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Abstract. In order to study genetic algorithms in co-evolutionary en-
vironments, we construct a Markov model of co-evolution of populations
with fixed, finite population sizes. In this combined Markov model, the
behavior toward the limit can be utilized to study the relative perfor-
mance of the algorithms. As an application of the model, we perform an
analysis of the relative performance of haploid versus diploid genetic al-
gorithms in the co-evolutionary setup, under several parameter settings.
Because of the use of Markov chains, this paper provides exact stochastic
results on the expected performance of haploid and diploid algorithms
in the proposed co-evolutionary model.

1 Introduction

Co-evolution of Genetic Algorithms (GA) denotes the simultaneous evolution
of two or more GAs with interdependent or coupled fitness functions. In com-
petitive co-evolution, just like competition in nature, individuals of both algo-
rithms compete with each other to gather fitness. In cooperative co-evolution,
individuals have to cooperate to achieve higher fitness. These interactions have
previously been modeled in Evolutionary Game Theory (EGT), using replica-
tor dynamics and infinite populations. Similar models have, for example, been
used to study equilibriums [2] and comparisons of selection methods [1]. Simula-
tions of competitive co-evolution have previously been used to evolve solutions
and strategies for small two-player games, i.e., in [3,4], sorting networks [5], or
competitive robotics [6].

In this paper, we provide the construction of a Markov model of co-evolution
of two GAs with finite population sizes. After this construction we calculate
the relative performances in such a setup, in which a haploid and diploid GA
co-evolve with each other.

Commonly, GAs are based on the haploid model of reproduction. In this
model, an individual is assumed to carry a single genotype to encode for its
phenotype. When two parents are selected for reproduction, recombination of
these two genotypes takes place to construct a child for the next generation.

Most higher order species in nature, however, have the characteristic of car-
rying two sets of alleles that both can encode for the individual’s phenotype.
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For each of the genes, two (possibly different) alleles are thus present. A dom-
inance relation is defined on each pair of alleles. In a heterozygous gene, i.e.,
in a gene with 2 different alleles, this dominance relation defines which allele is
expressed. A dominance relation can be pure, such that either one of the alleles
is always expressed in heterozygous individuals, or it can be partial, such that
the result of phenotypic expression is a probability distribution over the alleles.
When two diploid parents are selected to reproduce, they produce haploid ga-
mete cells through meiosis, in which each parent’s genes are recombined. The
haploid gametes are then merged, or fertilized, to form a new diploid child.

In dynamic environments, diploid GAs are hypothesized to perform better
than haploid algorithms, since they can build up an implicit long time memory of
previously encountered solutions in the recessive parts of the populations’ allele
pool. These alleles are kept safe from harmful selection. Under the assumption
that co-evolution mimics a dynamic environment, we will test this hypothe-
sis with a small problem in this paper, using co-evolution as a special form of
dynamic optimization. The Markov model approach yields exact stochastic ex-
pectations of performance of haploid and diploid algorithms. Previous accounts
of research on the use of diploidy for dynamic optimization, and results of its
performance as compared with haploid algorithms, can be found in [5,7,8,9,10].
The methods used in these papers differ from our approach in the fact that we
consider exact probability distributions whereas others perform simulation ex-
periments or equilibrium analyses of infinite models. The stochastic method of
Markov models, as used in this paper, allows us to provide exact stochastic re-
sults and performance expectations, instead of empirical data which is, as we will
show later, subject to a large standard deviation. A similar model to the model
presented in this paper, discussing stochastic models for dynamic optimization
problems, is discussed in [11].

In this study, haploid and diploid populations face one another in co-
evolution, which creates a simulation of a comparable situation in the history of
life on Earth: The first diploid organisms to appear on Earth had to face haploid
life forms in a competition for resources. The dynamics of the co-evolutionary
competitive games played by these prehistoric cells are similar to the models
presented in this paper. Correct interpretation of the results can give insights
whether the earliest diploid life forms were able to compete with haploid life
forms.

