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Abstract. This paper investigates how the use of the trivial voting
(TV) mapping influences the performance of genetic algorithms (GAs).
The TV mapping is a redundant representation for binary phenotypes.
A population sizing model is presented that quantitatively predicts the
influence of the TV mapping and variants of this encoding on the per-
formance of GAs. The results indicate that when using this encoding
GA performance depends on the influence of the representation on the
initial supply of building blocks. Therefore, GA performance remains
unchanged if the TV mapping is uniformly redundant that means on av-
erage a phenotype is represented by the same number of genotypes. If the
optimal solution is overrepresented, GA performance increases, whereas
it decreases if the optimal solution is underrepresented. The results show
that redundant representations like the TV mapping do not increase GA
performance in general. Higher performance can only be achieved if there
is specific knowledge about the structure of the optimal solution that can
beneficially be used by the redundant representation.

1 Introduction

Over the last few years there has been an increased interest in using redun-
dant representations for evolutionary algorithms (EAs) (Banzhaf, 1994}
Dasgupta, 1995  |Barnett, 1997; |[Shipman, 1999; [Shackleton et al., 2000;
Yu & Miller, 2001; |Toussaint & Igel, 2002)). It was recognized that redun-
dant representations increase the evolvability of EAs (Shackleton et al., 2000;
Ebner et al., 2001; [Smith et al., 2001} Yu & Miller, 2001) and there is hope
that such representations can increase the performance of evolutionary search.
However, recent work (Knowles & Watson, 2002) indicated that redundant
representations do not increase EA performance. More so, in most of the
problems investigated (NK-landscapes, H-IFF, and MAX-SAT) redundant
representations appeared to reduce EA performance.

The goal of this paper is to investigate how the redundancy of the trivial
voting (TV) mapping, that is a redundant representation for binary phenotypes,
influences the performance of genetic algorithms (GA). The developed popula-
tion sizing model for the TV mapping is based on previous work (Rothlauf, 2002|
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1308 F. Rothlauf

sect. 3.1) that shows that the population size N that is necessary to find the op-
timal solution is proportional to O(2*" /r), where k, is the order of redundancy
and r is the number of genotypic building blocks (BBs) that represent the opti-
mal phenotypic BB. The results show that uniformly redundant representations
do not result in a better performance of GAs. Only if the good solutions are
overrepresented by the TV mapping does GA performance increase. In contrast,
if the good solutions are underrepresented GA performance decreases. There-
fore, the redundant TV mapping can only be used beneficially for GA search if
knowledge about the structure of the optimal solution exists.

The paper is structured as follows. In the following section we review some re-
sults of previous work (Rothlauf, 2002)) that presented a model on how redundant
representations influence GA performance. Section [ describes the TV mapping.
We discuss the properties of the representation and formulate a population siz-
ing model. In Sect. [d the paper presents experimental results for one-max and
deceptive trap problems. The paper ends with concluding remarks.

2 Redundant Representations

The following section reviews the population sizing model presented in
Rothlauf (2002, Sect. 3.1). In particular, Sect. 2Tl reviews characteristics of re-
dundant representations and Sect. presents the population sizing model for
redundant representations.

2.1 Characteristics of Redundant Representations

In this subsection we introduce some characteristics of redundant representations
based on [Rothlauf (2002| Sect. 3.1).

In general, a representation f, assigns genotypes &, € ¢, to phenotypes
x, € D,. Dy, respectively @, are the genotypic and phenotypic search spaces. A
representation is redundant if the number of genotypes |®@,| exceeds the number
of phenotypes |@p|. The order of redundancy k, is defined as log(|®4])/ log(|Pp|)
and measures the amount of redundant information in the encoding. When us-
ing binary genotypes and binary phenotypes, the order of redundancy can be
calculated as

lg
— )
og(2')
where [, is the length of the binary genotype and [, is the length of the bi-
nary phenotype. When using a non-redundant representation, the number of
genotypes equals the number of phenotypes and k, = 1.

