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Abstract. It is a hard problem to understand the fitness landscape of a
problem as well as the evolution of genetic algorithms. For the purpose,
we adopt Sammon’s mapping for the investigation. We demonstrate its
usefulness by applying it to the graph partitioning problem which is a
well-known NP-hard problem. Also, through the investigation of schema
traces, we explain the genetic process and the reordering effect in the
genetic algorithm.

1 Introduction

An NP-hard problem such as graph partitioning problem or traveling salesman
problem (TSP) has a finite solution set and each solution has a cost. Although
finite, the problem space is intractably large even for a small but nontrivial prob-
lem. A number of studies about the ruggedness and the properties of problem
search spaces were done. Weinberger [I7] conjectured that, if all points on a
fitness landscape are correlated relatively highly, the landscape is bowl shaped.
Boese et al. [I] suggested that, through measuring cost-distance correlation for
the TSP and the graph partitioning problem, the cost surfaces are globally con-
vex. Jones and Forrest [I1] introduced fitness-distance correlation as a measure
of search difficulty. Good insight into the problem space can provide a motiva-
tion for a good search algorithm [I]. We examine the problem space and hope
to get some insight into the problem space.

For NP-hard problems with intractably large problem space, it is almost
impossible to find an optimal solution by exhaustive or simple search methods.
Thus, in case of NP-hard problems, heuristic algorithms or meta-heuristics are
used. The genetic algorithm (GA) is one of the most powerful search methods
among them. A number of studies for understanding GA’s working mechanism
were done. These include schema theorem [10], Royal Road function [13], etc.

Visualization is one of the most basic tools for studies of search spaces. A no-
table method for fitness landscapes is the plotting of fitness-distance correlation
[1]. For GA visualization, the most popular method is the fitness flow over time
as in many GA papers. Another wholesale method is the population data matrix]
for identifying population features. In this paper, we propose new visualization

! In the matrix, the entire population is displayed in textual form.
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techniques primarily using Sammon’s mapping. We analyze the problem space
for graph partitioning more elaborately. We visualize the solutions associated
with the genetic search. We also trace schemata and analyze them.

The remainder of this paper is organized as follows. In Section Bl we sum-
marize graph partitioning problem and Sammon’s mapping which is used as a
major tool for visualization in this paper. We analyze fitness landscapes for graph
partitioning in Section[3 In Section Hl we provide some visualization for genetic
algorithms. In Section Bl schema traces are visualized and analyzed. Finally, we
make our conclusions in Section [6l

2 Preliminaries

2.1 Graph Partitioning

Let G = (V, E) be an unweighted undirected graph, where V is the set of vertices
and F is the set of edges. A bipartition (A4, B) consists of two subsets A and
B of V such that AUB =V and AN B = ¢. The cut size of a bipartition is
defined to be the number of edges whose endpoints are in different subsets of the
bipartition. The bipartitioning problem is the problem of finding a bipartition
with minimum cut size. If the difference of cardinalities between two subsets is
at most one, the problem is called graph bisection problem. It is a representative
NP-hard problem [8]. In this paper, we use three graphs from [3] (one geometric
graph and two caterpillar graphs)ﬁ as test beds.

2.2 Sammon’s Mapping

Sammon’s mapping [16] is a mapping technique for transforming a dataset from a
high-dimensional (say, m-dimensional) input space onto a low-dimensional (say,
d-dimensional) output space (with d < m). The basic idea is to arrange all the
data points on a d-dimensional output space in such a way that minimizes the
distortion of the relationship among data points.

Sammon’s mapping tries to preserve distances. This is achieved by minimiz-
ing an error criterion which penalizes the differences of distances between points
in the input space and the output space. Consider a dataset of n objects. If
we denote the distance between two points x; and x; in the input space by d;;

2 The classes are briefly described below.

i) Un.d: A random geometric graph on n vertices that lie in the unit square and
whose coordinates are chosen uniformly from the unit interval. There is an edge
between two vertices if their Euclidean distance is ¢ or less, where d = nwt? is the
expected vertex degree.

ii) rcat.n: A caterpillar graph on n vertices. It is constructed out of a straight line
(called the spine), where all the vertices on this line have degree two except the
outermost two vertices. Each vertex on the spine is then connected to /n new
vertices, the legs of the caterpillar.
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(a) U500.10 (b) rcat.134  (c) reat.994

Fig. 1. Examples of Sammon’s mapping

and the distances between z; and x; in the output space by d;;, then Sammon’s
stress measure F is defined as follows:

n—1 n
1 (6:; — dij)?
E= n—1 n z : z : ’ ’
21':1 Zj:i+1 0 dij .

