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Abstract. The method of differential-geometry is applied for deriving
steady state conditions for the (u/pr, A)-ES on the general quadratic test
function disturbed by fitness noise of constant strength. A new approach
for estimating the expected final fitness deviation observed under such
conditions is presented. The theoretical results obtained are compared
with real ES runs showing a surprisingly excellent agreement.

1 Introduction

Understanding the impact of noise on the optimization behavior of evolutionary
algorithms (EAs) is of great interest: There is a certain beliefe that EAs are
especially good at coping with noisy information due to the use of a population
of candidate solutions. There is empirical evidence as well as some theoretical
support for this beliefe [3]. Furthermore, noise models on the level of the control
parameters to be optimized, also called actuator noise models in [11]], are of
interest in the context of robust optimization [IZIRIT2].

While there is a need for a deeper understanding of the behavior of EAs on
such noisy problems, a theoretical analysis is still at its beginning. Up to now,
only the behavior of evolution strategies (ES) on the sphere model has been
analyzed [1]. Performing similar analyses on other test functions still remain to
be done. However, such analyses starting from scratch are expensive. Therefore,
it would be desirable to use results obtained from the sphere theory as a starting
point for deriving statements on the behavior of ES on other test functions.

This article is exactly in that spirit by taking up the thread from [8] where
(1, A)-ES has been considered. First, it applies the differential-geometrical model
[7] in order to derive the condition for the zero progress rate in recombinant ES on
general quadratic models disturbed by fitness noise of constant strength. Second,
it provides a new and simple but surprisingly accurate method for estimating
the expected final fitness deviation observed under such conditions.

The paper is organized as follows. After introducing the general quadratic test
function disturbed by fitness noise we will determine the steady state condition
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starting from the standard noisy sphere model. Then we will provide the new
approach for determining the expected final fitness deviation. The predictions of
this model will be compared with (u/pr, A)-ES runs. In the concluding section
an outlook will be given emphasizing the potential of the methods presented.

2 The Steady State Condition of (u/pur, A)-ES on Noisy
Quadratic Functions

2.1 The General Quadratic Fitness Noise Model

We consider the general quadratic fitness model based on the quality function

Qe(y) :=b"y —y"Qy (1)

where b and y are N-dimensional real-valued vectors and Q is a symmetric,
(w.l.o.g.) positive definite matrix. Given an object vector y the actually observed
objective value, i.e. fitness Fi, is disturbed by Gaussian noise of strength o5

E1g(}’) = Qg(Y) +N(O’ Ug) (2)

It is assumed that o is constant for each single generation. That is, all offspring
within the same generation experience the same noise strength.

2.2 Determining the Steady State Condition

It is a common phenomenon that EA optimizing fitness functions disturbed by
noise of constant strength exhibit some kind of steady state behavior (after a
certain transient time of approaching the optimum) which is — on average — away
from the optimal solution [0]. If this steady state regime has been reached, the
expected fitness improvement will be zero. In order to determine the steady state
condition of this behavior, we will reconsider the standard noisy sphere model
and apply the differential-geometrical model [7] to it.

Results from the Sphere Model Theory. The qualitative properties of an
ES can be characterized by evolution criteria [7, p. 90] which describe the ap-
poach toward the optimum in terms of inequalities in the space of the endogenous
strategy parameters such as the mutation strength and the noise strength. This
concept has been developed for the (1, A\)-ES on the noisy sphere model

Fusp(y) := f(llyll) + N(0,03), f = f(r) monotonic function, (3)

in [5] and recently extended for the (u/pr, A\)-ES in [2]. The asymptotically
correct (N — o00) evolution criterion reads

U:SQ +0*? < (2ﬂcu/u,>\)2 (4)

where
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N . N ) , df

ot =0 and o _06R|f’| with f' = ar| (5)
are the normalized mutation strength (isotropic mutations assumed) and the
normalized noise strength, respectively. R := ||y|| is the distance of the parental
centroid (center of mass of the u parents y,,) to the optimum, and ¢/,  is the
progress coefficient (see e.g. [7, p. 247]).