Furthermore, we have to describe how a representation over- or underrepre-
sents specific phenotypes. Therefore, we introduce r as the number of genotypes
that represent the one phenotype that has the highest fitness (we assume that
there is only one global optimal solution). When using non-redundant represen-
tations, every phenotype is assigned to exactly one genotype and = 1. However,
in general, 1 <r < |®4| — [Py + 1.
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The population sizing model presented in [Rothlauf (2002) is valid for se-
lectorecombinative GAs. Selectorecombinative GAs use crossover as the main
search operator and mutation only serves as a background operator. When us-
ing selectorecombinative GAs we implicitly assume that there are building blocks
(BBs) and that the GA process schemata. Consequently, we must define how k,.
and r depend on the properties of the BBs.

In general, when looking at BBs of size k there are 2* different phenotypic

BBs which are represented by 2%+ different genotypic BBs. Therefore,
k
kr = 797 (2)
kp

where k, denotes the genotypic size of a BB and &, the size of the corresponding
phenotypic BB. As before, a representation is redundant if k. > 1. The size
of the genotypic BBs is k, times larger than the size of the phenotypic BB.
Furthermore, r is defined as the number of genotypic BBs of length kk, that
represent the best phenotypic BB of size k. Therefore, in general,

re{l1,2,... 2k _ ok 4 1},

In contrast to k, which is determined by the representation used, » depends not
only on the used representation, but also on the specific problem that should
be solved. Different instances of a problem result in different values of r. If we
assume that k,. is an integer (each phenotypic allele is represented by k,. genotypic
alleles) the possible values of the number of genotypic BBs that represent the
optimal phenotypic BB can be calculated as

r =i withic[1,2,...,2" —1]. (3)

A representation is uniformly redundant if all phenotypes are represented by
the same number of different genotypes. Therefore, when using an uniformly
redundant representation every phenotypic BB of size k = k,, is represented by

r = 2kke=1) (4)

different genotypic BBs.

2.2 Influence of Redundant Representations on GA Performance

This subsection reviews the population sizing model presented in
Rothlauf (2002)). This population sizing model assumes that the redundancy of
a representation influences the initial supply of BBs.

Earlier work (Harik, Canti-Paz, Goldberg, & Miller, 1999) has presented a
population sizing model for selectorecombinative GAs. The probability of failure
a of a GA can be calculated as

1 —(q/p)™

CYZl_l—(Q/p)N'

()
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where x( is the expected number of copies of the best BB in the randomly
initialized population, ¢ = 1 — p, and p is the probability of making the right
choice between a single sample of each BB

d is the signal difference between the best BB and its strongest competitor,
m’ = m — 1 with m is the number of BBs in the problem, 0% is the variance
of a BB, and ¢ = 1 — p is the probability of making the wrong decision between
two competing BBs. Therefore, we get for the population size that is necessary
to solve a problem with probability 1 — a:

g1 (tany)

B log(q/p)

Rothlauf (2002) extended the work presented in
Harik, Cantu-Paz, Goldberg, and Miller (1999) and assumed that redundant
representations change the initial supply of BBs:

r
x():NQkTT' (7)

After some approximations (compare [Rothlauf (2002, Sect. 3.1)) we get for the
population size NV:

krk—1 / /
Nz—2 . 1n(a)gBBd7Tm . (8)

The population size N goes with O (?) With increasing r the number of

individuals that are necessary to solve a problem decreases. Using a uniformly
redundant representation, where r = 28 =1 " does not change the population
size N in comparison to non-redundant representations.

3 The Trivial Voting Mapping

In the following subsection we give a short introduction into the trivial voting
(TV) mapping.

