
Design of Multithreaded Estimation of
Distribution Algorithms

Jiri Ocenasek1, Josef Schwarz2, and Martin Pelikan1

1 Computational Laboratory (CoLab), Swiss Federal Institute of Technology ETH
Hirschengraben 84, 8092 Zürich, Switzerland
jirio@inf.ethz.ch,pelikanm@inf.ethz.ch

2 Faculty of Information Technology, Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

schwarz@fit.vutbr.cz

Abstract. Estimation of Distribution Algorithms (EDAs) use a prob-
abilistic model of promising solutions found so far to obtain new can-
didate solutions of an optimization problem. This paper focuses on the
design of parallel EDAs. More specifically, the paper describes a method
for parallel construction of Bayesian networks with local structures in
form of decision trees in the Mixed Bayesian Optimization Algorithm.
The proposed Multithreaded Mixed Bayesian Optimization Algorithm
(MMBOA) is intended for implementation on a cluster of workstations
that communicate by Message Passing Interface (MPI). Communica-
tion latencies between workstations are eliminated by multithreaded pro-
cessing, so in each workstation the high-priority model-building thread,
which is communication demanding, can be overlapped by low-priority
model sampling thread when necessary. High performance of MMBOA
is verified via simulation in TRANSIM tool.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [1], also called Probabilistic
Model-Building Genetic Algorithms (PBMGAs) [2] and Iterated Density Es-
timation Evolutionary Algorithms (IDEAs) [3], have been recently proposed as
a new evolutionary technique to allow effective processing of information rep-
resented by sets of high-quality solutions. EDAs incorporate methods for auto-
mated learning of linkage between genes of the encoded solutions and incorporate
this linkage into a graphical probabilistic model. The process of sampling new in-
dividuals from a probabilistic model respects these mutual dependencies, so that
the combinations of values of decision variables remain correlated in high-quality
solutions. The quality of new offspring is affected neither by the ordering of genes
in the chromosome nor the fitness function epistasis. It is beyond the scope of
this paper to give a thorough introduction to EDAs, for a survey see [2,1].

Recent work on parallel Estimation of Distribution Algorithms concentrated
on the parallelization of the construction of a graphical probabilistic model,
mainly on the learning of structure of a Bayesian network. The Parallel Bayesian

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1247–1258, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

1248 J. Ocenasek, J. Schwarz, and M. Pelikan

Optimization Algorithm (PBOA) [4] was designed for pipelined parallel architec-
ture, the Distributed Bayesian Optimization Algorithm (DBOA) [5] was designed
for a cluster of workstations and the Parallel Estimation of Bayesian Network
Algorithm (Parallel EBNABIC) [6] was designed for MIMD architecture with
shared memory, also called PRAM.

Exponential size of the tabular representation of local conditional probability
distributions emerged as a major problem in learning Bayesian networks. The
most advanced implementations of EDAs use decision trees to capture local dis-
tributions of a Bayesian network more effectively. Nevertheless, parallelization
of EDAs using Bayesian networks with decision trees has not been tackled yet.
This paper – although applicable to parallel Bayesian network learning in gen-
eral – deals especially with the parallel learning of decision trees and proposes
advanced multithreaded techniques to accomplish it effectively.

The following section introduces the principles of Estimation of Distribution
Algorithms. We identify the disadvantages of Bayesian network with tabular rep-
resentation of local structures and motivate the usage of decision trees. Section 3
provides an overview of present parallel Estimation of Distribution Algorithms.
We identify the main differences between them, analyze the way these algorithms
learn dependency graphs and derive design guidelines. In Sect. 4 a new Multi-
threaded Mixed Bayesian Optimization Algorithm is proposed. We develop an
original technique for parallel construction of Bayesian networks with decision
trees using a cluster of workstations. Additional efficiency is achieved on a mul-
tithreaded platform, where the communication latencies between workstations
are overlapped by switching between model-building thread and model-sampling
thread. The efficiency and scalability of the proposed algorithm is verified via
simulation using TRANSIM tool and demonstrated in Sect. 5.

