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Abstract. In the current paper a rigorous mathematical language for
comparing evolutionary computation techniques via their representation
is developed. A binary semi-genetic algorithm is introduced, and it is
proved that in a certain sense any reasonable evolutionary search algo-
rithm can be re-encoded by a binary semi-genetic algorithm (see corol-
laries 15 and 16). Moreover, an explicit bijection between the set of all
such re-encodings and the collection of certain n-tuples of invariant sub-
sets is constructed (see theorem 14). Finally, all possible re-encodings of
a given heuristic search algorithm by a classical genetic algorithm are
entirely classified in terms of invariant subsets of the search space in
connection with Radcliffe’s forma (see [9] and theorem 20).

1 Introduction

Over the past 25 years evolutionary algorithms have been widely exploited to
solve various optimization problems. In order to apply an evolutionary algorithm
to attack a specific optimization problem, one needs to model the problem in a
suitable manner. That is, one needs to construct a search space Ω (the set whose
elements are all possible solutions to the problem) together with a computable
positive valued fitness function f : Ω → (0, ∞) and an appropriate family of
“mating” and “mutation” transformations. One can say, therefore, that a repre-
sentation of a given problem by an evolutionary algorithm is an ordered 4-tuple
(Ω, F , M, f) where Ω is the search space, F is a family of binary operations
on Ω and M is the family of unary transformations on Ω, that is, M is just
a family of functions from Ω to itself. Intuitively F is the family of mating
transformations: every element of F takes two elements of Ω (the parents) and
produces one element of Ω (the child).1 while M is the family of mutations (or
asexual reproductions) on Ω. For theoretical purposes it is usually assumed that
M is ergodic in the sense that the only invariant subsets under M are the ∅ and
1 In general there is no reason to assume that a child has exactly two parents. All of

the results in this paper are valid for the families of m-ary operations on Ω. The
only reason F is assumed to be the family of binary transformations is to simplify
the notation.
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the entire search space Ω. (The ergodicity assumption ensures that the Markov
process modelling the algorithm is irreducible ( see, for instance, [4] ). A typical

evolutionary algorithm works as follows: A population P =




x1
x2
...

x2m


 with xi ∈ Ω

is selected randomly. The algorithm cycles through the following stages:
Evaluation:
Individuals of P are evaluated:




x1
x2
...

x2m




→ f(x1)
→ f(x2)
...

...
→ f(x2m)

Selection:
A new population

P ′ =




y1
y2
...

y2m




is obtained where yi = xj with probability f(xj)
Σ2m

l=1f(xl)
.

In other words, all of the individuals of P ′ are these of P , and the expectation
of the number of occurrences of any individual of P in P ′ is proportional to the
number of occurrences of that individual in P times the individual’s fitness value.
In particular, the fitter the individual is, the more copies of that individual are
likely to be present in P ′. On the other hand, the individuals having relatively
small fitness value are not likely to enter into P ′ at all. This is designed to imitate
the natural survival of the fittest principle.

Partition:
The individuals of P ′ are partitioned into m pairwise disjoint couples for

mating according to some probabilistic rule: For instance the couples could be

Q1 =
(

yi11
yi12

)
Q2 =

(
yi21
yi22

)
. . . Qj =

(
yij

1

yij
2

)
. . . Qm =

(
yij

1

yij
2

)

Reproduction:

Replace every one of the selected couples Qj =

(
yij

1

yij
2

)
with the couples

Q′ =

(
T1(yij

1
, yij

2
)

T2(yij
1
, yij

2
)

)
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for some couple of transformations (T1, T2) ∈ F2. The couple (T1, T2) is se-
lected according to a fixed probability distribution on F2. This gives us a new
population

P ′′ =




z1
z2
...

z2m




Mutation:
Finally, with small probability we replace zi with F (zi) for some randomly

chosen F ∈ M. This, once again, gives us a new population P ′′′ =




w1
w2
...

w2m




Upon completion of mutation start all over with the initial population P ′′′.
The cycle is repeated a certain number of times depending on the problem.
A more general and extensive description is given in [18]. The importance of
choosing a reasonable representation for a specific problem is emphasized in
some of the modern research. See, for instance, [10]. A few special evolutionary
algorithms are introduced in the next section.

