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Abstract. Linkage identification algorithms identify linkage groups —
sets of loci tightly linked — before genetic optimizations for their recom-
bination operators to work effectively and reliably. This paper proposes
a parallel genetic algorithm (GA) based on the linkage identification al-
gorithm and shows its effectiveness compared with other conventional
parallel GAs such as master-slave and island models. This paper also
discusses applicability of the parallel GAs that tries to answer “which
method of the parallel GA should be employed to solve a problem?”

1 Introduction

To solve large, complex combinatorial optimization problems, parallelization of
optimization algorithms is crucial. Evolutionary computation models such as
genetic algorithms (GAs) are considered suitable for parallel computation be-
cause they deal with a number of strings that can be processed independently in
their fitness evaluations and genetic operators such as mutations and crossovers.
Therefore, the parallel GA is an active research area and a number of papers
have been published in this area. Typical approaches of the parallel GAs are
master-slave models, island models, massively parallel GAs, and so on. Although
they succeeded in parallelizing GAs, it does not mean that they succeeded in
parallelizing their optimization, in other words, they can reduce time to obtain
optimal solutions properly as compared with the number of processors employed.
Speedup analysis is essential to discussing efficiency of parallel GAs. Cantu-Paz
et. al[T] performed theoretical and empirical analysis on speedup for master-slave
models, island models, and so on. The analysis shows the conditions for the mod-
els to work effectively; for example, master-slave models work effectively when
time to evaluate fitness is much greater than that for communications among
processors. In this paper, we first review and discuss current technologies and
the conditions that they work effectively.

Discussing efficiency of parallelizations, we need to discuss effectiveness of
the GA itself in solving a problem. This is because when a GA (with some op-
erators, selection schemes, etc.) cannot solve a problem essentially, we cannot
solve the problem even though parallelized version of the GA is employed. This
happens especially when we employ simple GAs to solve difficult problems that
have deceptiveness and encoded strings do not have tight linkage. If linkage is
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A Parallel Genetic Algorithm Based on Linkage Identification = 1223

loose, building blocks are easily disrupted by simple crossovers and therefore
genetic optimizations are easily trapped into deceptive attractors. On the conse-
quence of this, we cannot expect the GA to obtain optimal solutions because it
is easily converged to local optima. To solve this problem, linkage identification
procedures such as the LINC (Linkage Identification by Nonlinearity Check) [7
6] and the LIEM (Linkage Identification with Epistasis Measures) have been
proposed to identify linkage groups — sets of loci tightly linked to form building
blocks. The merit of this approach is not only it can avoid disruption of build-
ing blocks but also it can easily be parallelized because its calculation is highly
independent. This paper discusses merit of the parallel GA based on the linkage
identification compared with conventional parallel GAs.

2 Parallel GAs

A number of papers have been published on parallel GAs. Majority of them are
classified into the following categories:

— master-slave models that parallelize fitness evaluations
island models that divide a population into subpopulations
massively parallel GAs that place strings on a mesh, etc.
hierarchical models that combine more than two methods

A master-slave model consists of a master that performs GAs and slaves that
evaluate fitness values. This model performs fitness evaluations in parallel to
enhance its performance. To apply this model, communication overheads should
be relatively small compared with time to evaluate fitness values. This is analyzed
by Cantu-Paz[l] in his doctoral thesis. In the following analysis based on his
thesis, we denote time to evaluate a fitness value as Ty, communication time
between processors as T, the overall population size as n and the number of
processors of the target parallel machine as P. We can easily calculate overall
execution time 7T}, by the P-processor parallel machine as follows:

T
T, = PT, + %. (1)

Speedup factor S is obtained by calculating nTy/T),:

TLTf an

=S __ "/
T, ~ PT.+nTy/P

(2)

This is illustrated in figure [Il This figure shows that parallelization by the
master-slave model is effective when Ty > T..

From the above calculations, we obtain the optimal number of processors P*
that maximizes the speedup factor S as follows:

P* = \/nT}/T.. (3)
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Fig. 1. Speedup by master-slave PGAs

Island models also called subpopulation-based parallel GAs divide a popula-
tion into subpopulations assigned to processors. Each processor performs a GA
for its subpopulation and migrates strings between subpopulations to exchange
building blocks. Even though speedup realized by this model is relatively small
as illustrated in figure 2] this is considered natural implementation of parallel
GAs and may be employed when master-slave models does not work effectively.

Speedup
300
250 o = = = Linear
200 ""' ---110
150 -
100 +

50 -

# of processors

0 50 100 150 200 250 300

Fig. 2. An Empirical Result of Speedup by an island model PGA

The parallel GAs based on the island model expect that each subpopulation
searches different candidates of building blocks to be exchanged among them,
however, such favorable situations may not be realized in some problems. For
example, when fitness contribution of building blocks to overall fitness is ex-
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Fig. 3. Ratio of BBs correctly identified by an island model

ponentially decreasing (or increasing), all subpopulations must search the same
building block with maximum fitness contribution at first, then search that with
the second maximum, and so on. This is reported by Goldberg in discussing
continuation operators[4].