2 Estimation of Distribution Algorithms

2.1 Basic Principles

The general procedure of EDAs is similar to that of genetic algorithms (GAs),
but the traditional recombination operators are replaced by (1) estimating the
probability distribution of selected solutions and (2) sampling new points ac-
cording to this estimate:

Set t := 0;
Randomly generate initial population P(0);
while termination criteria are not satisfied do begin
Select a set of promising parent solutions D(t) from P(t);
Estimate the probability distribution of the selected set D(t);
Generate a set of new strings O(t) according to the estimate;
Create a new pop. P(t+1) by replacing part of P(t) by O(t);
Set t := t+1;

end

Design of Multithreaded Estimation of Distribution Algorithms 1249

2.2 EDAs with Bayesian Network Model

First EDAs differed mainly in the complexity of the used probabilistic models. At
the present time Bayesian networks have become most popular for representing
discrete distributions in EDAs because of their generality. For the domain of
possible chromosomes X = (X0, . . . , Xn−1) the Bayesian network represents a
joint probability distribution over X. This representation consists of two parts
– a dependency graph and a set of local conditional probability distributions.

The first part, the dependency graph, encodes the dependencies between val-
ues of genes throughout the population of chromosomes. Each gene corresponds
to one node in the graph. If the probability of the value of a certain gene Xi is
affected by a value of another gene Xj , then we say that “Xi depends on Xj”
or “Xj is a parent variable of Xi”. This assertion is expressed by the existence
of an edge (j, i) in the dependency graph. A set of all parent variables of Xi,
denoted Πi, corresponds to the set of all starting nodes of edges ending in Xi.
The second part, the set of local conditional probability distributions p(Xi|Πi),
is usually expressed in the tabular form.

The well known EDA implementations with the Bayesian network model are
the Bayesian Optimization Algorithm (BOA) [7], the Estimation of Bayesian
Network Algorithm (EBNA) [8] or the Learning Factorized Distribution Algo-
rithm (LFDA) [9].

2.3 EDAs with Decision Tree Models

For each possible assignment of values to the parents Πi, we need to specify a
distribution over the values Xi can take. In its most naive form, local conditional
probability distributions p(Xi|Πi) are encoded using tabular representation that
is exponential in the number of parents of a variable Xi. More effective repre-
sentation can be obtained by encoding local probability distributions using n
decision trees. Since decision trees usually require less parameters, frequency
estimation is more robust for given population size N .

The implementation of the Bayesian Optimization Algorithm with decision
trees appeared in [10] and an extension of this idea for continuous variables
resulted in the Mixed Bayesian Optimization Algorithm (MBOA) [11]. See also
[12] for the multiobjective version of MBOA with epsilon-archiving approach.

3 Parallel Estimation of Distribution Algorithms

3.1 Performance Issues

The analysis of BOA complexity identifies two potential performance bottlenecks
– the construction of a probabilistic model and the evaluation of solutions. It
depends on the nature of final application which part of MMBOA should be
parallelized.

For problems with computationally cheap fitness evaluation – such as spin
glass optimization with complexity O(n∗N) – great speedup can be achieved by

1250 J. Ocenasek, J. Schwarz, and M. Pelikan

parallelizing model construction, which can take O(n2∗N ∗ log(N)) steps in each
generation. On the other hand, for problems with expensive fitness evaluation –
such as ground water management optimization [13] – fitness evaluation should
be also parallelized to achieve maximum efficiency.

In this paper we focus only on the parallelization of model building because
it is not straightforward and needs special effort to be done effectively whereas
the parallel evaluation of solutions can be done in obvious way and you can
find many papers on this topic. For further analysis of parallelization of fitness
evaluation see Cantú-Paz [14].