Criterion (H) characterizes those endogenous strategy parameter states which
guarantee convergence toward the optimum. That is, when the “<” relation is
fulfilled in (), the expected R value decreases from one generation to the next.
Criterion (4)) necessarily implies

O'; < 2/'60#/;1,)\' (6)
Using (B) and the o} definition in (), the evolution criterion becomes

R > 2N
200/, \

(7)

If the equal sign holds in @) and (@, ), respectively, the expected R value
remains constant (from one generation to the next) and the evolution stagnates
(on average). The latter case is of particular interest because it appears as the
steady state of the ES working in a fitness environment with constant noise
strength o5 = const. Considering the special case

f(r) = pre, (8)
(@) can be solved for R yielding for the steady state

R> o5 N

¢ =——— = Rw. 9
A et ©)

It appears that R, in (@) provides a good approximation for the expected steady
state value of R in ES runs. This is so because the standard mutation strength
adaptation techniques yield comparatively small normalized mutation strengths
o*. This holds for the mutative o self-adaptation ES (0SA-ES) as well as for the
cumulative step-size adaptation ES (CSA-ES).

Distorting the Sphere — the General Quadratic Model. In order to trans-
fer the idea behind the evolution criterion (@) to the general quadratic case (2),
we have to introduce the generalized quantities for R and f’. This step is by
analogy. A mathematically rigorous proof for the correctness of this step is still
pending, however, there is experimental evidence for its accuaracy (see Sec-
tion [2.4]).

The analogue of the absolute value of the first derivative f’ in the RY space
is the length of the gradient. Similarly, the radius R must be replaced by the
differential-geometrical mean radius R. Calculating the gradient in () yields

VQ, =b —2Qy. (10)
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Since the optimal state y is given by VQ, = 0, we obtain from (I10) b = 2Qy
and therefore we get

VQ, =2Q(y —y) =:a (11)

Using the mean radius formula from [7, p.46], one gets

_ N-1 all
R= . (12)

2 Im(Q - 532

In order to obtain the necessary evolution criterion we now substitute || VQg||
for |f/| and R for R in ([@). After rearranging terms and considering N — oo,
the evolution criterion reads

(13)

Provided that the Rayleigh quotient aTQa/||al|? can be neglected, this expres-
sion can be further simplified using (Il). One obtains

UgTr[Q}

. (14)
4pcypn

1Q(y —¥)I* =

Unlike the sphere model where the steady state is characterized by a constant
(expected) residual distance to the optimal state, the general case is character-
ized by y-states located on an ellipsoidal hypersurface (equal sign in (Id)). It
is important to realize that these ellipsoidal hypersurfaces are not geometrically
similar to the ellipsoid defined by Q,(y) = const. (in contrast to the sphere).

2.3 Estimating the Expected Stationary Fitness Error

As we have seen in Section 22, noisy fitness information implies a localization
error of the optimizer in the y (object) parameter space. Therefore, choosing a
parental state y, produced by the ES after reaching the vicinity of the steady
state regime results in a y, # y. Thus, the actually obtained undisturbed ob-
jective function value @ = Qq(yp) will also deviate from the optimum value
Q= Qg (¥y). Since AQ := Q- Qg (yp) is a random variate one can ask for its
expected value and its variance.

A first attempt for estimating AQ by neglecting its random character has
been presented in [§]. The idea was to use the respective stationarity condition
(similar to Eq. (I4) with g = 1) as a constraint on the optimization of Qg
given by (Il). While this approach yielded a first rough lower bound on AQ, the
predicted strong dependency of the @) deviation on the largest eigenvalue of Q
and Tr[Q] was not observed in experiments. Astonishingly, one observed AQ
values the expected values of which were almost independent of the Q matrix.
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We will now present an approach for estimating the expected value of AQ
in accordance with the experimental observations mentioned above. In order to
simplify the formulae, we will first switch to an appropriate coordinate system
by performing a principal axes transformation. Let e; (i = 1,...,N) be the
normalized eigenvectors and ¢; the corresponding eigenvalues of Q. Eq. (@) can
be transformed using the completeness condition 1 = Ziv ; eie] into

N

Qu(y) ==Y _(bivi — v} (15)

=1

with b; = e]b and y; = e]y. Performing quadratic completion in (&) yields

%) =Y 4o =3 (- 2’;) (16)