2 Special Evolutionary Algorithms

Classical Genetic Algorithm with Masked Crossover:
Let Ω =

∏n
i=1 Ai. For every subset M ⊆ {1, 2, . . . , n}, define a binary oper-

ation LM on Ω as follows:

LM (a,b) = (x1, x2, . . . , xi, . . . , xn)

where a = (a1, a2, . . . , an) and b = (b1, . . . , bn) ∈ S and xi =

{
ai if i ∈ M

bi otherwise
.

The reader will recognize LM as a masked crossover operator with mask M .
Let F = {LM | M ⊆ {1, 2, . . . , n}}. That is, F in this example is simply the

family of masked crossover transformations. The probability distribution on the
set F2 is concentrated on the pairs of the form (LM , LM̄ ) where M̄ denotes the
complement of the set M in {1, 2, . . . , n}. Most often the pairs are equally likely
to be chosen from that diagonal-like subset.

Example: Let n = 5 and Ai = {0, 1, . . . , i+1}. Suppose a given population
P consists of 6 individuals which are the rows of the matrix




2 3 4 5 6
0 1 2 3 4
1 2 3 4 5
0 0 1 2 3
1 1 0 1 2
1 2 1 5 4



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Say, after selection stage is complete one obtains the following population

P ′ =




2 3 4 5 6
2 3 4 5 6
1 2 3 4 5
0 0 1 2 3
0 1 2 3 4
1 2 3 4 5




Now the following individuals are paired for mating: (masked crossover in this
case)

Q1 =
(

2 3 4 5 6
0 0 1 2 3

)
, Q2 =

(
2 3 4 5 6
1 2 3 4 5

)
, and Q3 =

(
0 1 2 3 4
1 2 3 4 5

)

Suppose we have chosen the masks M1 = {1, 4, 5}, M2 = {1, 2} and M3 = {3, 4}
for the crossover of pairs Q1, Q2 and Q3 respectively. In the language of this
paper it means we have chosen the pairs of transformations (TM1 , TM̄1

) for Q1,
(TM2 , TM̄2

) for Q2 and (TM3 , TM̄3
) for Q3 respectively. Upon applying these we

obtain

Q1 →
(

TM1((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))
TM̄1

((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))

)
=
(

2 0 1 5 6
0 3 4 2 3

)

Likewise

Q2 →
(

TM2((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))
TM̄2

((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))

)
=
(

2 3 3 4 5
1 2 4 5 6

)

and, finally,

Q3 →
(

TM3((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))
TM̄2

((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))

)
=
(

1 2 2 3 5
0 1 3 4 4

)

The family of mutation transformations, M in this (and in all of the fol-
lowing examples) consists of the transformations Ma : Ω → Ω where a ∈⋃

S⊆{1, 2,... ,n}
∏

i∈S Ai so that a = (ai1 , ai2 , . . . , aik
) for i1 ≤ i2 ≤ . . . ≤ ik ∈

Sa ⊆ {1, 2, . . . , n} defined as follows: ∀x = (x1, x2, . . . , xn) ∈ Ω we have

Ma(x) = y = (y1, y2 . . . , yn) where yq =

{
aq if q = ij for some j

xq otherwise
In other

words, Ma simply replaces the qth coordinate of its argument with aq ∈ Ai

whenever q ∈ Sa.
Random Respectful Recombination
This type of algorithm first appeared in [9] under the name of Random Re-

spectful Recombination, but it didn’t seem to be useful at first2. Here the search
space Ω and the family of mutation transformations, M, are exactly the same as
2 Recently a variation of this technique, known as “gene pool recombination” has been

considered in [16], [7] and [19]
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in the example of classical genetic algorithm, and the family of mating transfor-
mations is described below: In [8] these were named Holland transformations (be-
cause their corresponding fixed family of subsets is precisely the collection of sub-
sets of Ω determined by the classical Holland schemata together with the empty
set. See examples following corollary 12 in the next section). For every given
point u = (u1, u2, . . . , un) ∈ Ω define a Holland transformation Tu : Ω2 → Ω as
follows: for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ S

Tu(a,b) = (x1, x2, . . . , xn)

where

xi =

{
ai if ai = bi

ui otherwise

In other words, if the ith coordinates of a and b coincide, then the ith coordinate
of Tu(a,b) also coincides with them. If, on the other hand, the ith coordinates
of a and b differ, then the ith coordinate of Tu(a,b) is that of u, namely, ui.
Let F = {Tu | u ∈ S} be the family of all Holland transformations. At every
iteration of the algorithm, once a new population P is obtained, a new probability
distribution on F is defined: Tu is chosen from F so that ui occurs in u with
the probability proportional to its fitness in P . Every transformation in the pair
(Tu, Tv) is chosen independently.

