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Abstract. The building block hypothesis implies that the epistatic
property of a given problem must be connected well to the linkage prop-
erty of the employed representation and crossover operator in the design
of genetic algorithms. A good handling of building blocks has much to
do with topological linkages of genes in the chromosome. In this paper,
we provide a taxonomy of the approaches that exploit topological link-
ages of genes. They are classified into three models: static linkage model,
adaptive linkage model, and evolvable linkage model. We also provide
an overview on the chromosomal structures, encodings, and operators
supporting each of the models.

1 Introduction

A genetic algorithm maintains a population of solutions and repeatedly applies
genetic operators to find optimal or near-optimal solutions. Through the ge-
netic process, various patterns of genes, called schemata, are created, destroyed,
and recombined in parallel. Holland named the phenomenon implicit parallelism
[1]. The schemata of short defining length, low order, and high quality play an
important role in the process. They are called building blocks and the genetic
process is well explained as the juxtaposition of building blocks [2]. It means
that the power of a genetic algorithm lies in its ability to find building blocks
and to grow them efficiently to larger ones.

The solutions in the population have a structure of genes called chromo-
somal structure for the crossover operator. A typical chromosomal structure is
one-dimensional array. But, for many problems, it is known that non-linear chro-
mosomal structures are more advantageous than such a simple structure [3,4,5,
6,7]. One of the reasons of adopting such non-linear structures is that we can
minimize the loss of information contained in the given problem with more nat-
ural structures for the problem. Another reason is that many crossovers require
special type of chromosomal structures. The reasons are ultimately related to
the creation and growth of the building blocks. That is, the first one helps the
chromosomal structure to reflect well the epistatic property of the problem and
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the second one allows us to be able to apply a crossover operator that creates
and recombines well the building blocks.

There has been a significant amount of efforts for designing efficient chromo-
somal structures, encodings, and operators. In this paper, we provide a survey
and bibliography of such studies.

The rest of this paper is organized as follows. The basic concepts are in-
troduced in Sect. 2 and the chromosomal structures are explained in Sect. 3.
The approaches concerned with the topic are classified and explained in Sect. 4.
Finally, the summary of this paper is provided in Sect. 5.

2 Preliminaries

Building blocks appear in interactive gene groups. We can easily observe that the
contribution of a gene to the chromosomal fitness depends on the values of other
genes in the chromosome. This phenomenon is called gene interaction or epistasis
[1,8,9]. For example, a bat must be able to hear high frequency ultrasonic waves
if it generates high frequency ultrasonic squeaks, and it must be able to hear low
frequency ultrasonic waves if it generates low frequency ultrasonic squeaks. So,
for bats, the genes related to the organs that generate ultrasonic squeaks and
those related to the organs that hear ultrasonic waves have strong interactions.

Building blocks are generated by the crossover and mutation. In this paper,
we focus on the crossover. A crossover operator generates an offspring by re-
combining two parents. There are the number of genes minus one operators in
one-point crossover with one-dimensional array representation. The creativity of
a crossover is strongly related to the diversity of the operators. Generally, the
more operators a crossover has, the more diverse new schemata it can generate
[5]. However, existing schemata do not always survive through the crossover. A
gene group is said to have a strong linkage if the genes are arranged so that the
gene group has relatively high survival probability, and it is said to have a weak
linkage, otherwise [1]. For example, in the case of one-point crossover on a chro-
mosome of one-dimensional array, the strength of the linkage of a gene group
is inversely proportional to the defining length of the corresponding schema.
For the growth of building blocks to an optimal or near-optimal solution, they
have to survive through the genetic process, specifically through the crossover.
Consequently, we come to a proposition that mutually interactive genes need to
have strong linkages [1,2,10]. In the case of one-point crossover, for example, it
is helpful to make the strongly epistatic gene groups have short defining lengths.