One can easily prove that the optimum state of (T3] is given by

. b;
Ui = % and Q = max Qg = Z 10 (17)

Thus, using Eq. ([I6) AQ can be expressed in terms of

AQ =Q - Quly qu 3i)%. (18)

As one can see, the principal axes transformation decomposes A(Q in a sum of
N independent fitness contributions f;

N
AQ = Zfi where fi=ailyi — ;)% (19)

Using the same transformation, the evolution criterion ([[4) can be expressed
similarly. Since ||Q(y — ¥)|> = (¥ — ¥)"Q?(¥ — y) we immediately obtain

Q¥ —y)II* = Zqz Yi (20)
and therefore with (I[4)

)2 > o5 Tr[Q]
Zq@ Z m (21)

We are now at that position where we can formulate the core ideas for the
derivation of the expected @ deviation. At first we note that condition (ZI)) does
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hold for all states y;. Since y; are random variates, we can take the expected
value in (21) leading to

N

ZquE[(yi —9:)°] > o5 Tr[Q]

> . (22)
i=1 4#0#/#7)\

Provided that §; = E[y;], the E[(y; — ;)] expressions can be interpreted as the

variances of the respective y; variates. This is admissible for the steady state

because of symmetry of the y; states in (2I). In other words, after reaching the

vicinity of the steady state, the y; fluctuate around the optimizer state ;.
Consider the expected value of AQ. Using (I9) we have

N
E[AQ] =) E[fi]  where  E[fi] = ¢:E[(yi — #:)?. (23)
=1

Now comes the crucial assumption which is quite similar to the equipartition the-
orem in statistical thermodynamics: Each degree of freedom in (Z3]) contributes
on average the same effect to the whole system. That is,

EQUIPARTITION ASSUMPTION: Vi,j: E[f;] = E[f;]. (24)

It is quite clear that this assumption can only hold under equilibrium conditions,
i.e. after reaching the steady state. However, considering the steady state, it
should also be clear that the E[f;] = E[f;] assumption is a natural one: First,
the mutations generating new y; states are not directed. Second, selection only
“sees” the whole fitness. Therefore it cannot prefer a specific f; degree and the f;
degrees fluctuate independently of each other. If a specific f; degree dominated
the others (i.e. having had a much larger E[f;]) then this would mean that its f;
contributions to the actual @) values were much higher. Such states, however, are
likely to go extinct because selection prefers y realizations with lower @ values.
Third, since the y; states fluctuate independently around the optimum state ;,
selection does not prefer any specific y direction (if this were not the case we
would not be at the steady state but — on average — still move through the search
space in a specific direction).
Accepting the validity of ([24) we obtain with [£3) E[f;] = E[AQ]/N and

therefore
E[AQ)]

Ng;

Taking into account that at the steady state E[y;] = 3; does hold (recall the
discussion above), (25 is also the variance of y;
E[AQ]
Var[y;] = ) 26
only] = S (26)
After insertion of (2H) into the evolution criterion ([22) we end up with a sur-
prisingly simple condition (recall that >, ¢; = Tr[Q)])

BaQ > 2N
Apcy

El(yi — %)% = (25)

(27)
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As can be checked by experiments (see Section [2.4)), the equal sign in (27) pre-
dicts the average steady state AQ well as long as the mutation strength of the ES
is controlled appropriately. The most astonishing message from (27) is the inde-
pendence of E[AQ)] on the Q matrix. This was already observed in (1, A)-ES runs
in [8]. However, the reason for this interesting behavior remained obscure. Now
we are able to explain this behavior by the equipartition effect which decomposes
the (arbitrarily oriented) ellipsoid into its principal fitness components.

Inserting 7)) into @8) yields an estimate for the object parameter fluctu-
ations at the steady state. Since the steady state is characterized by the equal
sign in (27), we obtain under steady state conditions

0§

Varly] = — 22
ol AUy ) G

(28)
This result is also in accordance with experiments. The main conclusion that can
be drawn from (B8] is that y; parameter fluctuations decrease with the increase
of the corresponding eigenvalue ¢;. This is reasonable: A large eigenvalue g¢;
(compared to a smaller g;) results in a higher sensitivity of the fitness on the
particular parameter space direction e;. That is, it produces (on average) a
larger deviation from the optimal fitness value. Such deviations, however, are
singled out by the (u, ) selection, only small deviations will survive. On the
other hand, small eigenvalues reduce the influence of the y; fluctuations on the
fitness. Therefore, y fluctuations in such e-directions will be larger.