Binary Genetic Algorithm with Masked Crossover:
When every Ai = {0, 1} (which means that Ω = {0, 1}n) in the example

above, one obtains the classical binary genetic algorithm.
Binary Random Respectful Recombination
The search space Ω and the family of mating transformations F and the

family of mutations M are exactly the same as these for the binary genetic al-
gorithm with masked crossover described above. The only difference is that the
probability distribution on F2 is now completely uniform. (rather than being
concentrated on the diagonal-like subset described in the classical genetic algo-
rithm example) For instance, if n = 5, M1 = {2, 3, 4}, M2 = {1, 3, 5} and the
pair (TM1 , TM2) is selected for mating, we have, for instance,

(
1 0 0 1 1
1 1 0 0 1

)
�−→

(
TM1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
TM2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 1 0 0 1
1 1 0 0 1

)

This type of a binary search algorithm can be classified by the following property:
If both parents have a 1 in the ith position then the offspring also has a 1 in
the ith position. Likewise, if both parents have a 0 in the ith position then the
offspring also has a 0 in the ith position. If, on the other hand, the alleles of the
ith gene don’t coincide, then the ith allele could be either a 0 or a 1.

The following type of algorithm may seem useless at first. Its importance will
become clear in the next section when we present the binary embedding theorem
which shows that the binary semi-genetic algorithm (described below) possesses
an interesting universal property.
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Binary Semi-genetic Algorithm:
The search space Ω = {0, 1}n, just as in the case of the binary genetic

algorithm. The family of mating transformations F is defined as follows: Fix
u = (u1, u2, . . . , un) ∈ Ω. Define a semi-crossover transformation Fu : Ω2 → Ω
as follows: For any given pair (x, y) ∈ Ω2 with x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) we have Fu(x, y) = z = (z1, z2, . . . zn) ∈ Ω where

zi =

{
1 if xi = yi = 1
ui otherwise

In other words, Fu preserves the ith gene if it is equal to 1 in all of the rows
of P , and replaces it with ui otherwise. Let F = {Fu |u ∈ Ω} be the family of
all semi-crossover transformations. The family of mutation transformations M
is exactly the same as in the examples above.

Example: With n = 5 and u1 = (0, 1, 1, 0, 1), u2 = (0, 1, 0, 0, 1) we have
(

1 0 0 1 1
1 1 0 0 1

)
�−→

(
Fu1 2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
Fu2 2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 1 1 0 1
1 1 0 0 1

)

Notice, that if 1 is present in the ith position of both parents, then it remains
in the ith position of both offsprings. There are absolutely no other restrictions,
though.

In practice the choice of the search space Ω is primarily determined by the
specific problem and related circumstances. The general methodology for the
construction of the search spaces first appeared in the work of Radcliffe (see,
for instance, [9]). Radcliffe introduced the notion of a forma which captures
the essential properties of the Holland schemata in a representation independent
setting. A forma is simply a partition of the search space into equivalence classes.
A given collection of forma with suitable properties (see [9]) is, in a sense, no
different from the collection of the classical Holland schemata provided that one
encodes the search space using the ”genetic representation function” which is also
introduced in [9]. The connection between all of the possible families of mating
transformations on a given search space Ω and the corresponding families of
invariant subsets established in [8] will allow us to extend Radcliffe’s notion of
the genetic representation function to compare various evolutionary algorithms
via possible encodings of their search spaces. This idea will be made clear in the
following section.