3.2 Parallel Learning of Dependency Graph

All present parallel EDAs use greedy algorithms driven by statistical metrics to
obtain the dependency graph. The so-called BIC score in EBNA [8] algorithm
and also the Bayesian-Dirichlet metric in PBOA [4] and DBOA [5] algorithms
are decomposable and can be written as a product of n factors, where the i-th
factor expresses the influence of edges ending in the variable Xi. Thus, for each
variable Xi the metrics gain for the set of parent variables Πi can be computed
independently. It is possible to utilize up to n processors, each processor corre-
sponds to one variable Xi and it examines only edges leading to this variable.

The addition of edges is parallel, so an additional mechanism has to be used
to keep the dependency graph acyclic. Parallel EBNA uses master-slave architec-
ture, where the addition of edges is synchronous and controlled by the master.

PBOA and DBOA use predefined topological ordering of nodes to avoid cycles
in advance. At the beginning of each generation, a random permutation of num-
bers {0, 1, ..., n − 1} is created and stored in an array o = (o0, o1, ..., on−1). The
direction of all edges in the network should be consistent with the ordering, so
the addition of an edge from Xoj

to Xoi
is allowed if only j < i. The advantage is

that each processor can create its part of the probabilistic model asynchronously
and independently of other processors. No communication among processors is
necessary because acyclicity is implicitly satisfied. The network causality might
be violated by this additional assumption, but according to our empirical experi-
ence the quality of generated network is comparable to the quality of sequentially
constructed network (see [4]).

3.3 Parallel Offspring Generation

The difference between various parallel EDAs arises more if we analyze how the
offspring is generated.

PBOA was proposed for fine-grained type of parallelism with tightly con-
nected communication channels. It can generate offspring in a linear pipeline
way, because in the fine-grained architecture there are negligible communication
latencies. It takes n cycles to generate the whole chromosome, but n + N cycles
to generate the whole population. For example let us consider the generation of
first offspring chromosome. Its o0-th bit is generated independently in processor
number 0 at time t. Then, its o1-th bit is generated in processor number 1 at time

Design of Multithreaded Estimation of Distribution Algorithms 1251

Genes 0 ... n−1

Individuals 0 ... N
−

1

PBOA

.

.....

Genes 0 ... n−1

Individuals 0 ... N
−

1

DBOA

C
P

U
 1 CPU 1

CPU m−1

CPU 0

C
P

U
 0

C
P

U
 m

−1
Fig. 1. Comparison of offspring generation. PBOA distributes the work between pro-
cessors “horizontally” and DBOA “vertically”.

t+1 conditionally on the o0-th bit received from neighbouring processor number
0, etc. Generally, Xoi is generated in CPU number i at time t + i conditionally
on Πoi ⊆ {Xo0 , ..., Xoi−1}. The advantage is that each conditional probability
distribution is sampled locally at the place where it has been estimated.

In DBOA case communication delays are too long to use pipelined generation
of offspring. Thus, DBOA uses distributed generation of offspring, each processor
generates one complete subpopulation of chromosomes. See Fig. 1 for compar-
ison of both types of offspring generation. Note that for this kind of offspring
generation each processor needs to use a complete probabilistic model, which
is constructed piecewise. Thus, gathering of local parts of model is a necessary
step between model estimation and offspring generation, when each processor
exchanges its part of model with the other processors.

In the case of parallel EBNA the target architecture is aimed to be the
shared-memory MIMD, so the problem with the distribution of new population
does not occur, the shared memory architecture allows for both “horizontal” as
well as for “vertical” layout.

4 Multithreaded Mixed Bayesian Optimization
Algorithm

The Mixed Bayesian Optimization Algorithm (MBOA) [11] uses a set of decision
trees to express the local structures of Bayesian network. Its implementation
was described in detail in [11]. It is suitable for both continuous and/or discrete
optimization problems. In this paper we propose its parallel version. The target
architecture for parallel MBOA is the cluster of workstations connected with the
hardware switch.