The linkage of a gene group is, in many cases, dependent on the distribution
of the genes in the chromosome and the crossover scheme. Particularly, there
is a group of approaches where each gene is placed in an Euclidean or non-
Euclidean space, called chromosomal space, to represent the linkages between
genes. The linkage in this context is called topological linkage. There are many
other problem-specific or analytic methods to exploit the linkages between genes.
Estimation-of-distribution algorithms (EDAs) [11,12], also called probabilistic
model-building genetic algorithms (PMBGAs), are examples. But, they are out
of the scope of this paper.
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3 Chromosomal Structures

In order to make the topological linkages reflect well the epistatic structure
of a given problem, we need to choose an appropriate chromosomal structure.
Generally, in representing a graph geometrically, it is known that considerably
high dimensions of representation space are necessary to alleviate the degree
of distortion [13]. This is a good reason that multi-dimensional representations
are more advantageous than simple one-dimensional representations for highly
epistatic problems. However, multi-dimensional representations require sophis-
ticated crossover operators.

Figure 1 shows an illustration of several representative chromosomal struc-
tures. One-dimensional array (a) is a typical and the most popular chromosomal
structure. By linking the two ends, a ringed array (b) is generated. This struc-
ture has a virtue of treating all the positions of genes symmetrically. We can
also increase the dimension of chromosomes (c)–(d). Two-dimensional array (c)
is frequently used. The distortion level in using an array may yet be lowered by
adopting a real space. For example, a one-dimensional real space (line) (e) or
a two-dimensional real space (plane) (f) may be used. A complete graph (g) is
also possible. In the case of a complete graph, the genes are linked by weighted
edges. The edge weight is sometimes called genic distance.

The chromosomal structures can be classified into two categories: Euclidean
chromosomal structures and non-Euclidean chromosomal structures. The Eu-
clidean chromosomal structures include arrays and real spaces and the non-
Euclidean chromosomal structures include complete graphs. It should be noted
that the chromosomal structure is not necessarily the same as the data structure
used in the encoding. The term means only the conceptual structure of genes
used in the crossover operator in this paper.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

Fig. 1. Various chromosomal structures. (a) 1D array. (b) ringed array. (c) 2D array.
(d) 3D array. (e) 1D real space. (f) 2D real space. (g) complete graph.
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4 Linkage Models

In general, the interactions between genes are not simple. If they are, the genes
can be divided into mutually independent subgroups. It means that we can
divide the whole problem into a number of subproblems and can conquer them
independently. In most cases, the epistatic structure is so complicated that it is
extremely hard to find an optimal arrangement of the genes in the chromosome.
For example, when a problem is encoded into n binary genes, the chromosome
has totally n! arrangements in an array representation. It means that the problem
is more difficult than the original problem with a total of 2n solutions. To make
matters worse, we cannot exactly grasp the epistatic properties of the given
problem unless we explore the whole solution space [8].

For decades, various approaches to the problem have been tried. They are
divided into two classes: static linkage model and dynamic linkage model. The
linkage is fixed statically during the genetic process in the static linkage model,
while it changes dynamically in the dynamic linkage model. The dynamic link-
age model is divided again into adaptive linkage model and evolvable linkage
model. In the evolvable linkage model, the linkage itself evolves in parallel with
the alleles of genes through the competition of individuals in the genetic pro-
cess. In the adaptive linkage model, however, the linkage alters but does not
evolve in the genetic process. Generally, the linkages are assigned analytically or
heuristically using the prior information about the epistatic property of the given
problem in the static linkage model. Thus, efficient methods for the assignment
are needed. The evolvable linkage model is advantageous for the problems where
prior information is not available. Such problems are sometimes called black box
optimization [32]. The model, however, experienced many failures initially. The
failures seem to be due to the loss in the race against allele selection because
of the slow evolution speed. As mentioned before, the linkage assignment prob-
lem is at least as difficult as the original problem in many cases. So, the model
requires efficient methods to speed up the evolution. The model also requires
implementation overheads for the evolution of the linkage. The adaptive linkage
model is a trade-off between the other two models.

The encodings directly concerned with the linkage issues are “encapsulated”
encoding and locus-based encoding. The encapsulated encoding, used by Bagley
[14] first, is usually used in the evolvable linkage model with array representa-
tion. In the encoding, each gene is an encapsulation of a position indicator and
an allele value, i.e., each gene is encoded as (index, value) pair. The encoding
allows the crossover operator to contribute to the evolutions of both alleles and
linkages at the same time. In the locus-based encoding, the allele values have
meaning only when associated with specific positions in the chromosome. In
order to use the locus-based encoding in the array representation and the real
space representation, a mapping table that maps each gene to a position in the
chromosomal space is needed. In order to use the locus-based encoding in the
complete graph representation, a table for the genic distances is needed.