1J =1 j=i+1

The stress range is [0,1] with 0 indicating a lossless mapping. This stress measure
can be minimized using any minimization technique. Sammon [I6] proposed a
technique called pseudo-Newton minimization, a steepest-descent method. The
complexity of Sammon’s mapping is O(n?m). There were several studies about
Sammon’s mapping [7] [5] [14].

The resulting output space depicts clusters of the input space as groups of
data points mapped close to each other in the output space. Figure [I shows
Sammon’s mapping of three graphs into 2-dimensional space. In the graphs,
we defined the distance between two vertices to be the shortest path length
between each other. We can observe that the mapping well accords with the
characteristics of the graphs.

3 Fitness Landscapes

In this section, we first extend the experimentation of Boese et al. [I] to examine
the local-optimum space. We mean by local-optimum space the space consisting
of all local optima with respect to a local optimization algorithm. We then ex-
amine the distribution of local optima. In our experiments, we used a sufficiently
large number of local optima. We do not care about solutions other than local
optima. The Kernighan-Lin algorithm (KL) [12] was used for local optimization.
In the graph bisection problem for a graph G = (V, E), each solution (A, B)
is represented by a |V|-bits code. Each bit corresponds to a vertex in the graph.
A bit has value 0 if the vertex is in the set A, and has value 1 otherwise. In this
encoding, a vertex move in the solution changes the solution by one bit. Thus, it
is natural to define the distance between two solutions by the Hamming distance.
Formally, we define the genotype distance between two solutions as follows.
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Definition 1 Let the universal set U be {0,1}/V]. For a,b € U, we define the
genotype distance between a and b as follows:

dg(a,b) = $H(a,b)
where $) is the Hamming distance.

However, if the genotype distance between two solutions is |V, they are equal.
We hence define the phenotype distance between two solutions as follows.

Definition 2 Let the universal set U be {0,1}/V]. For a,b € U, we define the
phenotype distance between a and b as follows.ﬁ

dp(a,b) = min(dy(a,b),|V] — dg4(a, b))

where dg is the genotype distance.

By the definition, 0 < d,(a,b) < ||V /2] while 0 < dy4(a, b) < |V|. In this paper,
we use the phenotype distance d, for the distance between two solutions unless
otherwise noted.

3.1 Cost-Distance Correlation

Given a set of local minima, Boese et al. [I] plotted, for each local minimum,
i) the relationship between the cost and the average distance to all the other
local minima, and ii) the relationship between the cost and the distance to the
best local minimum. They performed experiments for the graph bisection and
the traveling salesman problem, and showed that both problems have strong
positive correlations for both i) and ii) in the above. This fact hints that the
best local optimum is located near the center of local-optimum space. From
their experiments, they conjectured that the cost surfaces of both problems
are globally convex. In this subsection, we repeat their experiments for another
graph.

The solution space for the experiment was selected as follows. First, we chose
a large number of random solutions and obtained the corresponding set of local
optima by locally optimizing them. Then, we removed the duplicated solutions
in the set if any. Figures @(a) and (b) show the plotting results with 9,302 local
minimdd for the graph U500.10. The correlation coeflicient for the experiment
i) was 0.91. Tt is consistent with Boese et al.’s results with strong cost-distance
correlation.

3 Given an element a € U, there is only one element such that it is different from a and
the distance d,, to a is zero. If the distance between two elements is equal to zero,
we define them to be in relation R. Then, the relation R is an equivalence relation.
Suppose @ is the quotient set of U by relation R (Q = U/R), it is easily verified
that (@, dp) is a metric space.

4 There were 698 duplications among 10,000 local minima.
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Fig. 3. Distribution of local minima (U500.10)

3.2 Distribution of Local Optima

As a result of the experiments of Boese et al. [I], we agree with the conjecture
about the global convexity of local-optimum space but it is difficult to obtain
further deduction. Figure[Bl(a) shows the relationship between the distance to the
best local minimum and the average distance to the other local minima for each
local minimum in the local-optimum space. In the figure, there are considerably
many solutions such that they are far from the best solution but their average
distances are small. This fact suggests that solutions may be clustered in more
than one place.

We devised another way to examine the distribution of local optima. For each
solution s in the problem space, we chose a ball centered at s with radius r (here
we set r to be |V|/8) and counted the number of local optima inside the ball.
Figure Bi(b) plots the densities of the balls. It shows that the density of local
optima near the center of the problem space is remarkably high. Interestingly
enough, one can also observe fairly high-density areas far from the center. It
suggests the existence of “medium valleys”’l or “small valleys.” It can not be
explained by the experimental methods such as [T].