3 The Binary Embedding Theorem

As we have seen in the introduction, a given evolutionary heuristic search al-
gorithm is determined primarily by the ordered 4-tuple (Ω, F , M, f). In the
current paper we shall only be concerned with the search space Ω, the family of
mating transformations F and the family of mutations M. As mentioned in the
introduction, the family of mutation transformations is ergodic, meaning that



1202 B. Mitavskiy

the only invariant subsets under M is the ∅ and the entire search space Ω. This
motivates the following definitions:

Definition 1 For a given family of m-ary operations Γ on a set Ω (that is,
functions from Ωm into Ω) a subset S ⊆ Ω is invariant under Γ if and only if
∀T ∈ Γ we have T (Sm) ⊆ S. We shall denote by ΛΓ the family of all invariant
subsets of Ω under Γ . In other words, ΛΓ = {S | S ⊆ Ω, T (Sm) ⊆ S ∀ T ∈ Γ}.

Definition 2 A heuristic 3-tuple Ω = (Ω, F ,M) is a 3-tuple where Ω denotes
an arbitrary set, F is a family of binary operations on Ω (in other words, a family
of functions from Ω2 to Ω) and M is a family of unary transformations on Ω
(in other words, a family of functions from Ω to itself) such that ΛM = {∅, Ω}.

It is easy to verify (see Proposition A1 of [8]) that the family ΛΓ is closed under
arbitrary intersections and contains Ω. It then follows that for every element
x ∈ Ω there is a unique element of ΛΓ containing x (namely the intersection of
all the members of ΛΓ containing x.)

Definition 3 Given a heuristic 3-tuple Ω = (Ω, F ,M), denote by SΩ
x the small-

est element of ΛF containing x.

The following definition is a natural extension of the notion of a genetic repre-
sentation function.

Definition 4 Given two heuristic 3-tuples Ω1 = (Ω1, F1, M1) and Ω2 =
(Ω2, F2, M2), a morphism3 δ : Ω1 → Ω2 is just a function δ : Ω1 → Ω2 which
respects the mating transformations in the following sense: ∀T ∈ F1 and ∀x =
(x1, x2) ∈ Ω2 ∃Fx ∈ F2 such that δ(T (x1, x2)) = F(x1, x2)(δ(x1), δ(x2)).
Analogously, we must have ∀M ∈ M1 and ∀x ∈ Ω ∃Hx ∈ M2 such that
δ(M(x)) = Hx(δ(x)). We shall denote by Mor(Ω1, Ω2) the collection of all
morphisms from Ω1 into Ω2.

A morphism δ : Ω1 → Ω2 provides the means for encoding the heuristic 3-tuple
Ω1 by the heuristic 3-tuple Ω2. Unless the underlying function δ is one to one,
there is some nontrivial coarse graining involved. We, therefore have a special
name for these morphisms whose underlying functions are injective.

Definition 5 We say that a morphism δ : Ω1 ↪→ Ω2 is an embedding if the
underlying function δ : Ω1 → Ω2 is one-to-one.

Already at this stage one can see the importance of the family of invariant subsets
ΛF :

Proposition 6 Let δ : Ω1 → Ω2 be a morphism of heuristic 3-tuples. Then
S ∈ ΛF2 =⇒ δ−1(S) ∈ ΛF1 . In words, a preimage of an invariant set under a
morphism is invariant.
3 Heuristic 3-tuples along with the morphisms between them do form a mathematical

structure called a Category (see [6] for a detailed exposition). Some properties of the
Category of heuristic k-tuples will be presented in the forthcoming paper.
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Proof. Fix S ∈ ΛF2 . Let (x1, x2) ∈ δ−1(S). Then ∀T ∈ F1 we have
δ(T (x1, x2)) = F(x1, x2)(δ(x1), δ(x2)) for some F(x1, x2) ∈ F2. But S ∈ F2 by
assumption so that δ(T (x1, x2)) = F(x1, x2)(δ(x1), δ(x2)) ∈ S =⇒ T (x1, x2) ∈
δ−1(S). This shows that δ−1(S) is, indeed, invariant under F1.