2.4 ES-Dynamics and Comparison with Experiments

The dynamical behavior of the ES maximizing the noisy function class (), (2)
has been investigated on three ellipsoidal test functions

Qa1 (y Zlyw (Q)ij = idij, (g =1), (1.29a)
le
Qe2(y Z (Q)ij = %05, (¢ =1%), (1.29b)

Qealy Z <29> ; (Q)ij=min[N —i+1,N—j+1], (1.29¢)

for dimensionalities N = 30 and 100. While Qg1 (y) and Qg2(y) define axis-
parallel ellipsoids, the third function, also known as “Schwefel’s” function, has a
certain non-parallel orientation. Since we are using isotropic mutations (sphere-
symmetrical mutations) the orientation of the ellipsoids does not affect the per-
formance of the ES on these test functions. However, Q43(y) has the peculiarity
that the eigenvalue spectrum of Q possesses a dominating eigenvalue. Thus the
shape of this ellipsoid resembles a distorted discus. This might influence the dy-
namical behavior, however, in the expriments performed using the noise model
(2) no peculiarities concerning the steady-state behavior have been observed.
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Differences are observed, however, concerning the dynamic behavior of the
different mutation strength o control rules used. We have tested the standard
mutative o self-adaptation (oSA, see e.g. [4]) and the cumulative step-length
adaptation (CSA) proposed by Gawelczyk, Hansen, and Ostermeier [14/15]/16]
without covariance matrix adaptation, i.e. using isotropic mutations. Figures [[Th—
d show the typical behaviors. Both ES versions end up with a steady state be-
havior where the fitness values are in expectation away from the global optimum
AQ =0, i.e. E[AQ] > 0. This is the typical behavior when noise is involved in
the fitness evaluations. Clearly, the main aim is to have E[AQ)] as small as pos-
sible. When comparing the resulting steady-state E[AQ)] in Fig. [Ik,d one notices
that the CSA-ES yields a much larger E[AQ] than the oSA-ES. From this point
of view, the cSA-ES should be preferred. However, as one can see this is brought
at the expense of a slower approach to the steady state. Comparing the steady
state behavior of the two ES types on the two test functions (I.29al) and (L.29b))
one also sees that, using CSA-ES, the effect of larger E[AQ)] gets larger with
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Fig. 1. Evolution dynamics by (20/20;,60)-ES on (L29al b) (N = 30) using mutative
self-adaptation (oSA, Figs. a and c) and cumulative step length adaptation (CSA, Figs.
b and d). The CSA exhibits premature convergence on test function Qg2(y) (Fig. d).
As noise strength o5 = 1 has been chosen.
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increasing non—sphericity The reason for this undesirable behavior can be ex-
plained when considering the mutation strengths o actually realized during the
evolution. While the oSA-ES produces a quasi-constant steady state mutation
strength, the CSA-ES produces an almost random walk like ¢ behavior on the
logarithmic scale with very small ¢ values. That is, the CSA o control rule pro-
duces a nearly premature convergence behavior and the ES is not able to further
evolve towards the optimizer state. The reason for this — at first glance — aston-
ishing behavior can be traced back to the optimality condition the CSA control
rule is based upon [13]: Consecutive changes of the parental centroids should be
— on average - perpendicular to each other in order to have maximal progress
on the sphere model. The analysis in [9] shows, however, that this assumption
leads to a wrong adaptation behavior when fitness information is disturbed by
noise. As a result, o is decreased even though it should be kept nearly constant
(for an in-depth discussion on the sphere model, see [9]).

There is a remedy for the undesired o decrease in CSA-ES: Simply keep the
mutation strength o above a certain (but small) limit og. Figure 2 shows the
effect of this remedy. The CSA-ES is prevented from premature convergence.
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0 1000 2000 3(?&0 4000 5000 6000 0 10000 20000 30000 gaoooo 50000 60000 70000

Fig. 2. Evolution dynamics of the (20/20;,60)-CSA-ES keeping o explicitly above
oo = 0.01. Left: test function (I.29al), N = 30; right: test function (I29b), N = 30. As
noise strength o5 = 1 has been chosen.