In this paper, co-evolution, of two competing populations and their govern-
ing GAs, is used as a “test bed” to test two algorithms’ relative performance in
dynamic environments. Indeed, since the fitness of an individual in one of the co-
evolving populations is based on the configuration of the opponent population,
the fitness landscapes of both populations constantly change, thereby simulating
dynamic environments through both populations’ interdependent fitness func-
tions. Note that the results can only be used to discuss the algorithms’ relative
performance since the dynamics of one algorithm is explicitly determined by the
other algorithm.
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2 Models and Methods

In this section, we construct a finite population Markov model of co-evolution.
Two finite population Markov chains of simple genetic algorithms, based on
the simple GA as described by [12,13], are intertwined through interdependent
fitness functions. A discussion of the resulting Markov chain’s behavior toward
the limit and the interpretation of the limit behavior is also provided.

2.1 Haploid and Diploid Reproduction Schemes

The following constructions are based on the definition of haploid and diploid
simple genetic algorithms with finite population sizes as described in [13].

Haploid Reproduction. Let ΩH be the space of binary bit strings with length
l. The bit string serves as a genotype with l loci, that each can hold the alleles
0 or 1. ΩH serves as the search space for the Haploid Simple Genetic Algorithm
(HSGA). Let PH be a haploid population, PH = {x0, x1, . . . , xrH−1}, a multi set
with xi ∈ ΩH for 0 ≤ i < rH , and rH = |PH | the population size. Let πH denote
the set of all possible populations PH of size rH .

Let fH : ΩH → R
+ denote the fitness function. Let ςfH

: πH → ΩH represent
stochastic selection, proportional to fitness function fH . Crossover is a genetic
operator that takes two parent individuals, and results in a new child individual
that shares properties of these parents. Mutation slightly changes the genotype
of an individual. Crossover and mutation are represented by the stochastic func-
tions χ : ΩH × ΩH → ΩH and µ : ΩH → ΩH respectively.

In a HSGA, a new generation of individuals is created through sexual repro-
duction of selected parents from the current population. The probability that a
haploid individual i ∈ ΩH is generated from a population PH can be written
according to this process as

Pr [i is generated from PH ] = (1)
Pr [µ (χ (ςfH

(PH) , ςfH
(PH))) = i]

where it has been shown in [13] that the order of mutation and crossover may
be interchanged in equation (1).

Diploid Reproduction. In the Diploid Simple Genetic Algorithm (DSGA),
an individual consists of two haploid genomes. An individual of the diploid pop-
ulation is represented by a multi set of two instances of ΩH , e.g. {i, j} with
i, j ∈ ΩH . The set of all possible diploid instances is denoted by ΩD, the search
space of the DSGA. A diploid population PD with population size rD is defined
over ΩD, similar to the definition of a haploid population. Let πD denote the set
of possible populations.

Haploid selection, mutation and crossover are reused in the diploid algo-
rithm. Two more specific genetic operators must be defined. δ : ΩD → ΩH
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is the dominance operator. A fitness function fH defined for the haploid algo-
rithm, can be reused in a fitness function fD for the diploid algorithm with
fD({i, j}) = fH(δ({i, j})) for any {i, j} in ΩD. Another diploid-specific opera-
tor is fertilization, which merges two gametes (members of ΩH) into one diploid
individual: φ : ΩH × ΩH → ΩD. Throughout this paper we will assume that
φ(i, j) = {i, j} for all i, j in ΩH . Diploid reproduction can now be written as

Pr [{i, j} is generated from PD] = (2)
Pr [φ (µ (χ (ςfD

(PD))) , µ (χ (ςfD
(PD)))) = {i, j}] .

2.2 Simple Genetic Algorithms

In the simple GA (SGA), a new population P ′ of fixed size r over search space
Ω for the next generation is built according to population P with

Pr [τ(P ) = P ′] = (3)
r!∏

i∈Ω(
∑

j∈P ′ [i=j])!

∏
i∈P ′ Pr [i is generated from P ]

where τ : π → π represents the stochastic construction of a new population
from and into population space π of the SGA, and P ′(i) denotes the number of
individuals i in P ′. Since the system to create a new generation P ′ only depends
on the previous state P , the SGA is said to be Markovian. The SGA can now be
written as a Markov chain with transition matrix T with TP ′P = Pr [τ(P ) = P ′].
If mutation can map any individual to any other individual, all elements of T
become strictly positive, and T becomes irreducible and aperiodic. The limit
behavior of the Markov chain can then be studied by finding the eigenvector,
with corresponding eigenvalue 1, of T .