When using the TV mapping, a set of mostly consecutive, genotypic alleles
is relevant for the value of one allele in the phenotype. Each allele in the geno-
type can only influence the value of one allele in the phenotype. The value of
the phenotypic allele is determined by the majority of the values in the geno-
typic alleles. In general, the different sets of alleles in the genotype defining one
phenotypic allele have the same size. Furthermore, all genotypes that represent
the same phenotype are very similar to one another. A mutation in a genotype
results either in the same corresponding phenotype, or in one of its neighbors.
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genotype:

phenotype:

Fig. 1. The trivial voting mapping

This is an important aspect of the TV mapping as the population sizing model
presented in [Rothlauf (2002)) is only valid for such representations.

The TV mapping can easily be characterized using the representation pa-
rameters defined in Sect. 2. The order of redundancy k,. is simply the number
of genotypic alleles that determine the value of one phenotypic allele. As the
representation is uniformly redundant, r = 2*( =1 (Eq. @)). Figure [ gives an
example for the TV mapping.

Shackleton, Shipman, and Ebner (2000) applied the TV mapping to binary
strings illustrating that the use of redundant representations increases the evolv-
ability of EAs. When used for binary strings, binary genotypes 9 € Bls are
assigned to binary phenotypes 2P € B'». The length of a genotype is larger than
the length of a phenotype, I; > I,,. The value of one phenotypic bit is determined
by the majority of the values in the corresponding genotypic bits (majority vote).
However, if k, is even then the number of ones could equal the number of ze-
ros. Therefore, half the cases that result in a tie should encode a one in the
corresponding phenotypic allele, and half the cases should represent a zero. For
example, for k, = 4 the genotypic BBs 1100, 1010, and 1001 represent a 1 and
the phenotypic BBs 0011, 0101, 0110 represent a zero.

Because the majority of the votes determines the values of the corresponding
phenotypic allele, the TV mapping is a uniformly redundant representation. Each
phenotypic BB is represented by the same number of genotypic BBs which is
2k(kr=1) "where k is the size of the phenotypic BB.

As we are not only interested in uniformly redundant representations, but
also want to know how non-uniformly redundant representations influence GA
performance, we extend the TV mapping to allow the encoding to overrepresent
some individuals. Therefore, we want to assume that if the number of ones in
the k, genotypic alleles xiﬂﬂ, where j € {0,...,k, — 1}, is larger or equal
than a constant u then the value of the phenotypic allele 2% is set to one (i €
{0,...,1, — 1}). Similarly, the phenotypic allele ¥ is set to zero if less than u
of the corresponding genotypic alleles are set to one. zf respectively =¥ denotes
the ith allele of the genotype respectively phenotype. Therefore,

. kn—1
. 0 if Z.:leiriﬂ <u
4 : r—
Lif o >ir ad >

where u € {1,... ,k.}. u can be interpreted as the number of genotypic alleles
that must be set to one to encode a one in the corresponding phenotypic allele.
We denote this representation the extended trivial voting (eTV) mapping. For
u = (kr +1)/2 (k, must be odd) we get the original TV mapping. Extending
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the TV mapping in the proposed way allows us to investigate how non-uniform
redundancy influences the performance of GAs.

When using the eTV mapping, the number r of genotypic BBs that can
represent the optimal phenotypic BB depends on the number of ones in the
genotypic alleles that determine the value of the corresponding phenotypic allele.
Considering Eq. (B) we get

(26"

Jj=u

where u € {1,... ,k,}. k denotes the size of the phenotypic BB. We want to give a
short illustration. We use a redundant representation with k. = 3, kK = 1, and the
optimal BB is 2¥ = 1 (compare Fig.[I]). Because u € {1,... , k,} there are three
different values possible for r. For u = 1 the phenotypic allele 2 is set to one if at
least one of the three corresponding genotypic alleles xfkr, xfkr 4150 xfkr 4o isset

to one. Therefore, a one in the phenotype is represented by r = Z?Zl (kj’) =7
different genotypic BBs (111, 110, 101, 011, 100, 010, and 001). For u = 2, the
optimal phenotypic BB z¥ = 1 is represented by r = Z?:z (kf) = 4 different
genotypic BBs (111, 110, 101, and 011) and the representation is uniformly
redundant. For u = 2 we get the original TV mapping. For v = 3, the optimal
phenotypic BB is represented only by one genotypic BB (111).