Although the converse of proposition 6 is not true in general, the mathematical
apparatus developed in Appendix A of [8] allows us to establish a partial converse
of 6. First we need the notion of a composition closed family which is studied in
appendix A of [8]. For the sake of completeness we include the definition below:

Definition 7 We say that a given family of m-ary operations Γ on a set Ω (that
is a family of functions from Ωm to Ω) is composition closed if the following two
conditions hold:

1. ∀ T0, T1, T2, . . . , Tm ∈ Γ the operation T : Ωm → Ω sending any given
x = (x1, x2, . . . , xm) ∈ Ωm to T (x) = T0(T1(x), T2(x), . . . , Tm(x)) is also a
member of Γ .

2. S ⊆ Ω we have
⋃

T∈Γ T (Sm) ⊇ S.

Remark 8 Notice that if a given family of mating transformations Γ is pure in
the sense of [9] (meaning that ∀ T ∈ Γ and ∀ x ∈ Ω we have T (x, x, . . . , x) = x.
See also [11] and [8]) then condition 2 of definition 7 is satisfied automatically.
Every one of the families of mating transformations for the algorithms introduced
in section 2 is pure.

It is fairly straightforward to verify that every one of the families of mating trans-
formations involved in the examples of section 2 is composition closed. In fact,
it has been already shown in [8] that the families of masked crossover trans-
formations and gene Holland transformations (these which are convenient for
modelling random respectful recombination) are composition closed (see propo-
sition 2.1 and Theorem 3.6 of [8]). It only remains to show that the family of
semi-crossover transformations is composition closed:

Proposition 9 The family of binary semi-crossover transformations as defined
in the description of the binary semi-genetic algorithm is composition closed.

Proof. Fix arbitrary u, v, w ∈ Ω = {0, 1}n. We want to show that the transfor-
mation F : Ω2 → Ω sending any given pair z = (x, y) ∈ Ω2 to Tu(Tv(z), Tw(z))
is of the form Tt for some t ∈ Ω. It is routine to verify using the definition that
t = Tu(v, w) does the job.

The following fact justifies the importance of definition 7:

Proposition 10 Let Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2, M2) denote
heuristic 3-tuples with F2 and M2 being composition closed. Now given any
function δ : Ω1 → Ω2 such that ∀ S ∈ ΛF2 we have δ−1(S) ∈ ΛF1 , δ is a
morphism of heuristic 3-tuples.
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Proof. Fix arbitrary x1, x2 ∈ Ω and a mating transformation T ∈ F1. Our goal
is to find a transformation F ∈ F2 such that F (δ(x1), δ(x2)) = δ(T (x1, x2)).
Consider the smallest element of ΛF2 containing both, δ(x1) and δ(x2), call
it K{δ(x1), δ(x2)}. (K{δ(x1), δ(x2)} is simply the intersection of all the mem-
bers of ΛF2 containing δ(x1) and δ(x2). Since ΛF2 is closed under arbi-
trary intersections, K{δ(x1), δ(x2)} ∈ ΛF2 .) Since K{δ(x1), δ(x2)} ∈ ΛF2 , by as-
sumption δ−1(K{δ(x1), δ(x2)}) ∈ ΛF1 . But then δ(T (x1, x2)) ∈ K{δ(x1), δ(x2)}.
Since F2 is composition closed, by Lemma A.8 of [8], ∃ ∈ F2 such that
F (δ(x1), δ(x2)) = δ(T (x1, x2)) which is exactly what we were after. Notice that
condition δ(M(x)) = Hx(δ(x)) for some Hx ∈ M2 is fulfilled automatically since
by definition 2 ΛM = {∅, Ω2} and, by assumption M2 is composition closed so,
by Lemma A.8 of [8], ∀ y ∈ Ω2 ∃Hy ∈ M2 such that Hy(δ(x)) = y.

As noted before, for any family of m-ary operations on Ω the corresponding
family of invariant subsets ΛΓ is closed under arbitrary intersections. Moreover,
for any function δ : Ω1 → Ω2 the inverse image of the intersection of two subsets
of Ω2 is the intersection of the inverse images of these subsets: δ−1(U ∩ V ) =
δ−1(U) ∩ δ−1(V ). This motivates the following definition:

Definition 11 Given a family of m-ary operations Γ on Ω, we say that a family
of subsets Λ̃Γ ⊆ ΛΓ is a base of ΛΓ if for every K ∈ ΛΓ there exists a collection
ΛK ⊆ Λ̃Γ such that K =

⋂
S∈ΛK

S. (Equivalently, if K =
⋂

S∈Λ̃Γ , S⊃K
S).