The approaches that exploit topological linkages are summarized in Table 1.
For each approach, chromosomal structure (CStr), linkage model (Mod), and
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Table 1. A summary of the topological linkage-based approaches. For each approach,
chromosomal structure (CStr), linkage model (LMod), and encoding (Enc) are given.

Approach CStr LMod Enc Remark
Bagley, 1967 [14] 1D A E E inversion operator
Goldberg et al., 1989 [15] 1D A E E messy GA
Goldberg et al., 1990 [16] 1D A E E messy GA
Levenick, 1991 [17] 1D A S L non-coding segment
Goldberg et al., 1993 [18] 1D A E E fast messy GA
Bui & Moon, 1993 [19], 1996 [20] 1D A S L DFS/BFS-reordering
Bui & Moon, 1994a [21] 1D A S L DFS-reordering
Bui & Moon, 1994b [22] 1D A S L local optimum reordering
Wu et al., 1994 [23] 1D A S L non-coding segment
Wu & Lindsay, 1995 [24] 1D A S L non-coding segment
Levenick, 1995 [25] 1D A S L metabits
Kargupta, 1996 [26] 1D A E E GEMGA
Bui & Moon, 1998 [27] 1D A S L weighted-DFS reordering
Levenick, 1999 [28] 1D A S L non-coding segment
Knjazew & Goldberg, 2000 [29] 1D A E E OMEGA
Kwon & Moon, 2002 [30] 1D A A L correlation coefficient
Harik & Goldberg, 1996 [31] RA E E LLGA
Harik, 1997 [32] RA E E LLGA
Lobo et al., 1998 [33] RA E E compressed intron LLGA
Harik & Goldberg, 2000 [34] RA E E prob. expression LLGA
Chen & Goldberg, 2002 [35] RA E E start expression gene LLGA
Cohoon & Paris, 1986 [3] 2D A S L rectangle-style cross. (ψ2)
Anderson et al., 1991 [4] 2D A S L block-uniform crossover
Bui & Moon, 1995 [36] 2D A S L Z3
Moon & Kim, 1997 [37] 2D A S L geo. attraction-based embed.
Moon et al., 1998 [38] 2D A S L geographic crossover,

DFS-zigzag embedding
Moon & Kim, 1998 [39] 2D A E L two-layered crossover
Kim & Moon, 2002 [40] 2D A S L geographic crossover,

neuron reordering
Kahng & Moon, 1995 [5] 2/3D A S L geographic crossover,

DFS-row-major embedding
Lee & Antonsson, 2001 [41] 1D RS E L adaptive non-coding seg.
Jung & Moon, 2000 [42], 2002a [6] 2D RS S L natural crossover
Jung & Moon, 2002b [43] 2D RS S L natural crossover
Greene, 2002 [44] CG A L cutoff-value based crossover
Seo & Moon, 2002 [7], 2003 [45] CG S L Voronoi quantized crossover

encoding (Enc) are summarized in the table. The chromosomal structures are
abbreviated as A (array), RA (ringed array), RS (real space), and CG (com-
plete graph). The linkage models are abbreviated as S (static linkage model), A
(adaptive linkage model), and E (evolvable linkage model). The encodings are
abbreviated as E (encapsulated encoding) and L (locus-based encoding).
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4.1 Static Linkage Models

Raising Dimensions. Cohoon and Paris’s work [3] seems to be the first ap-
proach published employing multi-dimensional representation. They proposed
a rectangle-style crossover (ψ2) using two-dimensional array representation for
VLSI circuit placement. In the crossover, the gene values in a k × k square sec-
tion of one parent and the remaining gene values of the other parent are copied
into the offspring, where k has a truncated normal distribution with mean 3 and
variance 1.

Another approach based on two-dimensional array is the block-uniform
crossover proposed by Anderson et al. [4]. The crossover divides the chromo-
some into i× j blocks where i and j are chosen at random. Then each block of
one parent is interchanged randomly with the corresponding block of the second
parent based on a preassigned probability. They applied it to Ising problem.