Finally, we can formulate the population sizing model for the eTV mapping

combining Eq. (B), [l and @ The probability of failure can be calculated as

1- (q/p)(zk%(zﬁiu *)")
1—(q/p)N ’

where k,. is the number of genotypic bit that represent one phenotypic bit, k is
the size of the phenotypic BBs, ¢ = 1 —p, and p is the probability of making the
right choice between a single sample of each BB (Eq. (@l)).

=1 (10)

4 Experiments and Empirical Results

We present empirical results when using the TV and €TV mapping for the one-
max problem and the concatenated deceptive trap problem.

4.1 One-Max Problem

The first test example for our empirical investigation is the one-max problem.
This problem is very easy to solve for GAs as the fitness of an individual is sim-
ply the number of ones in the binary phenotype. To ensure that recombination
results in a proper mixing of the BBs, we use uniform crossover for all experi-
ments with the one-max problem. As we focus on selectorecombinative GAs we
use no mutation. Furthermore, in all runs we use tournament selection without
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Table 1. The trivial voting mapping for k, = 3

9 9 ] T —
L3;L3i4+1L3i+2 (Wlth k, = 3)

P extended TV original TV
Plu=1 u=2 u=3 u =2
r=17 r=4 r=1 r=4
0 000 001, 010, 100, 000 111, 110, 101, 001, 010, 100, 000

011, 001, 010, 100
111, 110, 101, 011|000 111, 110, 101, 011

111, 110, 101,
011, 001, 010, 100

replacement and a tournament size of 2. For the one-max function the signal
difference d equals 1, the size k of the building blocks is 1, and the variance of
a building block 0% = 0.25.

When using the binary TV mapping for the one-max problem each bit of a
phenotype P is represented by k, bits of the genotype x¢9. The string length
of a genotype z9 is I, = k, * [, and the size of the genotypic search space is
|P,| = 2Frly  Table [ illustrates for k, = 3 the three possibilities of assigning
genotypic BBs {000,001, 010,100,110,101,011,111} to one of the phenotypic
BBs {0,1} when using the extended TV mapping described in the previous
paragraphs. With denoting 2! the value of the ith bit in the phenotype, the
3ith, (3¢ + 1)th, and (3¢ + 2)th bit of a genotype determine z!. Because the
size of the BBs k = 1, the number of genotypic BBs that represent the optimal
phenotypic BB is either 7 = 1, 7 = 4, or r = 7 (compare Eq. ([@)).

In Fig. (kr = 2), (k, = 3), and (k. = 4) the proportion
of correct BBs at the end of a run for a 150 bit one-max problem using the
TV and eTV mapping is shown. For this problem 2'%° different phenotypes are
represented by either 239 (k, = 2), 2450 (k. = 3), or 260 (k, = 4) different
genotypes. If we use the eT'V mapping (indicated in the plots as eTVM) we can
set u either to 1 or 2 (k, =2) orto 1, 2, or 3 (k, = 3),orto 1, 2, 3, or 4 (k. = 4).
The corresponding values for r which can be calculated according to Eq. (@) as
well as zg/N are shown in Table[2. zo is the expected number of copies of the
best BB in the initial population and N is the population size. Furthermore,
the figures show the results when using the original, uniformly redundant TV
mapping, and when using the non-redundant representation with k. = 1.

The lines without line points show the theoretical predictions from Eq. ([0,
and the lines with line points show the empirical results which are averaged over
250 runs. The error bars indicate the standard deviation.