® The relative notion to big valleys mentioned by Boese et al. [I].
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Fig. 5. Traditional plotting (a hybrid GA on U500.10)

3.3 Visualization by Sammon’s Mapping

Sammon’s mapping is a good visualization tool for multi-dimensional datasets.
Local-optimum spaces are also good candidates for Sammon’s mapping. Sam-
mon’s mapping of the local-optimum space helps visually understanding the
problem space. Figure Bla) shows Sammon’s mapping of the local-optimum
space for the graph U500.10. The local optima were Sammon-mapped on the
XY plane. The Z-axis means the cut size. Figures Hl(b) and (c) indicate the
projected spaces of Figure Ml(a) into X Z plane and Y Z plane, respectively. We
can observe the fitness landscape with respect to Sammon’s mapping. In this
case, the result suggests the existence of valleys in more than one place.

4 Visualization of a Steady-State Genetic Search

4.1 Previous Studies

Traditionally, the fitness-generation plotting has been popular for the visual-
ization of genetic process. A great number of papers include these plottings to
visualize their genetic search process. Figure Blshows examples of the traditional
plotting.

Recently, Dybowski et al. [6] proposed a GA visualization method using
Sammon’s mapping. There have been a number of studies about GA visualization
using Sammon’s mapping [4] [I5]. They presented initial studies about small
problems. An extensive survey of GA visualization techniques appeared in [9].
In this paper, we focus only on the visualization by Sammon’s mapping.
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Fig. 6. 2D mapping with different distances (hybrid GBA on U500.10)

4.2 Extended Experiments

We extend the works of Dybowski et al. [6]. Using Sammon’s mapping, they
showed that population converges into one or more clusters. They used the Ham-
ming distance (called the genotype distance in this paper) for the distance in
the input space of binary chromosomes.

In this subsection, we provide two experiments for visualization with a GA.
First, we make experiments with different distance measures. Then, we provide
a new technique for a steady-state GA to visualize the change of population in
the genetic search process.

We used the Genetic Bisection Algorithm (GBA) [3] for graph bisection prob-
lem. It is a steady-state GA with population size 50, 5-point crossover, adjacent
repahEl7 and GENITOR-style replacement [18]. If GBA is hybridized with KL
local optimization, it is denoted by KL-GBA. We use KI.-GBA on the graph
U500.10 for the experiments in this subsection.

Given a space, various distance measures can be defined. The properties of
the space are largely dependent on the distance measure. Particularly, in Sam-
mon’s mapping, if the output space is a metric space, the input space need to be a
metric space to minimize the stress measure. We used two distance measures: the
genotype distance d, and the phenotype distance d, defined in Section [3l With
d, as the distance measure, Figures [B(al), (a2), and (a3) show 2-dimensional
mapped population spaces at initial, intermediate, and final generation, respec-
tively. Figures [6(b1), (b2), and (b3) show the results with d, as the distance

5 After the crossover, an offspring may not satisfy the balance requirement. It then
selects a random point on the chromosome and changes the required number of 1’s
to 0’s (or 0’s to 1’s) starting at that point on to the right. This adjustment produces
some mutation effect.
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Fig. 7. Visualization of genetic search process with different distances (hybrid GBA
on U500.10)

measure. When we used the genotype distance dg, the population converged
into four clusters. However, with the phenotype distance d,,, the population con-
verged into roughly two clusters. From the fact that one phenotype matches two
genotypes in graph partitioning, it seems to be reasonable. We observed two
notable valleys in this problem space in Section [32] and Section B3l It is inter-
esting that the population of GA converged into two clusters. The plotting by
Sammon’s mapping can be extended to three dimensions. We omit the results
here.

In the next experiment, we visualize the change of population in the process
of a steady-state GA. Generally, Sammon’s mapping starts with random initial
positions of n objects. Iteratively, it optimizes the stress measure E. A steady-
state GA typically generates only one offspring per iteration. It does not make a
rapid change per population. Hence, if the positions of the previous generation
are used for the initial positions of the next-generation Sammon’s mapping, the
positions would change steadily over the generations. This makes it possible to
visualize solutions over the genetic search process. Figure [ shows the visualiza-
tion of a genetic process. Figure [(a) visualizes the time-varying dataset such
that X-axis is the time and Y Z plane represents the 2-dimensional Sammon’s
mapping. Figure [[{b) shows its projection into X Z plane. Figure [[{c) gives the
average variation between the previous population positions and the current
population positions. More formally, in the i** generation, average variation V;
is defined to be V; = + 3, [|sx(i )fsk(z —1)]|, where sg(¢) is the mapped vector
of the k" chromosome in the i*" generation and K is the population size. At
a generation with large variation, which probably suggests the occurrence of an
important solution, the continuity gets broken. From this visualization, we can
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also observe the process of population convergence. It helps us to understand the
genetic search process more elaborately. It is notable that this visualization is
related to average cost plotting of Figure[5(a). In the range with stable average
costs, the mapped data also shows minor changes (e.g., see the range [150, 310]
in Figure Bfa) and Figure [[). The phenomenon of punctuated equilibria may
also be observable by this plotting.