Figure B] shows that subpopulation-based parallel GAs performs well when
fitness contribution of building blocks is uniform and their performance gets
worse when the contribution becomes exponential. In the figure, we employ the
sum of 5-bit trap functions as a test function and we assign a weight w; to each
i-th trap subfunction (i = 1,2, ---,20). In uniform case, w; = 1 for all 7. In expo-
nential case, wy = 1.0 and w; = r X w;_1, that is, the weights are exponentially
decreasing. When r < 1/2, the sum of all weights for ¢ = 2,3, - - - becomes smaller
than wy, the maximum weight value. This means that fitness contribution by the
first BB exceeds those for the sum of other BBs, and therefore at first only the
BB with the maximum weight should be found in all the subpopulations. This
is because diversity cannot be ensured even though a number of subpopulations
are employed in the island models.

3 Linkage Identification

A series of linkage identification techniques have been proposed to ensure tight
linkage among loci to form building blocks. The Linkage Identification by Non-
linearity Check (LINC)[ZJ6] identifies linkage groups by introducing bit-wise per-
turbations for pairs of loci to detect nonlinear interactions of fitness changes. In
the LINC, we calculate the following values for each pair of loci (4, j) and for all
the strings s in a randomly initialized population that has O(c2¥) strings where
c is a constant and k is the maximum order of linkages:
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where f(s) is a fitness functions of a string s and §; =1—3s; (0 > 1 or 1 — 0)
stands for a bitwise perturbation at the i-th locus. We can consider the following
two cases:

1. If Af;;(s) # Afi(s)+Af;(s), then s; and s; are surely members of a linkage
group, so we add ¢ to the linkage group of locus j and add j to the linkage
group of locus 1.

2. If Afij(s) = Afi(s) + Afj(s), then s; and s; may not be a member of a
linkage group, or they are linked but linearity exists in the current context.
We do nothing in this case.

The LINC checks the above conditions for all the string s in a population.
When the nonlinear condition Af;;(s) # Af;(s)+ Af;(s) is satisfied for at least
one string s, the pair (¢,7) should be considered to be tightly linked. This is
because a pair of loci can be optimized independently when linearity is detected
for all the string. The detection of nonlinearity is the key idea of the LINC.

The Linkage Identification with Epistasis Measures (LIEM) extends the idea
of the LINC by introducing an epistasis measure that represents tightness of
linkage based on the nonlinearity conditions of the LINC. The epistasis measure
of the LIEM is defined as follows:

eij = max|Afij(s) = (Afi(s) + Af;(s))]; ()

where Afi(s), Afj(s), Afi;(s) are the same as those in equations (H).

This measure shows the maximum distance from where the LINC condition is
satisfied, therefore, this shows a degree of dissatisfaction of the condition. When
the measure for a pair of loci (i, j) is equal to zero, the pair should be separable
from the LINC conditions. By introducing the epistasis measure, we can relax
strict condition of the LINC and can introduce a clear definition of tightness of
linkage for pairs of loci.

Figure ] shows the algorithm of the LIEM. First, we randomly initialize a
large enough initial population. From theoretical investigations for the LINC, we
need to have O(k2*) strings in a population to identify linkage groups of order
k. Secondly, we calculate an epistasis measure e;; for each pair of loci (4, j) by
applying perturbations to the pair of loci. After the calculations, the measures
are sorted by descendent order. Linkage groups are generated by picking up loci
from the first to the k-th sorted measures.

Although the algorithm of the LIEM seems too simple to identify accurate
linkage groups, it can identify 100% correct linkage groups for problems with
linear combinations of nonlinear subfunctions such as the sum of trap functions
even though their bit positions are randomly encoded, and it also achieves accu-
rate identifications for quasi-linear or weak nonlinear combinations of nonlinear
subfunctions such as weak nonlinear functions of the sum of trap functions[s].
This is because the LIEM differentes strong nonlinearity from linear or weak
nonlinear interactions.
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algorithm LIEM

N = c*2/difficulty;
P = initialize N strings;
/* Calculate epistasis measure e[i][j] */
fori=0tol-1
forj=0tol-1
e[illi] = 0;
ifi !=j then
foreachsin P
s’ = perturb(s, i);
f1 = fitness(s’) - fitness(s);
s” = perturb(s, j);
f2 = fitness(s”) - fitness(s);
s = perturb(s, j);
f12 = fitness(s™) - fitness(s);
ep[s] = 1f12 - (f1+f2)];
if(ep[s] > e[il[j]) then efi][j] = epls];
endfor
endif
endfor
endfor
/* Generate linkage group I[i][K]
where k=0, 1,..., difficulty-1 */
fori=0tol-1
forj=0tol-1
id[j] =j;
endfor
sort e[i][j] with j by descendent order;
/* select linkages */
for k = 0 to difficulty-1
if(e[il[k] > epsilon) I[i1[K] = id[i][K];
else break;
endfor
endfor