1252 J. Ocenasek, J. Schwarz, and M. Pelikan

4.1 Parallel Decision Trees Construction

Some principles identified in Sect. 3 are useful for MBOA too. Namely in the
model learning step the concept of restricted ordering of nodes from DBOA can
be used again to keep the dependencies acyclic and to remove the need for com-
munication during parallel construction of the probabilistic model. An ordering
permutation (o0, o1, ..., on−1) means that only the variables {Xo0 , ..., Xoi−1} can
serve as splits in the binary decision tree of target variable Xoi . The drawback
of predetermined ordering of nodes is that each tree can be constructed inde-
pendently of the other trees, which allows for efficient parallelization. Moreover,
it significantly reduces memory requirements for temporary data structures be-
cause only one decision tree is constructed at each time. In binary case the
simplified code for building one decision tree is:

function BuildTree(Population Pop, TreeIndex i,
Permutation o): DecisionTreeNode;

begin
for j:=0 to i-1 do
if X[o[j]] has not been used as the split in i-th tree yet
Evaluate the gain of X[o[j]] split for X[o[i]] target;

Pick the split X[o[j’] with the highest metrics gain;
if model complexity penalty > gain of X[o[j’]

return new UnivariateProbabilityLeaf(X[o[i]],Pop);
Pop1 := SelectIndividuals (Pop,"X[o[j’]] = 0");
Pop2 := SelectIndividuals (Pop,"X[o[j’]] = 1");
return new SplitNode(new SplitVariable(X[o[j’]]),

BuildTree(Pop1,i,o), BuildTree(Pop2,i,o));
end

4.2 Parallel Decision Trees Sampling

In MBOA the decision trees are used also for continuous or mixed domains, so the
decision nodes in the trees can have parameters of various types: real numbers
for splitting on real-coded parameters, sequences of integers for splitting on
categorical parameters, etc. Also the leaf nodes in the trees can contain various
structured parameters: a list of Gaussian kernels, a list of Gaussian network
coefficients, probability bias for binary leaves, etc.

It is a very time consuming task for each process to communicate the whole
decision tree. It would be far more natural if each decision tree could be used
exactly at the same workstation where it has been built. Thus, the goal of our
design is to propose the parallel MBOA that uses the “horizontal” layout for
offspring generation (see Fig. 1 left), but we would like parallel MBOA to be
suited for coarse-grained platform, where the long communication latencies force
us to use the “vertical” layout. To solve this problem, we interlace the model
building task with the offspring generation task.

Each workstation uses two threads – a high priority thread for building the
decision tree and a low priority thread for sampling previously built decision

Design of Multithreaded Estimation of Distribution Algorithms 1253

trees. The model building thread has to communicate with the master worksta-
tion to get the job and the model sampling threads have to communicate with
other workstations to exchange the generated parts of offspring. By switching
the threads it is possible to avoid most of the communication delays.

4.3 Multithreaded Processing and TRANSIM Tool

To switch the threads automatically and effectively, we presume workstations
with multithreading capabilities. In simultaneous multithreading (SMT) one or
more additional threads can take up the slack when the processor cannot con-
tinue execution for any reason. Since this is done by switching the active register
set, without the need to copy the registers off to slower memory, the switch can
be very fast. SMT capabilities, while not giving the performance of multiple
processors, are very inexpensive to incorporate into the processor, because the
execution units need not be replicated.

Although these days SMT becomes very popular – especially with the new
Intel’s Hyper-Threading(HT) technology – the current implementation of MPI
standard does not support multithreaded processing to implement Multithreaded
MBOA. Another possibility was to use the multitasking nature of Unix system,
but we were looking for a concept at higher level of abstraction.

Finally, we decided to simulate the multithreaded MBOA using the well
known TRANSIM tool. TRANSIM is a CASE tool used in the design of parallel
algorithms. Its major function is the prediction of time performance early in the
life cycle before coding has commenced. The TRANSIM language is a subset of
transputers’ Occam language with various extensions. It is not intended as a gen-
eral purpose programming language, but to provide a control structure whereby
the performance properties of an application may be expressed. Parallel execu-
tion, alternation, channel communication, time-slicing, priorities, interruption,
concurrent operation of links and the effects of external memory are taken into
account.