5 Schema Traces

A schema is a pattern of bit strings consisting of specific symbols and asterisks;
here, specific symbols represent the pattern and the asterisks represent “don’t
care” positions. A genetic algorithm starts with a group of random initial so-
lutions. Of course, the quality of the solutions is low in the early stages of the
genetic algorithm. However, most low-quality solutions contain some schemata
common to high-quality solutions. The crossover operators of genetic algorithms
generate larger schemata by juxtaposition of smaller schemata. It is important
to preserve valuable schemata. A schema is prone to be destroyed by crossover
operators if the positions forming the schema are scattered.

Generally speaking, it is not easy to know high-quality schemata in a prob-
lem. However, for some problems, it is possible to find high-quality schemata.
Specially, in Royal Road function [13], all of the desired schemata are given in its
description. We can also find high-quality schemata in some instances of graph
partitioning. Caterpillar graphs are good examples. It is clear from their Sam-
mon’s mapping (see Figures [[(b) and (c¢)). In this subsection, we provide the
visualization of high-quality schema traces for a graph partitioning problem and
a Royal Road function.

First, we compare KL-GBA with BFS-KL-GBA on the graph rcat.994 (see
Figure [[lc)). KL-GBA was introduced in Section [I22] BFS-KL-GBA is an ap-
proach proposed in [2| for the purpose of transforming the shapes of valu-
able schemata to those advantageous for survival by using Breadth-First Search
(BFS) reordering. We selected a schema consists of 156 vertices. Figure [§] shows
the schema traces in the genetic search process (upper row with KL-GBA and
lower row with BFS-KL-GBA). A bold dot represents the presence of the schema
in a solution. A bold line mostly means the continual presence of the schema.
One can observe remarkable difference between the two algorithms. Not only did
KIL-GBA show low frequency of schema creation, it also showed a low rate of
schema survival. On the contrary, BFS-KL-GBA showed a high rate of schema
survival as well as high frequency of schema creation. Since BFS reordering tends
to shorten the defining lengths of high-quality schemata, the survival probabili-
ties of those schemata become high through crossovers [3]. Without reordering,
despite its early appearance, the schema did not spread all over the population
as steadily as the reordered version. One can observe a high rate of schema dis-
tinction. On the contrary, the reordered version showed fairly stable preservation
of the schema.
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Fig. 8. Schema and reordering (hybrid GBA on rcat.994)

In the next experiment, we observe the schema traces with a 64-bit Royal
Road function. The fitness of a chromosome is determined by the presence of
predefined 8 order schemata. It defines a tailor-made fitness landscape for GA’s
search and provides an ideal laboratory for studying GA’s behavior. Dynamics
of the search process can be studied by tracing individual schemata. We used
a steady-state GA with population size 50, 1-point crossover, 0.5% mutation
probability per bit, and GENITOR-style replacement. The Hamming distance is
used as the distance measure. Figure @lshows Sammon’s mappings over the gen-
erations ((a) and (b)), a traditional plotting (c), and the schema traces ((d), (e),
and (f)). Figures @(a) and (b) clearly reflect strong convergence. It is surprising
that the average fitness value nearly reflects the distribution of the population
(compare figure (b) with the average line in figure (c)). The second and third
rows of Figure @lshow the traces of two low-order high-quality schemata ((d) and
(e)) and the high-order schema merging them (f). It visualizes only the individ-
uals containing the schema. Here, a dotted line does not mean the discontinuity
of schema presence but usually corresponds to a new appearance of an indi-
vidual containing the schema. One can observe that schema2 and schema3 first
appeared at around 2500°" and 1000 generation, respectively, and they were
successfully combined to a large schema at around 4500*” generation. Although
schemad is appeared earlier than schema2, schema2 spreads over the popula-
tion faster than schema3. Figures (d), (e), and (f) visualize a process of GA by
tracing the lives of particular schemata. Figures (d’), (¢/), and (f') are the 2D
projections of figures (d), (e), and (f), respectively.
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Fig. 9. Royal Road function with 8 schemata

6 Conclusions

Our approach goes beyond those of Boese et al. [1] and Dybowski et al. [6]. To
get insights into fitness landscapes and GA’s working mechanism, we introduced
visualization techniques using Sammon’s mapping and analyzed various exper-
imental results. A steady-state GA for graph partitioning was mainly used in
this paper. We could obtain some useful insights from the visualization. They
could not be explained by previous visualization experiments. Our approach will
be also useful for other optimization problems.

Sammon’s mapping is one of the possible mapping methods. We may consider
other mapping methods. It is of particular interest as well to investigate the
visualization with respect to genetic operators.
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