Corollary 12 Let Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2, M2) denote heuris-
tic 3-tuples with F2 and M2 being composition closed, and δ : Ω1 → Ω2 be a
function. Then the following are equivalent:

1. S ∈ Λ̃F2 =⇒ δ−1(S) ∈ ΛF1 .
2. S ∈ ΛF2 =⇒ δ−1(S) ∈ ΛF1 .
3. δ : Ω1 → Ω2 is a morphism of heuristic 3-tuples.

Proof. An immediate consequence of propositions 6 and 10 together with the
discussion preceding definition 11.

Below we list the families of invariant subsets together with a naturally chosen
bases for each of the examples presented in section 2.

Classical Genetic Algorithm. In this case, the family of invariant subsets
ΛF = {∏n

i=1 Ti | Ti ⊆ Ai}. This is precisely the family of subsets determined by
Antonisse’s schemata (see corollary 2.4 of [8]). A bases for ΛF is the family Λ̃F =
{∏n

i=1 Ti | Ti = Ai for all but one i}. The reader can see that |Λ̃F | = 2Σn
i=1|Ai|.

Every element of Λ̃F can be thought of as a union of subsets determined by the
Holland schemata having exactly one fixed position at the same gene.

Random Respectful Recombination. ΛF = {∏n
i=1 Ti | Ti = {ai} or Ti =

Ai} ∪ {∅}. This is precisely the family of subsets determined by the Holland
schemata together with the empty set (see corollary 3.5 of [8]). A bases for ΛF
is the family Λ̃F = {∏n

i=1 Ti | ∃! with Tj = {aj}. For i �= j Ti = Ai}. This is
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precisely the family of subsets determined by Holland schemata having exactly
one fixed position.

Binary Semi-genetic Algorithm. It is not hard to verify that ΛF =
{∏n

i=1 Ti | Ti = {1} or Ti = {0, 1}} ∪ {∅}. This is precisely the family of sub-
sets determined by Holland schemata whose fixed positions can only equal to 1
(can’t be equal to 0). A bases for ΛF is the family Λ̃F = {∏n

i=1 Ti | ∃! with Tj =
{1}. For i �= j Ti = {0, 1}} which is precisely the family of subsets determined
by Holland schemata having exactly one fixed position, and that fixed position
is equal to 1.

Corollary 12 allows us to characterize all possible morphisms from various
heuristic 3-tuples to the standard types described in section 2. Our first result,
the Binary Embedding Theorem, establishes an explicit one-to-one correspon-
dence between the set of all embeddings of a given heuristic 3-tuple into a binary
semi-genetic algorithm of length n and a certain collection of ordered n-tuples
of Ω-invariant subsets.

Definition 13 Fix any heuristic 3-tuple Ω = (Ω, F , M). We say that collec-
tion

Υn = {I | I = (I1, I2, . . . , In) Ij ∈ ΛΩ , ∀ x, y ∈ Ω with x �= y ∃ 1 ≤ j ≤ n

such that either (x ∈ Ij and y /∈ Ij) or vise versa: (y ∈ Ij and x /∈ Ij)}
is a family of separating n-tuples. Notice that Υn ⊆ (ΛF )n.

Theorem 14 Fix a heuristic 3-tuple Ω = (Ω, F , M). We now have the fol-
lowing bijection φ : ΛF → Mor(Ω, Sn) (here Sn denotes the binary semi-genetic
heuristic 3-tuple with the search space {0, 1}n, see also definition 4 for the mean-
ing of Mor(Ω, Sn)) which is defined explicitly as follows: Given an ordered n-
tuple of sets from ΛΩ, call it I = (I1, I2, . . . , In) ∈ (ΛF )n let φ(I) = δI where

δI(x) = (x1, x2, . . . , xn) ∈ S = {0, 1}n with xj =

{
1 if x ∈ Ij

0 otherwise
∀x ∈ Ω. More-

over, δI is an embedding (injective) if and only if I ∈ Υn (see definition 13).
In other words, the restriction of φ to Υn is a bijection onto the collection of all
embeddings of Ω into Sn.

