 5 and 7

Lemma 4. Let α be a sequence of actions and D a dead-
line function such that D is constant on set(α). Then:

tmx
s (α, θ) = D − Cav(α, θ) − δmax(α, θ)

= tav
s (α, θ) − δmax(α, θ).

Proof of lemma 4: We have:

tmx
s (α, θ) = min1≤k≤|α| tmx

s (α, θ)(k)

= min1≤k≤|α| D − Cmx(kα, θ)

= D −max1≤k≤|α| Cmx(kα, θ). (7)

We rewrite Cmx(kα, θ) as Cav(kα, θ) + δmax(kα, θ)

= Cav(kα, θ) + maxi≥1 Csf (α[i, k], θ) − Cav(α[i, k], θ)

= maxi≥1 Cav(α[1, i − 1], θ) + Csf (α[i, k], θ).

We conclude that k1 ≤ k2 ⇒ Cmx(k1α, θ) ≤ Cmx(k2α, θ).
Thus, we rewrite (7) as follows:

tmx
s (α, θ) = D − Cmx(|α|α, θ) = D − Cmx(α, θ)

= D − Cav(α, θ) − δmax(α, θ).

As we have a single deadline, tav
s (α, θ) = D−Cav(α, θ). We

obtain tmx
s (α, θ) = tav

s (α, θ) − δmax(α, θ). 2

Lemma 5. Consider PS(C)||Γ with the mixed policy t ≤
tmx
s , a function Best Schedmx such that it returns schedules

that maximize tmx
s . For a single deadline D, if C = Cav,

the schedules (α, θ) computed by PS(C)||Γ are such that i 7→
θ(α(i)) is a non-decreasing function.

Proof of lemma 5: Let (α, θ, t) and (α′, θ′, t′) be two reach-

able states of PS(C)||Γ such that (α, θ, t)
(a,q)
−→ (α′, θ′, t′). If

αq = Best Schedmx(α, q), by lemma 4 we have:

t ≤ tmx
s (αq, q) = D − Cav(αq, q) − δmax(αq, q)

t ≤ D − Cav(αq(1), q) − Cav(αq
2, q) − δmax(αq, q)

As C = Cav, t′ = t + Cav(a, q) = t + Cav(αq(1), q) and

t′ ≤ D − Cav(αq
2, q) − δmax(αq , q) (8)

Moreover, since δmax(αq, q) ≥ δmax(αq
2, q), we obtain from

(8) and by lemma 4 t′ ≤ tmx
s (αq

2, q).
Let α′

q = Best Schedmx(α′, q). As α′
q maximizes tmx

s :

t′ ≤ tmx
s (αq

2, q) ≤ tmx
s (α′

q, q).

This demonstrates that the chosen quality level q at state
(α, θ, t) remains possible at the next state (α′, θ′, t′). 2

Proof of proposition 7: The proof is provided for propo-
sition 7 only. By rewriting it without the term δmax, we
obtain a proof for proposition 5.

By lemma 5, i 7→ θ(α(i)) is a non-decreasing func-
tion. We know that θ(α(1)) = q. Let i be the last in-
dex such that θ(α(i)) = q. Notice that i can be equal
to |α|. Let ti−1 be the actual time after execution of
i−1α that is, ti−1 = C(i−1α, θ) = C(i−1α, q), and αq+1 =
Best Schedmx(i−1α, q + 1) be the planed schedule for the
quality level q + 1. Then, by lemma 4:

tmx
s (αq+1, q + 1) < ti−1

⇒ tav
s (αq+1, q + 1) − δmax(αq+1, q + 1) < C(i−1α, q)

⇒ D − δmax(α, q + 1) < Cav(i−1α, q) + Cav(αi, q + 1).

where Cav(i−1α, q) + Cav(αi, q + 1) satisfies:

Cav(i−1α, q) + Cav(αi, q + 1) =

Cav(iα, q) + Cav(αi+1, q + 1) + Cav(a, q + 1) − Cav(a, q).

For all j ≤ i, θ(α(i)) = q. If i < |α|, for all j > i, by
lemma 5, θ(α(i)) ≥ q + 1. Thus, Cav(iα, q) + Cav(αi+1, q +
1) ≤ Cav(α, θ). Moreover, by definition of ∆, we have
Cav(a, q + 1) − Cav(a, q) ≤ ∆. We obtain:

D − δmax(α, q + 1) − ∆ < C(α, θ). 2

9.4 Proposition 8
Proof of proposition 8:
• The deadline function D∗ is constant on G/Al. Thus,
by lemma 4 we have, for any schedule αl of G/Al,
tmx
s (αl, q) = tav

s (αl, q) − δmax(αl, q), where tav
s (αl, q) =

D∗(αl) − Cav(αl, l) do not depend on αl. We obtain:

max { tmx
s (αl, q) | αl ∈ Sched(G/Al) }

= tav
s (αl, q) − min { δmax(αl, q) | αl ∈ Sched(G/Al) }.

• Let A1 . . . Al be the partition induced by D∗, α = α1 . . . αL

and α′ = α′
1 . . . α′

L be two EDF schedules such that, for
all l ∈ {1, . . . , L}, αl and α′

l are schedules of G/Al. As-
sume that, for all l, αl is an EDF-optimal schedule that is,
δmax(αl, q) ≤ δmax(α′

l, q).
Let kl be the length of the schedule α1 . . . αl. We have

tmx
s (α, q) = min { tmx

s (α, q)(kl) }, and:

tmx
s (α, q)(kl) = tav

s (α, q)(kl) − δmax(α1 . . . αl, q)

= tav
s (α, q)(kl) − max { δmax(αj , q) + β(αj+1 . . . αl, q) |

1 ≤ j ≤ l }.

Moreover since β(αi+1 . . . αl, q) = β(α′
i+1 . . . α′

l, q) and
δmax(αj , q) ≤ δmax(α′

j , q) for all j, we have:

max { δmax(αj , q) + β(αj+1 . . . αl, q) | 1 ≤ j ≤ l }

≤ max { δmax(α′
j , q) + β(α′

j+1 . . . α′
l, q) | 1 ≤ j ≤ l }.

As tav
s (α, q)(kl) = tav

s (α′, q)(kl) we have, for all l,
tmx
s (α, q)(kl) ≤ tmx

s (α′, q)(kl). We conclude that
tmx
s (α, q) ≤ tmx

s (α′, q). 2

9.5 Proposition 9
Proof of proposition 9: Let q be a quality level. Then,
δ(α′j , q) = δ(αj , q) for j /∈ {i, i + 1}. In the following, we
denote by X(α) the X(α, q), where X can be δ, η or β.
• R1: Suppose that a and b are such that β(a) ≤ 0, β(b) ≤
0 and η(a) < η(b). It is obvious that δ(αi+1) > δ(αi).

We obtain δ(α′i) ≤ δ(αi+1) and δ(α′i+1 ≤ δ(αi+1). We
conclude that δmax(α′, q) ≤ δmax(α, q).
• R2: Suppose that a and b are such that β(a) ≤ 0, β(b) > 0.

Then δ(α′i) ≤ δ(αi+1) and δ(α′i+1
) ≤ δ(αi). We conclude

that δmax(α′, q) ≤ δmax(α, q).
• R3: Suppose that a and b are such that β(a) > 0,
β(b) > 0, and (η − β)(a) > (η − β)(b). It can be shown
that δ(αi) > δ(αi+1). It is straightforward that we have

δ(α′i) ≤ δ(αi) and δ(α′i+1
) ≤ δ(αi). We conclude that

δmax(α′, q) ≤ δmax(α, q). 2

99