We will assume uniform crossover, bitwise mutation according to a mutation
probability µ, and selection proportional to fitness throughout the paper.

This completes the formal construction of haploid and diploid simple genetic
algorithms. More details of this construction can be found in [13].

2.3 Co-evolution of Finite Population Models

Next, we consider the combined co-evolutionary process of two SGAs, respec-
tively defined by population transitions τ1 and τ2, over population search spaces
π1 and π2. We assume that the population sizes of both algorithms are fixed and
finite, and their generational transitions are executed at the same rate.

In order to make the representative GAs – and thus their fitness functions –
interdependent, we need to override the fitness evaluation f : Ω → R

+ of any
one of the co-evolving GAs with fi : Ωi × πj → R

+ where Ωi is the search space
of the GA, and πj is the population state space of the co-evolving GA. As such,
the fitness function of an individual in one population becomes dependent on
the configuration of the population of the co-evolving GA. Consequently, the
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generation probabilities of equation (3) now also depend on the population of
the competing algorithm.

The state space πco of the resulting Markov chain of the co-evolutionary
algorithm is defined as the Cartesian product of spaces π1 and π2, i.e., πco = π1×
π2. All (P, Q), with P ∈ π1, Q ∈ π2, are states of the co-evolutionary algorithm.
Generally, the transition τco : πco → πco in the co-evolutionary Markov chain of
two interdependent Markov chains is defined by

Pr [τco((P, Q)) = (P ′, Q′)] = Pr [τ1(P ) = P ′|Q] · Pr [τ2(Q) = Q′|P ] (4)

where populations P and Q are states of π1 and π2 respectively. The dependence
of τ1 and τ2 on Q and P respectively, gives way for the implementation of a
coupled fitness function for either algorithm.

2.4 Limit Behavior

One can show that the combination of irreducible and aperiodic interdependent
Markov chains, as defined above, does not generally result in an irreducible and
aperiodic Markov chain. Therefore, we cannot simply assume that the Markov
chain that defines the co-evolutionary process converges to a unique fixed point.

We can, however, make the following assumptions: If mutation can map any
individual – in both of the co-evolving GAs – to any other individual in the
algorithm’s search space with a strictly positive probability, then all elements in
the transition matrices of both co-evolving Markov chains are always nonzero
and strictly positive. As a result from multiplying the transition probabilities in
equation (4), all transition probabilities of the co-evolutionary Markov chain are
thus strictly positive. This makes the combined Markov chain irreducible and
aperiodic, such that the limit behavior of the whole co-evolutionary process can
be studied by finding the unique eigenvector, with corresponding eigenvalue 1,
of the transition matrix as defined by equation (4), due to the Perron-Frobenius
theorem [14].

2.5 Expected Performance

The eigenvector, with corresponding eigenvalue 1, of the co-evolutionary Markov
chain describes the fixed point distribution over all possible states (P, Q) of the
Markov chain in the limit. As a result, toward the limit, the Markov chain
converges to the distribution that describes the overall mean behavior of the
co-evolutionary system. If a simulation is run that starts with an initial popu-
lation according to this distribution, the distribution over the states at all next
generations are also according to this fixed point distribution. For each of the
states, we can compute the mean fitness of the constituent populations of that
state. With this information, and the distribution over all states in the limit, we
can make a weighted mean to find the mean fitness of both algorithms in the
co-evolutionary system at hand.
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More formally, let T denote the |πco| × |πco| transition matrix of the co-
evolutionary system with transition probabilities

T(P ′,Q′),(P,Q) = Pr [τco((P, Q)) = (P ′, Q′)]

as defined by equation (4). Let ξ denote the eigenvector, with corresponding
eigenvalue 1, of T . ξ denotes the distribution of states of the co-evolutionary
algorithm in the limit, with component ξ(P,Q) denoting the probability of ending
up in state (P, Q) ∈ πco in the limit. If f1(P, Q) gives the mean fitness of the
individuals in population P , given an opponent population Q, then

f1 =
∑

(P,Q)∈πco

ξ(P,Q) · f1(P, Q) with f1(P, Q) =
1

|P |
∑

i∈P

f1(i, Q), (5)

gives the mean fitness of the populations governing the dynamics of the first
algorithm toward the limit, in relation to its co-evolving algorithm. Similarly,
the mean fitness of the second algorithm can be computed. We use the mean
fitness in the limit as an exact measure of performance of the algorithm, in
relation to the co-evolving algorithm. Equation (5) also gives the expected mean
fitness of the co-evolving algorithms if simulations of the model are executed.