The results show that for the uniformly redundant TV mapping, r = 2
(kr =2),7r =4 (k, =3), or r =8 (k, = 4) we get the same performance as for
using the non-redundant representation (k. = 1). As in the original model pro-
posed by Harik, Cantu-Paz, Goldberg, and Miller (1999) the theoretical model
slightly underestimates GA performance. As predicted by the model described
in Sect.[Z2] GA performance does not change when using a uniformly redundant
representation. Furthermore, we can see that if the optimal BB is underrepre-
sented GA performance decreases. Equation (I0) gives us a good prediction for
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Fig. 2. Experimental and theoretical results of the proportion of correct BBs on a 150-
bit one-max problem using the trivial voting mapping for k, = 2 (a), k» = 3 (b), and
kr =4 (c). The lines without line points show the theoretical predictions. When using
non-uniformly redundant representations, GA performance is changed with respect to
the overrepresentation or underrepresentation of the high-quality BBs.

the expected solution quality if we consider that the non-uniform redundancy
of the representation changes the initial BB supply according to Eq. (@). If the
optimal solution is overrepresented GA performance increases. Again the the-
oretical models give a good prediction for the expected proportion of correct
BBs.

Summarizing the results, we can see that using the uniformly redundant
TV mapping does not change GA performance in comparison to using the non-
redundant representation. Only if we overrepresent the optimal phenotypic BB,
does GA performance increase; likewise, if we underrepresent the optimal BB,
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Table 2. Properties of the different TV mappings for the one-max problem (k = 1)

” :e?t[eniei ;Fvljfgﬁg: 1 original TV mapping
T 3 1 - - 2
kr =2 zo/N| 3/4 1/4 - - 2/4=1/2
o3| 7 4 1 - 4
v zo/N| 7/8 [4/8=1/2[ 1/8 | - 1/8=1/2
b4l [ 15 11 5 1 8
"~ *|[zo/N[15/16] 11/16 |5/16 |1/16 8/16 = 1/2

GA performance drops. The derived model is able to make accurate predictions
for the expected solution quality.

4.2 Concatenated Deceptive Trap Problem

Our second test example uses deceptive trap functions.

Traps were first used by |Ackley (1987) and investigations into the deceptive
character of these functions were provided by Deb and Goldberg (1993)). Figure Bl
depicts a 3-bit deceptive trap problem where the size of a BB is k = 3. The fitness
value of a phenotype xP depends on the number of ones v in the string of length
[. The best BB is a string of [ ones which has fitness [. Standard EAs are misled
to the deceptive attractor which has fitness [ — 1. For the 3-bit deceptive trap
the signal difference d is 1, and the fitness variance equals 0%, = 0.75. We
construct a test problem for our investigation by concatenating m = 10 of the
3-bit traps so we get a 30-bit problem. The fitness of an individual z is calculated
as f(x) = ZZ’;_Ol fi(v), where f;(v) is the fitness of the ith 3-bit trap function
from Fig. B. Although this function is difficult for GAs it can be solved with
proper population size .

For deceptive traps of size k = 3 we can calculate the number r of genotypic
BBs that represent the optimal genotypic BBs according to Eq. (@). Table
summarizes for the modified TV mapping how r and z¢/N depends on u, that
describes how many of the genotypic alleles must be set to 1 to encode a 1 in
the phenotype. x( is the expected number of copies of the best BB in the initial

f(v)

3T [ ]

20

Fig. 3. A 3-bit deceptive trap problem
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Table 3. Properties of the different TV mappings for the deceptive trap of size k = 3

e R original TV mapping
b —o | 37 =27 ’=1 - - 2°=38
"~ “|lzo/N| 27/64 1/64 - - 8/64=1/8
Y TP=343| 4=64 | 1°=1] - 4% =64
"~ 7 |[=o/N| 343/512 [64/512 =1/8] 1/512 - 64/512 =1/8
b4 | 15° =3375] 11° = 1331 [5° =125[1° =1 8% = 2048
"~ " |[x0/N|3375/4096| 1331/4096 [125/4096]1/4096] 512/4096 = 1/8

population and N is the population size. Furthermore, we list the properties of
the original uniformly redundant TV mapping.