The problem is, however, that fixing o is a difficult task and also that the
approach to the steady state is slowed down. Therefore, this method cannot be
recommended as a clever strategy. In the following we will not consider the CSA-
ES further because in this article we are mainly interested in the expected steady
state AQ. Therefore, our simulations will be performed using the old oSA-ES.
Figure 3] compares the predictive quality of the equal sign in (27) as an esti-
mate for the expected steady state AQ. The (u/pr, 60)-0SA-ES has been used for
the simulations. AQ was recorded at each generation after a number of transient
generations go by evaluating the (noisy) fitness (), ) of the parental centroid

! This might be an argument for using the covariance matrix adaptation (CMA) [15],
however, this is not the focus of this paper.
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using the test functions (.29alb,c). The number of generations used for averag-
ing AQ is 200,000. The noise strength used is o5 = 1. There is a good agreement
between experiments and the lower bound of E[AQ)] given by the curve obtained
from (27). Recall that the lower bound corresponds to vanishing normalized mu-
tation strength in the original evolution criterion (7). Considering the actually
realized o values (see, e.g., the figures on the left-hand sides of Figs. [I] and )
one realizes that the SA-ES exhibits a behavior where o is obviously that small
at the steady state such that the equal sign in [27) is roughly fulfilled. That is

E[A
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a) Qg1 (y), N =30, go = 100,000 b) Qe1(y), N = 100, go = 200,000
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Fig. 3. Dependence of the expected steady state fitness error E[AQ] on the parent
numbers p = 1,2,4,6, 10, 15, 20, 25, 30, 35, 40, 45, 50, 54, 56, 58, 59 given fixed offspring
number A = 60. The vertical bars indicate the measured + standard deviation of AQ.
Note, some data points are missing, see explanation in the text.
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why we observe such a good agreement between theory and experiments. On the
other hand the mutation strength is large enough to ensure convergence to the
vicinity of the steady state described by (271). This is in contrast to the CSA-ES
where the mutation strength goes down very rapidly when reaching the vicinity
of the steady state. Violating the smallness assumption of o, however, will result
in a similar behavior: The ES cannot approach states which are described by
the equal sign in (27). This can be observed in ¢SA-ES with p/\ near 1, i.e.
in strategies with low selective pressure, and can also be seen in the plots: De-
pending on the test function and the dimensionality there are some data points
missing (usually ¢ = 59 and p = 58, sometimes even for smaller p) due to di-
vergence. The behavior of the cSA-ES is diametrically opposite to the CSA-ES
under this condition. Having a very small selection pressure results in an almost
random selection behavior. As has been shown in [I0], random selection results
in an exponential increase of the mutation strength of the oSA-ES. Therefore,
one observes a continuously increasing mutation strength if A — p is chosen too
small. This effect starts gradually with increasing u (keeping A constant) and
can be observed in the experiments presented.

3 Conclusions and Outlook

Using the equipartition assumption we were able to derive a simple formula
which predicts the final expected fitness deviation surprisingly well. While the
0SA-ES reaches the predicted fitness deviation, the CSA-ES exhibits premature
convergence on ellipsoidal test function with a high degree of non-sphericity.

Formula (7)) can be used for population sizing. In order to get to the opti-
mizer as closely as possible /A = 0.5 should be chosen. Getting to the steady
state as fast as possible, however, requires p/A & 0.27 (sphere model assump-
tion and N — o0, not considered in this paper). Considering the plots in Fig. Bl
/A = 0.3 seems to be a good compromise.

Since both CSA-ES and oSA-ES use isotropic mutations, in a next step
ES with nonisotropic mutations should be investigated. One might expect an
improved ES behavior using covariance matrix adaptation (CMA) [15]. While
the CMA-ES may yield better results than the CSA-ES, theoretically, CMA
can not significantly improve the steady state results of the ocSA-ES (basically,
CMA-ES transforms Q into another Q, but (27) does not depend on Q or Q at
all). However, we can expect an improved transient behavior (decreasing go) of
the CMA-ES compared to the ES with isotropic mutations. This remains to be
investigated in the future.
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