We will also calculate the variance and standard deviation in order to dis-
cuss the significance of the exact results. The variance of the fitness of the first
algorithm, according to distribution ξ, is equal to

σ2
f1

=
∑

(P,Q)∈πco

ξ(P,Q) · (
f1(P, Q) − f1

)2
. (6)

Similarly to the mean fitness, the variance of the fitness gives an expectation of
the variance for simulations of the model.

Given the parameters for fitness determination, selection and reproduction
of both co-evolving GAs in the co-evolutionary system, we can now estimate
the mean fitness, and discuss the performance of both genetic algorithms, in the
context of their competitors’ performance.

3 Application

3.1 Competitive Game: Matching Pennies

In order to construct interdependent fitness functions, we can borrow ideas of
competitive games from Evolutionary Game Theory (EGT, overviews can be
found in [15,16]). EGT studies the dynamics and equilibriums of games played
by populations of players. The strategies players employ in the games determine
their interdependent fitness.

A common model to study the dynamics – of frequencies of strategies adopted
by the populations – is based upon replicator dynamics. This model makes a
couple of assumptions, some of which will be discarded in our model. Replicator
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dynamics assumes infinite populations, asexual reproduction, complete mixing,
i.e., all players are equally likely to interact in the game, and strategies breed
true, i.e., strategies are transmitted to offspring proportionally to the payoff
achieved. In our finite population model, where two GAs compete against each
other, we maintain the assumption that strategies breed true. We also main-
tain complete mixing, although the stochastic model also represents incomplete
mixing with randomly chosen opponent strategies. We now consider finite fixed
population sizes with variation and sexual reproduction of strategies.

In the scope of our application, we focus on a family of 2 × 2 games called
“matching pennies.” Consider the payoff matrices for the game in Table 1. Each
of the two players in the game either calls ‘heads’ or ‘tails.’ Depending on the
players’ calls and their representative values in the payoff matrices, the players
receive a payoff. More specifically, the first player receives payoff 1−L if the calls
match, and L otherwise. The second player receives 1 minus the first player’s
payoff. If L ranges between 0 and 0.5, the first player’s goal therefore is to call
the same as the second player, whose goal in turn is to do the inverse. Hence the
notion of competition in the game.

Table 1. Payoff matrices of the matching pennies game. One population uses payoff
matrix f1, where the other players use payoff matrix f2. Parameter L denotes the payoff
received when the player loses the game, and can range from 0 to 0.5

f1 heads tails
heads 1 − L L
tails L 1 − L

f2 heads tails
heads L 1 − L
tails 1 − L L

Let a population of players denote a finite sized population consisting of in-
dividuals who either call ‘heads’ or ‘tails.’ In our co-evolutionary setup, two GAs
evolving such populations P and Q are put against one another. The fitnesses
of individuals in population P and Q are based on f1 and f2, from Table 1,
respectively. We use complete mixing to determine the fitness of each individual
in either of the populations: Let pheads denote the proportion of individuals in
population P who call ‘heads,’ and qheads the proportion of individuals in Q
to call ‘heads.’ Define ptails and qtails similarly for the proportion of ‘tails’ in
the populations. The fitness of an individual i of population P , regarding the
constituent strategies of population Q, can now be defined as

f1(i, Q) =

{
qheads · (1 − L) + qtails · L if i calls ‘heads’
qtails · (1 − L) + qheads · L if i calls ‘tails’

(7)

and that of an individual j in population Q as

f2(j, P ) =

{
pheads · L + ptails · (1 − L) if j calls ‘heads’
ptails · L + pheads · (1 − L) if j calls ‘tails’