By analogy to the previous paragraphs, in Fig. @ (k. = 2), Fig.
(k. = 3), and Fig. (k, = 4) we show the proportion of correct BBs at the
end of a run over different population sizes for ten concatenated 3-bit deceptive
trap problems. In this problem, 230 different phenotypes are represented by either
200 (k, = 2), 29 (k, = 3), or 2120 (k,. = 4) different genotypes. As before, we use
tournament selection of size two without replacement. In contrast to the one-max
problem, two-point crossover was chosen for recombination. Uniform crossover
would result in an improper mixing of the BBs because the genotypic BBs are
either of length I, = kI, = 6 (k, = 2), of length [, =9 (k, = 3), or of length
ly =12 (k, = 4). Again, the lines without line points show the predictions of the
proposed model for different r. Furthermore, empirical results that are averaged
over 250 runs, are shown for various values of r. The results show that for the
uniformly redundant TV mapping we get the same performance as when using
the non-redundant representation (k. = 1). As in the experiments for the one-
max problem the proposed model predicts the experimental results well if the
eTV mapping is used and some BBs are underrepresented or overrepresented.

The presented results show that the influence of the redundant TV and eTV
mapping on the performance of GAs can be explained well by the influence of the
representation on the initial supply of high-quality BBs. If the €TV mapping fa-
vors high-quality BBs then the performance of GAs is increased. If good BBs are
underrepresented the performance is reduced. If the representation is uniformly
redundant, GAs show the same performance as when using the non-redundant
encoding.

5 Summary and Conclusions

This paper presented a population sizing model for the trivial voting mapping
and variants of this representation. The trivial voting mapping is a redundant
representation for binary phenotypes. The presented population sizing model is
based on previous work (Rothlauf, 2002) and assumes that redundant represen-
tations affect the initial supply of building blocks. The model was adapted to
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Fig. 4. Experimental and theoretical results of the proportion of correct BBs for ten
concatenated 3-bit deceptive traps. We show results for different variants of the TV
mapping and k. = 2 (a), k, = 3 (b), and k. = 4 (c). The lines without line points
show the theoretical predictions. As predicted, GA performance sharply decreases if
the eTV mapping underrepresents the optimal BB.

the TV mapping and used for predicting the performance of genetic algorithms
for one-max problems and deceptive trap problems.

The results show that the proposed population sizing model allows an ac-
curate prediction of the influence of the redundant TV representation on GA
performance. GA performance remains unchanged if the TV mapping is uni-
formly redundant that means each phenotype is represented on average by the
same number of genotypes. Furthermore, the proposed population sizing model
is able to give accurate quantitative predictions on the expected solution quality
if variants of the TV mapping either overrepresent or underrepresent the optimal
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solution. If the optimal BB is overrepresented GA performance increases, if it is
underrepresented it decreases. The results reveal that in general the redundant
TV mapping and variants of it do not increase GA performance. GA perfor-
mance can only be increased if there is specific knowledge about the structure of
the optimal solution and if the representation overrepresents the good solutions.

Previous work (for example [Shipman et al. (2000), or [Ebner et al. (2001))
noticed that redundant representations increase the evolvability of EAs and as-
sumed that this may lead to increased EA performance. However, the results
we present indicate that redundant representations like the TV mapping do
not increase EA performance. The influence of redundant representation on the
initial supply seems to be more relevant for EA performance than an increase
of evolvability. Therefore, we encourage researchers to focus on the question of
how redundant representations influence EA performance and to neglect their
influence on evolvability. The influence on the evolvability of EAs might be an
interesting partial aspect but more relevant is the question of whether we are
able to construct EAs that allow us to solve relevant problems efficiently, fast,
and reliably.
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