4.4 Multithreaded MBOA Design

The whole architecture of multithreaded MBOA is shown in Fig. 2. The farmer
thread is responsible for dynamic workload assignment, builder threads are re-
sponsible for building decision trees and generator threads are responsible for
generating new genes. Buffer threads are used only for buffering dataflow be-
tween builders and generators, because TRANSIM does not implicitly support
buffered channels. Threads builder i, buffer i and generator i are mapped to the
same i -th workstation.

The processes in TRANSIM communicate through pairwise unidirectional
channels. The array of external channels ch.master.in is used by farmer to
receive the job requests and the array of external channels ch.master.out is
used to send the jobs to builders. A two-dimensional array of external channels
ch.network is used to transfer the partially generated population between gen-
erators. The internal channels ch.buffer.in, ch.buffer.req and ch.buffer.out are

1254 J. Ocenasek, J. Schwarz, and M. Pelikan

used for exchange of local parts of model (decision tree) between builder and
generator.

The principles of the most important threads builder and generator will be
illustrated by fragments of TRANSIM input file. For those readers non-familiar
with the statements of TRANSIM input language the non-intuitive parts will be
re-explained afterwards. The complete code can be downloaded from web page
http://jiri.ocenasek.com/.

First see the code fragment of the builder thread:

PLACED PAR i=0 FOR NUMWORKERS
INT prev,next,j,prefetch.prev,prefetch.next,prefetch.j:
SEQ | builder
ch.farmer.in[i] ! i | REQ.LENGTH
ch.farmer.out[i] ? prefetch.j
ch.farmer.out[i] ? prefetch.prev
ch.farmer.out[i] ? prefetch.next
WHILE prefetch.j < n
SEQ
j := prefetch.j
next := prefetch.next
gene := prefetch.gene
PRI PAR
SEQ | getjob
ch.farmer.in[i] ! i | REQ.LENGTH
ch.farmer.out[i] ? prefetch.j
ch.farmer.out[i] ? prefetch.prev
ch.farmer.out[i] ? prefetch.next

SEQ | build
ch.buffer.in[i] ! prev | WORK.LENGTH
SERV(j*TIMESLICE)
ch.buffer.in[i] ! j | WORK.LENGTH
ch.buffer.in[i] ! next | WORK.LENGTH

Each builder requests for a job via ch.farmer.in[i] and it receives job info from
ch.farmer.out[i]. More precisely, it receives the job number j, the number of
workstation working on job j − 1 and the number of workstation requesting the
farmer for job j + 1.

The useful computation is simulated by a SERV() command. You see that
for fixed population size the time for building the decision tree for gene Xoj

is
proportional to j and is scaled by TIMESLICE constant, according to empirical
observations on sequential MBOA. The building of the decision tree is overlapped
by high priority communication (see the sequence named “getjob”) which serves
for prefetching the next job from farmer.

Now see the code of generator thread. This fragment is very simplified, ig-
noring the initial stage of generating independent genes and the final stage of
broadcasting the full population:

http://jiri.ocenasek.com/

Design of Multithreaded Estimation of Distribution Algorithms 1255

PLACED PAR i=0 FOR NUMWORKERS
INT from,to,population,j:
SEQ | generator
WHILE TRUE
SEQ
ch.buffer.req[i] ! i | WORK.LENGTH
ch.buffer.out[i] ? from
PAR
SEQ | recvpred
ch.network[from][i] ? population

SEQ | recvmodel
ch.buffer.out[i] ? j
ch.buffer.out[i] ? to

SERV(GENSLICE)
ch.network[i][to] ! population | j * N

Each generator receives from builder (via buffered channels) the number of work-
station from which it then receives the population with genes {Xo0 , ..., Xoj−1}
generated. Simultaneously it also receives from builder the decision tree for gene
Xoj

and the number of consecutive workstation. Then the SERV() command
simulated the sampling of the decision tree. According to empirical observations
the sampling time is almost constant for fixed population size, independent of
j. At the end, the population with generated {Xo0 , ..., Xoj } is sent to a consec-
utive workstation. To lower the communication demands further, it is sufficient
to communicate only genes {Xok+1 , ..., Xoj

} if it exists some Xok
that was pre-

viously generated in that consecutive workstation.
Note that the priority of threads is crucial. The generator thread should have

high priority and the workstation processor should use the builder threads to
overlap the communication latency between generators.