(8)
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It can easily be verified that the mean fitness of population P always equals 1
minus the mean fitness of population Q, i.e., f1(P, Q) = 1 − f2(Q, P ). Similarly,
the mean fitness of both algorithms sum up to 1, with f1 = 1 − f2, c.f. equation
(5). If we assume 0 ≤ L < 0.5, then there exists a unique Nash equilibrium of
this game, where both populations call ‘heads’ or ‘tails,’ each with probability
0.5. In this equilibrium, both populations receive a mean fitness of 0.5. No player
can benefit by changing her strategy while the other players keep their strategies
unchanged. Any deviation from this indicates that one algorithm relatively per-
forms better at the co-evolutionary task at hand than the other. As we want to
compare the performance of algorithms in a competitive co-evolutionary setup,
this is a viable null hypothesis.

3.2 Haploid versus Diploid

For the matching pennies game, we construct a co-evolutionary Markov chain in
which a haploid and diploid GA compete with each other. With this construc-
tion, and their transition matrices, we can determine the performance of both
algorithms according to the limit behavior of the Markov chain. Depending on
the results, either algorithm can be elected as a relatively better algorithm.

Let the length of binary strings in both algorithms be l = 1. This is referred
to as the single locus, two allele problem, a common, yet small, setup in popu-
lation genetics. An individual with phenotype 0 calls ‘heads,’ and ‘tails’ if the
phenotype is 1. Note that uniform crossover will not recombine genes since there
is only one locus, but will rather select one of both parent gametes.

Let πco be the search space of the co-evolutionary system, defined by the
Cartesian product of the haploid populations’ search space πH and diploid pop-
ulations πD, such that πco = πH × πD. Depending on a fixed population size r
for both competing algorithms, |πco| = ((r + 2)(r + 1)2)/2 denotes the size of
the co-evolutionary state space.

For any state (P, Q) ∈ πco, let equations (7) and (8) be the respective fitness
functions for the individuals in the haploid and diploid algorithms. Since we
want to compare the algorithms’ performance under comparable conditions, both
populations are assumed to have the same parameters for recombination and
mutation.

3.3 Limit Behavior and Mean Fitness

According to the definition of the co-evolutionary system in equation (4), the
transition matrix for a given set of parameters can be calculated. The eigen-
vector, with corresponding eigenvalue 1, of this transition matrix can be found
through iterated multiplication of the transition matrix with an initially dis-
tributed stochastic vector. From the resulting eigenvector we can find the mean
fitness of the co-evolutionary GAs toward the limit. These means are discussed
in the following sections.

We split the presentation of the limit behavior results into two separate
sections. In the first section, we discuss the results given the assumption of pure
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dominance, i.e., one of both alleles, either 0 or 1 is strictly dominant over the
other allele. In the second part, we discuss the results in the case of partial
dominance. In this setting, the phenotype of the diploid heterozygous genotype
{0, 1} is defined by a probability distribution over 0 and 1.

Pure dominance. Let 1 be the dominant allele, and 0 the recessive allele
in diploid heterozygous individuals. This implies that diploid individuals with
genotype {0, 1} have phenotype 1 1.

Figure 1 shows the mean fitness of the haploid algorithm, which is derived
from the co-evolutionary systems’ limit behavior, using equation (5). The pro-
portion of parameter settings for which diploidy performs better, increases as
the population size of the algorithms becomes bigger.

Fig. 1. Exact mean fitness of the haploid GA in the co-evolutionary system, for variable
mutation rate µ and payoff parameter L. The mean fitness of the diploid algorithm
always equals 1 minus the mean fitness of the haploid algorithm. Population size of
both algorithms is fixed to 5 in (a) and 15 in (b). The mesh is colored light as the mean
fitness is below 0.4975, i.e. when the diploid algorithm performs better, and dark as
the mean fitness is over 0.5025, i.e. for parameters where haploidy performs better.

In our computations, we found a fairly large standard deviation near µ = 0
and L = 0. The standard deviation goes to zero as either of the parameters go to
0.5. We discuss the source of this fairly large standard deviation in section 3.4.
Because of the large standard deviation, it is very hard to obtain these results
with empirical runs of the model. However, it is hard to compute the exact limit
behavior of large population systems, since this implies that we need to find the
eigenvector of a matrix with O(r6) elements for population size r.