Proof. Given any map δ : Ω → {0, 1}, for 1 ≤ j ≤ n let Ij = δ−1(
∏n

i=1 Ti) with
Ti = {0, 1} if i �= j and Tj = {1}. Recall from examples following definition 11
that {∏n

i=1 Ti | ∃! with Tj = {1}. For i �= j Ti = {0, 1}} forms a bases for
the family of subsets invariant under semi-crossover transformations. Therefore,
according to corollary 12, δ : Ω → Sn is a morphism of heuristic 3-tuples if and
only if (I1, I2, . . . , In) ∈ (ΛF )n. This shows that φ : ΛF → Mor(Ω, Sn) is a
well-defined bijection. It is routine to check that δI is injective if and only if
I ∈ Υn (see definition 13).

It turns out that the conditions under which a given heuristic 3-tuple can be em-
bedded into a binary semi-genetic heuristic 3-tuple are rather mild and naturally
occurring as the following two corollaries demonstrate:
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Corollary 15 Given a heuristic 3-tuple Ω = (Ω, F , M), the following are
equivalent:

1. Ω can be embedded into an n-dimensional semi-genetic heuristic k-tuple for
some n.

2. ∀x, y ∈ Ω with x �= y we have either x /∈ SΩ
y (see definition 3) or vise versa:

y /∈ SΩ
x .

3. ∀x, y ∈ Ω with x �= y we have SΩ
x �= SΩ

y . (Another way to say this, is that
the map sending x to SΩ

x is one-to-one.)

Moreover, if an embedding exists for some n, then there exists one for n =
|Ω|. We also must have n ≥ �log2 |Ω|�.
Proof. One simply shows that ∀x, y ∈ Ω with x �= y we have either x /∈ SΩ

y or
y /∈ SΩ

x if and only if |Ω|-tuple S = (SΩ
x1

, SΩ
x2

, . . . , SΩ
x|Ω|) where {xi}n

i=1 is an
enumeration of all the elements of Ω is separating ( i. e. S ∈ Υn, see definition 13
) if and only if Υn �= ∅ which, in turn, according to theorem 14, happens if and
only if Ω can be embedded into an n-dimensional semi-genetic heuristic k-tuple
for some n. This establishes the equivalence of 1 and 2. Clearly 2 implies 3. To
see the converse, we show that “Not 2” implies “Not 3”. Indeed, if x ∈ SΩ

y and
y /∈ SΩ

x , then, by minimality, (see definition 2) we have SΩ
x ⊆ SΩ

y and SΩ
y ⊆ SΩ

x ,
so that SΩ

x = SΩ
y .

Corollary 16 Given a heuristic 3-tuple Ω = (Ω, F , M), if for every T ∈ F , T
is pure in the sense of [9] ( in other words, ∀ x ∈ Ω T (x, x) = x ) then Ω can
be embedded into a binary semi-genetic heuristic k-tuple of dimension less than
or equal to |Ω|.
Proof. The desired conclusion follows immediately from corollary 15 by observ-
ing that ∀ x, y ∈ Ω with x �= y we have SΩ

x = {x} so that x ∈ {x} = SΩ
x while

y /∈ {x} = SΩ
x .

Notice that purity by itself is sufficient for the existence of an embedding of a
given heuristic 3-tuple into a binary semi-genetic heuristic 3-tuple. Of course,
the embedding may not be surjective by any means. The main virtue of theo-
rem 14 is not so much the results such as corollary 16, but rather the explicit
bijective correspondence between Mor(Ω, Sn) and the collection (ΛF )n. The
main tool involved in the proof of theorem 14 is corollary 12. In the next section
we demonstrate how corollary12 can be applied to establish a similar bijec-
tive correspondence between certain kinds of sequences of Radcliffe’s forma and
Mor(Ω, G{Ai}n

i=1
) where G{Ai}n

i=1
denotes the heuristic 3-tuple corresponding to

the genetic algorithm with
∏n

i=1 Ai as its underlying search space.