5 Simulation Results

The simulation parameters were set according to the parameters measured on
the real computing environment - a cluster of Athlon-600 computers connected
by the hardware multiport router Summit48 (from Extreme Networks). The
external communication is supposed to be the MPI (Message Passing Interface)
which provides the well known standard for message passing communication.

TRANSIM is able to simulate the capacity of real communication channels,
so the speed of external channels was set to 100Mb/s (like the speed of Summit48
Ethernet switch) and their communication latency was set to 0.5 ms (like the
average software latency in MPI). The speed of internal channels was set to
maximum, because in the real implementation the builder and generator would
communicate via shared memory space. According to our empirical experience
with sequential MBOA on Athlon-600 processor, the TIMESLICE constant was
set for about 7.5 ms and the GENSLICE was set for 10 ms. The job assignment

1256 J. Ocenasek, J. Schwarz, and M. Pelikan

ch.network [0][2]
ch.network [2][0]

buffer 0

generator 0

ch.buffer.in [0]

farmer

builder 1

buffer 1

generator 1

ch.buffer.in [1]

ch.farmer.out [2]

ch.farmer.in
[2]

builder 2

buffer 2

generator 2

ch.buffer.in [2]

workstation 0

workstation 1

workstation 2ch.farmer.out [0]

ch.farmer.in
[0]

ch.buffer.req
[0]

ch.buffer.out
[0]

ch.buffer.req
[2]

ch.buffer.out
[2]

builder 0

Fig. 2. Architecture of multithreaded MBOA in TRANSIM. An example with 3 work-
stations. The dashed curves separate processes mapped to different hardware.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250n

S
im

u
la

te
d

 t
im

e
[s

]

m=2

m=3

m=4

m=6

m=8

Fig. 3. The total simulated time of Multithreaded MBOA for varying problem size n
and varying number of processors m for fixed population size L = 2200.

from farmer thread does not need extra communication capacity, so the message-
length constants WORK.LENGTH and REQ.LENGTH were set to 1.

Figure 3 depicts the execution time of parallel MBOA with respect to the
problem size and number of processors. In Fig. 4 the results indicate that the
achieved speedup slightly differs from ideal case because it is impossible to re-
move all communication latencies completely (for example there remain no de-

Design of Multithreaded Estimation of Distribution Algorithms 1257

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250n

S
p

ee
d

u
p m=2

m=3

m=4

m=6

m=8

Fig. 4. The speedup of simulated multithreaded MBOA for varying problem size n and
varying number of processors m for fixed population size L = 2200.

cision trees to build when generating the last gene Xon−1). Fortunately, this
difference becomes negligible with increasing problem size, so our approach is
linearly scalable.

6 Summary and Conclusions

We proposed and simulated the Multithreaded Mixed Bayesian Optimization Al-
gorithm (MMBOA). We focused mainly on the effective construction of Bayesian
networks with decision trees in the distributed environment. MMBOA is espe-
cially suitable for running on a cluster of workstations. Where available, addi-
tional efficiency can be achieved by utilizing multithreaded processors.

The results of simulation indicate that our algorithm is efficient for a large
number of processors and its scalability improves with an increasing problem size.
Moreover, the workload balance of each distributed process is adapted according
to its computational resources when different types of workstations are used.

The use of the proposed parallelization of decision tree construction is not
limited to BOA or other EDAs; it can be used in machine learning, data min-
ing, and other areas of artificial intelligence. The use of the proposed technique
outside the scope of EC is a topic for future research.