Fig. 4. The Linkage Identification with Epistasis Measure (LIEM)

4 A Parallel GA Based on Linkage Identification

In this paper, we propose a parallel GA based on the linkage identification tech-
nique. The linkage identification algorithms such as the LINC and the LIEM are
easy to parallelize, because their calculations of epistasis measures are considered
highly independent. Figure Bl illustrates an execution flowchart of our method.
To parallelize linkage identifications, we assign calculations of epistasis mea-
sures to processors in a parallel computer. First, a master processor randomly
initializes a population of N = O(k2*) strings and broadcasts them to all the
slave processors. As a consequence of this, all the processors have the same pop-
ulation and they can calculate their assigned epistasis measures. Computational
cost for calculating epistasis measures for all the pair of loci is O(I?) (more pre-
cisely, we need to calculate (12 —[)/2 epistasis values). In order to calculate one
epistasis measure, we need to evaluate 3NV fitness values because calculations of
Afi(s), Afj(s), Afij(s) are necessary for each s in the population. After cal-
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Initialize a population

Generate linkage groups

8. Collect BB candidates

Inter GA 9. Perform an Inter GA to obtain solution(s)

1. Randomly Initialize a population of O(k2 k) strings

2. Broadcast the population to processors

4. Collect epstasis measures

3. Parallel calculations of epstasis measures

5. Generate linkage groups based on epstasis measures

6. Assign schemata to each linkage group

7. Parallel execution of Intra GAs

Fig. 5. An overview of PGA based on linkage identification

culations of the epistasis measures, they are collected to the master processor
which generates linkage groups based on them. This is essentially the same as
the serial version of the LIEM.

When we have P processors in a parallel computer, overall computation time

T, for the parallel linkage identification becomes as follows:
3NT((I?2 —1)/2
nz——i%—lL+nN+ﬂm—n, (6)

where Ty and T are the same as in equation () and 77, is the time to send/receive

one epistasis measure (T, < T.). Similar to the master-slave model, we can

calculate speedup factor S for the proposed algorithm as follows:
3TN (12 —1)/2

3Ty N(2-1)/2 :

SNV L TN + TI(12 — 1) /2

S = (3T;N(® — 1)/2)/T, = (7)

We can expect effective parallelization with this algorithm because communica-
tion time to send an epistasis measure is much smaller than that for calculating
it.

After the generation of linkage groups, we perform Intra GAs in slave pro-
cessors to search candidates of building blocks and an Inter GA in the master
processor to mix and test the candidates to find optimal solutions. The Intra
GAs and the Inter GA were originally introduced in a report that proposes a
GA based on the LINC[6]. To perform the Intra GAs, we divide initial strings
into schemata based on the obtained linkage groups. Figure [0l illustrates this
decomposition process.

The Intra GA applies ranking selections, uniform crossovers and simple mu-
tations to search candidates of building blocks in the linkage group. To evaluate
schemata, competitive template in messy GA[3] is employed. After the Intra
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Linkage groups
Perform an Intra GA
(034)(/\)\(5 8) for linkage group (12 6 7)
K N 4 N\
01 2|3 4 5(6 7|8 o1 2)3 4 5(5 7\8
[oJo[1]o]1]1]1]o]o0] Clola [ T-T-[1To]~]
>
([T ol1 1 o] ]o0] Chh T ol ]
>
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n n
n n
n n
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N N N AN
\\§ J \\§ J
A population of strings A population of schemata

for linkage group (126 7)

Fig. 6. Division of strings into schemata based on linkage groups

GAs, we select a limited number of well-performed schemata as building block
candidates in each linkage group.

The Inter GA processes obtained building block candidates by applying
crossovers based on the linkage groups and ranking selections repeatedly. Figure
[ shows crossover operator of the Inter GA. Building block candidates are mixed
by this operator and their combinations are tested through selections in order
to obtain optimal solutions.