Bui and Moon [36], proposed an extension of the traditional k-point crossover
to multi-dimensional array representation, called multi-dimensional k-point
crossover (Z3) for grid-placement and graph partitioning. In the crossover, the
chromosomal space is divided into hyper-subspaces by k random crossover points,
i.e., ki crossover points are chosen at random for each ith dimension such that
ki ≥ 0 and

∑n
i=1 ki = k, and, by them, the chromosomal space is divided into∏n

i=1(ki + 1) hyper-subspaces. Then the gene values in each adjacent subspaces
are copied alternately from one of the two parents into the offspring.

Although multi-dimensional array representations can preserve more
epistatic relations between genes than simple one-dimensional array represen-
tations, naive multi-dimensional crossovers have a potential weakness in the
relatively small number of recombinations. In the case of one-point crossover for
n genes, for example, one-dimensional array representation has n− 1 operators,
while the Z3 on two-dimensional and three-dimensional array representations
have only 2(

√
n − 1) and 3( 3

√
n − 1) operators, respectively. Kahng and Moon

[5] proposed a flexible framework to deal with the problem. In their geographic
crossover, the chromosomal space is divided into subspaces with monotonic hy-
persurfaces instead of hyperplanes. The crossover have been applied to graph
partitioning [5], neural network optimization [40], and fixed channel assignment
[46] recently.

Although multi-dimensional array representations and crossovers have the
advantages mentioned above, array-based chromosomal structures have limits
to represent non-regular epistatic relationships between genes. Jung and Moon
[42,6] focused on the point and proposed 2D real space representation and the
natural crossover. In the approach, the 2D image of the problem instance itself is
used for crossover and arbitrary simple curves are used for chromosomal cutting.
They are applied to 2D traveling salesman problem [6,42] and vehicle routing
problem [43].

Figure 2(a)–(e) illustrates the crossovers described above.

Reordering. Bui and Moon [19] proposed the static linkage model that re-
orders the positions of genes in an array representation before starting the ge-
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(a)

(e)

(b)

(f)

(c) (d)

Fig. 2. Illustrations of the non-linear crossover operators. (a) Rectangle-style crossover.
(b) Block-uniform crossover. (c) Multi-dimensional k-point crossover (Z3). (d) Geo-
graphic crossover. (e) Natural crossover. (f) Voronoi quantized crossover with genic
distances defined on 2D Euclidean space.

netic algorithm. The approach is sometimes called schema preprocessing or static
reordering.

Various reordering methods were proposed recently. Many of them are for
graph problems and VLSI circuit design. They are breadth-first search (BFS) re-
ordering [19,20], depth-first-search (DFS) reordering [19,20], and weighted-DFS
reordering [27] for one-dimensional array representation, and DFS-row-major
embedding [5], Euclidean embedding [5], DFS-zigzag embedding [38], and geo-
graphic attraction-based embedding [37] for multi-dimensional array representa-
tion. Using the order of cities in a local optimum solution for traveling salesman
problem [22] and using the correlation coefficients of variables for function ap-
proximation [30] are other examples of reordering.

Other Approaches. Another remarkable approach is that of complete graph
representation. In the representation, each gene pair is linked by a weighted edge
that reflects explicitly the strength of the epistasis between the genes. The edge
weights are also called genic distances. Seo and Moon [7,45] proposed heuristics
for assigning genic distances and Voronoi quantized crossover (VQX) for travel-
ing salesman problem and sequential ordering problem. The heuristics are based
on the fact that the epistasis reflects the topological locality of the given cities.
In VQX, the chromosomal space defined by the genic distances is divided into k
Voronoi regions (nearest neighbor regions) determined by k randomly selected
genes, then a sort of block-uniform crossover [4] is performed on the regions.
This approach is discriminated from the others in this section in that the chro-
mosomal structure is not necessarily based on a metric space. The crossover is
illustrated visually in Fig. 2(f) with the assumption that genic distances are de-
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fined on a two-dimensional Euclidean space. The assumption is merely for the
visualization.

It is known that the non-coding DNA, sometimes called introns, found in
biological systems helps the evolution [47]. Several approaches motivated by the
observation were proposed recently [17,23,24,25,28]. In the approaches, the chro-
mosome includes non-coding segments that hold positions in the representation
space but do not contribute to the evaluation of the solutions. LLGA [31,32] and
its variants [33,34,35] described in Sect. 4.2 also use non-coding segments.