Acknowledgement. The authors would like to thank the members of the Com-
putational Laboratory ETH Zürich for valuable comments and discussions. This
research had been partially supported by the Grant Agency of Czech Republic
from research grant GA 102/02/0503 “Parallel system performance prediction
and tuning”.

1258 J. Ocenasek, J. Schwarz, and M. Pelikan

References

1. Larrañaga, P.: A Review on Estimation of Distribution Algorithms. Estimation of
Distribution Algorithms. A new Tool for Evolutionary Computation. P. Larrañaga,
J.A. Lozano (eds.). Kluwer Academic Publishers, pp. 57–100, 2001.

2. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and
using probabilistic models, IlliGAL Report No. 99018, University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, Illinois, 1999.

3. Bosman, P.A.N., Thierens, D.: An algorithmic framework for density estimation
based evolutionary algorithms. Utrecht University Technical Report UU-CS-1999-
46, Utrecht, 1999.

4. Ocenasek, J., Schwarz, J.: The Parallel Bayesian Optimization Algorithm, In:
Proceedings of the European Symposium on Computational Inteligence, Physica-
Verlag, Kosice, Slovak Republic, pp. 61–67, 2000.

5. Ocenasek, J., Schwarz, J.: The Distributed Bayesian Optimization Algorithm for
combinatorial optimization, EUROGEN 2001 – Evolutionary Methods for Design,
Optimisation and Control, Athens, Greece, CIMNE, pp. 115–120, 2001.

6. Lozano, J. A., Sagarna, R., Larrañaga, P.: Parallel Estimation of Distribution
Algorithms. Estimation of Distribution Algorithms. A new Tool for Evolutionary
Computation. P. Larrañaga, J.A. Lozano (eds.). Kluwer Academic Publishers, pp.
129–145, 2001.

7. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization
algorithm. Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-99, vol. I, Orlando, FL, Morgan Kaufmann Publishers, pp. 525–532, 1999.

8. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. Sec-
ond Symposium on Artificial Intelligence (CIMAF-99), Habana, Cuba, pp 332–339,
1999.

9. Mühlenbein, H., Mahnig, T.: FDA - a scalable evolutionary algorithm for the op-
timization of additively decomposed functions. Evolutionary Computation, 7(4),
pp. 353–376, 1999.

10. Pelikan, M., Goldberg, D.E., Sastry, K.: Bayesian Optimization Algorithm, De-
cision Graphs, and Occam’s Razor, IlliGAL Report No. 2000020, University of
Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL, 2000.

11. Ocenasek, J., Schwarz, J.: Estimation of Distribution Algorithm for mixed con-
tinuous discrete optimization problems, In: 2nd Euro-International Symposium on
Computational Intelligence, Kosice, Slovakia, IOS Press, pp. 227–232, 2002.

12. Laumanns, M., Ocenasek, J.: Bayesian Optimization Algorithms for multi-
objective optimization, In: Parallel Problem Solving from Nature – PPSN VII,
Springer-Verlag, pp. 298–307, 2002.

13. Arst. R., Minsker, B.S., Goldberg, D.E.: Comparing Advanced Genetic Algorithms
and Simple Genetic Algorithms for Groundwater Management. 2002 Water Re-
sources Planning & Management Conference, Roanoke, VA, 2002.

14. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Boston, MA:
Kluwer Academic Publishers. 2000.

	Introduction
	Estimation of Distribution Algorithms
	Basic Principles
	EDAs with Bayesian Network Model
	EDAs with Decision Tree Models

	Parallel Estimation of Distribution Algorithms
	Performance Issues
	Parallel Learning of Dependency Graph
	Parallel Offspring Generation

	Multithreaded Mixed Bayesian Optimization Algorithm
	Parallel Decision Trees Construction
	Parallel Decision Trees Sampling
	Multithreaded Processing and TRANSIM Tool
	Multithreaded MBOA Design

	Simulation Results
	Summary and Conclusions