4 Characterizing the Morphisms from a Given Heuristic
3-Tuple into a Genetic Heuristic 3-Tuple in Terms of
Radcliffe’s Forma

For the reader’s convenience we restate a few basic notions considered in [9]:
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Definition 17 Given a set Ω, denote by E(Ω) the set of all possible partitions of
Ω into disjoint nonempty subsets. (Partitions and equivalence relations are in a
natural bijective correspondence. See, for instance [9], or any standard textbook
on basic mathematical structures and concepts for details) Given an element Ξ ∈
E(Ω), the elements of Ξ are called forma. Given an n-tuple Ψ = (Ξ1, Ξ2, . . . , Ξn)
of elements of E(Ω), let Ξ(Ψ) =

∏n
i=1 Ξi. A genetic representation function

ρ : Ω → Ξ(Ψ) sends a given x ∈ Ω to (X1, X2, . . . , Xn) ∈ Ξ(Ψ) where x ∈ Xi

(remember that such an Xi ∈ Ξi exists and is unique since Ξi is a partition of
Ω so that ρ is, indeed, well-defined).

The following definition sets the stage for the main theorem of this section:

Definition 18 Given a heuristic 3-tuple Ω = (Ω, F , M), and a function δ :
Ω → ∏n

i=1 Ai, let Ψδ = (Xδ
1 , Xδ

2 , . . . , Xδ
n) where Xj is the collection of all

nonempty preimages under δ of the subsets of
∏n

i=1 Ai which are determined
by the classical Holland schemata having exactly one fixed position in the jth

gene. Explicitly, Xδ
j = {δ−1(

∏n
i=1 Ti) | Tj = {aj} for some aj ∈ Aj and Ti =

Ai for i �= j} − {∅}.

Definition 19 To shorten the notation we shall denote by G{Ai}n
i=1

the heuristic
3-tuple representing the classical genetic algorithm, and by P{Ai}n

i=1
the the

heuristic 3-tuple representing the random respectful recombination algorithm
with the underlying search space

∏n
i=1 Ai.

The following theorem is an immediate consequence of corollary 12:

Theorem 20 Given a heuristic 3-tuple Ω = (Ω, F , M), and a function δ :
Ω →∏n

i=1 Ai, the following are true:
1. δ : Ω → P{Ai}n

i=1
is a morphism of heuristic 3-tuples if and only if ∀ 1 ≤

j ≤ n every forma in Xδ
j (see definition 18) is invariant under F (if and only

if every forma in Xδ
j is a member of ΛF).

2. δ : Ω → G{Ai}n
i=1

is a morphism of heuristic 3-tuples if and only if ∀ 1 ≤
j ≤ n every union of forma in Xδ

j (see definition 18) is invariant under F (if
and only if for every subset of forma Y ⊆ Xδ

j we have (
⋃

S∈Y S) ∈ ΛF).

Proof. In case of a random respectful recombination all forma in Xδ
j , and, in case

of a classical genetic algorithm, all unions of forma in Xδ
j are precisely the preim-

ages under δ of the sets in Λ̃Γ where Γ is the family of Holland transformations
in case of random respectful recombination, and the family of masked crossover
transformations in case of a classical genetic algorithm (see examples following
corollary 12). The desired conclusion now follows at once from corollary 12.

The difference between theorem 20 and results like theorem 25 of [9] is that the-
orem 20 classifies all possible re-encodings of a given evolutionary search algo-
rithm in terms of a given genetic algorithm (or in terms of a “random respectful
recombination”) while Radcliffe’s results provide a foundation for designing a
genetic algorithm to model a specific problem in question.
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5 Conclusions

In the current paper the following contributions have been made:
1. An appropriate notion for comparing evolutionary computation techniques

via their representation (a morphism between heuristic 3-tuples) has been intro-
duced. (See definition 4)

2. An important connection between the family of invariant subsets of the
search space (see definition 1) and the morphisms of heuristic 3-tuples has been
established (see corollary 12).

3. A binary semi-genetic algorithm has been introduced and it was shown
that virtually any evolutionary heuristic search algorithm can be embedded into
a binary semi-genetic algorithm (see theorem 14 and corollaries 15 and 16).

4. All possible morphisms (re-encodings and coarse graining) of a particu-
lar evolutionary heuristic search tuple by a classical genetic algorithm, or by a
random respectful recombination have been characterized in terms of Radcliffe’s
forma (see theorem 20).
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