Partial dominance. Instead of using a pure dominance scheme in the diploid
GA, we can also assign a partial dominance scheme to the dominance operator. In
1 If we would choose 0 as the dominant allele instead of 1, the co-evolutionary sys-

tem would yield the exact same performance results, because of symmetries in the
matching pennies game. The same holds for exchanging fitness functions f1 and f2.
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this dominance scheme, the heterozygous genotype {0, 1} has phenotype 0 with
probability h, and phenotype 1 with probability 1−h. h is called the dominance
degree or coefficient. The dominance degree is the measure of dominance of the
recessive allele in the case of heterozygosity. Since our model is stochastic, we
could also state that the fitness of an heterozygous individual is an intermediate
of the fitnesses of both homozygous phenotypes.

The performance results are summarized in Figure 2. The figures show signif-
icantly better performance results for the diploid algorithm under small muta-
tion and high selection pressure (small L), in relation to the haploid algorithm.
Indeed, if we consider partial dominance instead of pure dominance, the memo-
rized strategies in the recessive alleles of a partial dominant diploid population
are tested against the environment, even in heterozygous individuals. The fact
that this could lead to lower fitnesses in heterozygous individuals because of in-
terpolation of high and low fitness, does not restrict the diploid algorithm from
obtaining a higher mean fitness in the co-evolutionary algorithm. The standard
deviation is smaller than in the pure dominance case. This is explained in section
3.4.

Fig. 2. Mean fitness in the limit of the haploid algorithm similar to Figure 1 for
different dominance coefficients, with r = 15. Figure (a) applies dominance degree
h = 0.5 and (b) has dominance degree h = 0.01. Figure 1 applies dominance degree
h = 0

3.4 Source of High Variance

In order to find where the high variance originates, we analyze the distribution
of fitness at the fixed point. Dissecting the stable fixed point shows that there
are a small number of states with high probability, and many other states with a
small probability. More specifically, of these states with a high probability, about
half of them have an extremely high mean fitness for one algorithm, where the
other half have an extremely low mean fitness. This explains the high variance
in the fitness distribution. If we would run a simulation of the model, we would
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Fig. 3. Histogram showing the distribution of fitness of the haploid genetic algorithm,
in the limit. Both figures have parameters r = 10, µ = 0.01, L = 0. Figure (a) shows the
distribution for h = 0 and h = 0.5 for (b). f1 = 0.4768 and σf1 = 0.4528 in histogram
(a) and f1 = 0.3699 and σf1 = 0.3715 in (b)

see that the algorithm alternately visits high and low fitness states, and switches
relatively fast between these sets of states.

Figure 3 shows that, toward the limit, the mean fitness largely depends on
states with both extremely low and high fitnesses, which corresponds with the
high standard deviation. Note that the standard deviation is smaller in the case
of a higher dominance degree. This is also due to average fitnesses being smeared
out in heterozygous individuals because of the higher dominance degree. The
relative difference between frequencies of extremely low and high fitnesses also
results in a lower variance, as the dominance degree increases.

4 Discussion

This paper shows how a co-evolutionary model of two GAs with finite population
size can be constructed. We also provide ways to measure and discuss the relative
performance of the algorithms at hand. Because of the use of Markov chains,
exact stochastic results can be computed.

The analyses presented in the application of this paper show that, given the
matching pennies game, and if pure dominance is assumed, the results are only
in favor of diploidy in case of specific parameter settings. Even then, the results
are not significant and subject to a large standard deviation. A diploid GA with
partial dominance and a strictly positive dominance degree can outperform a
haploid GA, if similar conditions hold for both algorithms. These results are ex-
pressed best under low mutation pressure and high selection pressure, i.e., when
a deleterious mutation has an almost lethal effect on the individual. Diploidy
performs relatively better as the population size increases.

Based on these results, we suggest that further research should be under-
taken on the usage of diploidy in co-evolutionary GAs. This paper studies a
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small problem and small search spaces. Empirical evidence might prove to be
a useful tool in studying complexer problems, or larger populations. Scaled up
versions – of small situations which can be analyzed exactly – could be used
as empirical evidence to support exact predictions. Low significance and high
standard deviations might prove that the study of relative performance of GAs
in competitive co-evolutionary situations is, however, empirically hard.
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