Linkage groups .
Exchange substrings
(034) ( ) (68) for linkage group (126 7)
01 2|3 45(6 7|8 of1 2)3 4 5(6 7\8
Lo o1 [1 48] 0] [o[s1]o 1T1]6Tc]0]
—
[ofaT+]o o 1 [ofo]o] REERNRNEER
/ / / /

Fig. 7. Crossover operator of the Inter GA

5 Empirical Results

We perform numerical experiments for the proposed parallel GA based linkage
identification. We employ the following weighted sum of trap subfunctions as a
test function.
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L
Fls) = S wifi(us). (8)
=1

where w; > 0 is the weight of subfunction f; of unitation u; (the number of 1’s
in the K-bit i-th substring of s) defined as follows:

fi(“i):{ K if u; = K ©)

In the following experiments, we consider the following two cases:

Uniform : All weights have the same value: w; = 1 for all 1.
Exponential : Weights are exponentially decreasing: wy = 1, w; = rw;—1 (i =
2,3,--+,L,0<r<1)

Fig[8 shows the result on speedup by the parallel GA based on linkage iden-
tification. In this experiment, we employ uniform case of the test function. For
exponential functions, similar result should be obtained because linkage iden-
tification algorithms do not depend on scaling of the fitness function. In this
experiment, we change ratio of time for fitness evaluations (T) and that for
communications (7).

Speedup

20

= = Linear
11
—-=-1:10
— —1:100
—1:1000
—--=1:10000

(Tf: Te)

- ' # of processors
0 2 4 6 8 10 12 14 16 18 20

Fig. 8. Speedup by a PGA with linkage identification

This result shows that the PGA with linkage identification achieves near
linear speedup except when communication overheads are extraordinary large
compared with those for fitness evaluations. (Note that ratios of Ty and T, in
this figure are different from those in the figure [I1)
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In figure [0, we compare overall performances of an island model PGA to
that with parallel linkage identification for the exponential test function. In the
figure, the x-axis shows problem size (total length of the string = LK) and the
y-axis shows overall time to obtain optimal solutions (xT%). In this experiment,

we assume the parallel machine has 8 processors and we optimize population
size for each model and each string length.

Time (x Tf)

1400000

1200000

= = = Island model
Linkage identification

1000000

800000

600000

400000

200000

0

= length
0 50 100 150 200

Fig. 9. Problem size vs. time (exponential function)

Time (x Tf )
1000000
800000 |

= = = Island model
Linkage identification
600000 |

400000

200000 |

0 200 400 600 800 1000 *of processors

Fig. 10. # of processors vs. time (uniform function)

This figure shows that PGA with linkage identification can find optimal solu-
tions with less computational cost compared with that based on an island model
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when string length is larger than around a hundred. This is because an island
model cannot search effectively a variety of building blocks in their subpopu-
lations, on the other hand, the PGA based on linkage identification can search
building block candidates separately in each linkage group. Another reason for
the performance difference is that an island model needs larger population size
when signal difference of subfunctions becomes small. This is easily understood
from the equation of population sizing calculated by Goldberg et. al[2] as follows:

a

n= 20,%?, (10)
where n is the necessary initial population size, ¢ is a constant determined by
sampling noise, k is the cardinarity of competing schemata, o, is the standard
deviation of the fitness distribution, and d is the signal difference of the fitness
between the best and the second best schemata.

When signal difference of fitness d in the equation becomes smaller, the pop-
ulation size n necessary to obtain optimal solutions becomes larger. In the expo-
nential case, when string length becomes longer, minimum difference of the fit-
ness decreases exponentially, therefore, an island model PGA needs much larger
size of population. In contrast, the PGA with linkage identification do not de-
pend on such fitness scaling effect and its necessary population size is constant
with respect to signal differences.

Figure [I0 shows time to obtain optimal solutions for an island model PGA
and that with linkage identification for the uniform case. In this figure, the x-axis
shows the number of processors employed and the y-axis shows the time to obtain
optimal solutions. In this experiment, we employ a uniform test function whose
string length is 500, and we optimize initial population size for both models.

This figure clearly shows that the island model performs better than the PGA
with linkage identification in the uniform test function. This is because an island
model works effectively by maintaining variety of building block candidates in
each subpopulation. On the other hand, PGA with linkage identification needs
relatively large computational overheads to obtain accurate linkage information.

6 Conclusions

In this paper, we propose a PGA based on linkage identification. The PGA
achieves quasi-linear speedup except when communication overheads is ex-
tremely large compared with that for fitness evaluations. In summary, we can
select one of the PGA models to solve optimization problems according to the
following guidelines:

— If the problem is difficult to ensure tight linkage in advance with prior knowl-
edge, linkage identifications are necessary which can be parallelized easily.

— If time to evaluate fitness values are much larger than that of communications
among processors, the master-slave models work effectively.
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— If the fitness function of the problem consists of uniformly weighted subfunc-
tions, island models can maintain diversity of building block candidates and
are expected to perform well.

— If the fitness function consists of non-uniform subfunctions whose weights
are largely different, parallel linkage identifications are expected to perform
better than island models.

Our future works includes applications of the proposed model to real world
design problems such as broadband network design problems, and we also plan
to compare the PGA with linkage identification with parallelized version of ad-
vanced GAs and estimation of distribution algorithms such as the Bayesian op-
timization algorithm.
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