4.2 Dynamic Linkage Models

Adaptive Linkage Model. In the adaptive linkage model, the linkages are
assigned similarly with the way in the static linkage model. But, it differs from
the static linkage model in that the linkages are adjusted dynamically during
the process of the genetic algorithm. An application that does not have prior
information about the given problem is also possible by assigning the linkages
based only on the analysis of the solutions in the population.

There are several approaches based on the adaptive linkage model. Kwon and
Moon [30] applied the model to a function optimization problem. They adopted
one-dimensional array representation and periodically rearranged the genes by a
heuristic based on the correlation coefficients between the corresponding function
variables.

Greene [44] proposed an adaptive linkage model employing complete graph
representation. In the approach the genic distances are dynamically assigned
based on the normalized entropy of the gene values. He proposed a crossover
based on a cutoff value where an uncopied gene is repeatedly chosen at random
and, at the same time, the values of the genes whose genic distances from the
chosen gene are less than a preassigned cutoff value are copied together from one
of the two parents alternately.

Evolvable Linkage Model. The beginning of the evolvable linkage model is
Bagley’s inversion operator [14]. The operator works by reversing the order of
the genes lying inbetween a pair of randomly chosen points. To make the genes
movable, the “encapsulated” encoding was used. The result of the approach was
not successful. One of the reasons might be that the evolution of the linkage
in the approach was so slow that it lost the race against allele selection. Messy
genetic algorithm (mGA) [15,16] and fast messy genetic algorithm (fast mGA)
[18,29] proposed by Goldberg et al. are the approaches dealing with the difficulty
found in the Bagley’s study. They use cut-and-splice operator for recombination.
By the operator, genes in a solution migrate in group to other solutions in the
population. The operator may cause over-specification and under-specification.
The former occurs when a particular gene position is specified by two or more
allele values and the other occurs, on the other hand, when a particular gene
position is not specified by any allele value in the chromosome. They resolved the
over-specification problem by scanning the chromosome in a left-to-right manner
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(a) (b) (c)

Fig. 3. An illustration of exchange crossover. (a) A randomly chosen segment of the
donor is grafted to the recipient. (b) The duplicated genes are removed from the inter-
mediate solution. (c) The final solution.

and choosing the allele that occurred first for each position, and resolved the
under-specification problem by random assignment or a heuristic constructive
filling in. The problems were avoided in Kargupta’s gene expression messy genetic
algorithm (GEMGA) [26], and Harik and Goldberg’s linkage learning genetic
algorithm (LLGA) [31,32]. In LLGA, the exchange crossover was used. It grafts
a randomly chosen segment of one chromosome (called donor) on the other
chromosome (called recipient) and deletes the genes in the recipient that have
the same gene positions with the grafted genes to avoid duplication. Figure 3
shows an illustration of the crossover. There are a number of variants for the
exchange crossover [33,34,35]. One-dimensional array representations were used
in inversion, mGA, fast mGA, and GEMGA, and a ringed array representation
was used in LLGA.

The adaptive non-coding segment representation proposed by Lee and Anton-
sson [41] is an approach that uses a one-dimensional real space. In the represen-
tation, genes are linked by edges with variable lengths. The edges represent the
strengths of linkage between genes and perturbed by Gaussian random variable
for adaptation. It is a variant of the approaches employing non-coding segments
described in Sect. 4.1.

Moon and Kim [39] proposed a genetic algorithm that maintains two pop-
ulations: one for the evolution of solutions and the other for the evolution of
embeddings. In the approach, a solution is generated by a two-layered crossover;
two embeddings are crossovered first and then the resultant embedding is used
for the recombination of the solutions.

5 Summary

The results of previous theoretical and experimental studies suggest that the per-
formance of a genetic algorithm highly depends on its ability to create and grow
the building blocks. Various genetic algorithms motivated by the hypothesis have
been proposed recently. A large part of them is based on the topological linkage
of genes in the chromosome. In this paper, we summarized the approaches that
exploit the topological linkages of genes and provided a taxonomy of them. The
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various chromosomal structures are byproducts of such studies. They include,
for example, 1D array, ringed array, 2D array, 3D array, 1D real space (line), 2D
real space (plane), and complete graph.
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