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Abstract. A bit climber using a Gray encoding is guaranteed to converge to a
global optimum in fewer than 2( L?) evaluations on unimodal 1-D functions and on
multi-dimensional sphere functions, where L bits are used to encode the function
domain. Exploiting these ideas, we have constructed an algorithm we call Quad
Search. Quad Search converges to a local optimum on unimodal 1-D functions
in not more than 2L + 2 function evaluations. For unimodal 1-D and separable
multi-dimensional functions, the result is the global optimum. We empirically
assess the performance of steepest ascent local search, next ascent local search, and
Quad Search. These algorithms are also compared with Evolutionary Strategies.
Because of its rapid convergence time, we also use Quad Search to construct a
hybrid genetic algorithm. The resulting algorithm is more effective than hybrid
genetic algorithms using steepest ascent local search or the RBC next ascent local
search algorithm.

1 Background and Motivation

There are several advantages to using a reflected Gray code binary representation in
conjunction with genetic algorithms and local search bit climbers. For both unimodal
1-dimensional functions and separable multi-dimensional unimodal functions, proofs
show that steepest ascent local search is guaranteed to converge to a global optimum
after 2 steps when executed on an L-bit local search neighborhood. The proofs assume
that the functions are bijections, so that search cannot become stuck on plateaus of equally
good solutions. Furthermore, the proofs demonstrate that there are only 4 neighbors per
step (or move) that are critical to global convergence [1].

Using areflected Gray code representation, it can be proven that a reduction from L to
L — 1 dimensions is always possible after at most 2 moves (even if the search repeatedly
“steps across" the optimum). Hence the global optimum of any 1-dimensional unimodal
real-valued function can be reached in at most 2L steps. Under steepest ascent local
search, each step requires O(L) evaluations. Thus, it follows that steepest ascent local
search actually requires up to O(L?) evaluations to converge to the global optimum. In
practice, next ascent local search methods are often much faster than steepest ascent.
However, the worst case order of complexity of next ascent algorithms is exponential.
This is due to the fact that next ascent algorithms in the worst case can take very small
steps at each iteration.

The current paper exploits the ideas behind these convergence proofs to construct a
new algorithm which we call Quad Search. Quad Search is a specialized form of steepest
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ascent that operates on a reduced neighborhood. The algorithm cuts the search space into
four quadrant and then systematically eliminates quadrants from further consideration.
On unimodal functions Quad Search converges to the global optimum in at most O(L)
evaluations, as opposed to O(L?) evaluations for regular steepest ascent. For multi-
dimensional functions, Quad Search converges to a point that is locally optimal in each
dimension.

The new algorithm is tested on different types of unimodal functions. Quad Search
is compared to steepest ascent and Davis’ Random Bit Climber, RBC, which is a next
ascent local search method [2]]. Quad Search using a Gray code representation converges
after at most 2L + 2 evaluations on classes of functions such as sphere functions where
convergence proofs have also been developed for Evolution Strategies and Evolutionary
Programming [1]]. Given the convergence results on unimodal functions, we compare
Quad Search with Evolution Strategies. The representations used by Evolution Strategies
are continuous while Quad Search uses a discrete representation, but in practice, both
encodings can be high-precision.

Finally, one of the most exciting uses of Quad Search is in combination with genetic
algorithms. We combine Quad Search with the “Genitor" steady-state genetic algorithm.
We also look at hybrid forms of Genitor that use steepest ascent and RBC. Genitor in
combination with Quad Search proved to be the most effective hybrid genetic algo-
rithm.

2 The Gray Code Representation

Gray codes have two important properties. First, for any 1-D function and in each
dimension of any multi-dimensional problem, adjacent neighbors in the real space are
also adjacent neighbors in the Gray code hypercube graph [3]]. Second, the standard
Binary reflected Gray code folds the search space in each dimension.

For each reference point R, there is exactly one neighbor in the opposite half of
the search space. For example, in a 1-D search space of points indexed from 0 to 27 —
1, the points 7 and (2L — 1 — i) are neighbors. In effect these neighbors are found
by folding or reflecting the 1-D search space about the mid-point between 2%~ and
2L 41

There are also reflections between each quartile of the search space. Thus, starting
at some point ¢ in the first quartile of the search space we can define a set of four points
that will be critical to Quad Search. These points are found at locations given by the
integer indices 7, (2771 — 1 — i), (27! + i) and (2F — 1 — ).

An inspection of these integer values shows that each of the points is in a different
quadrant of the search space. This follows from the following observations. Point ¢ is in
the first quadrant and i < 22~2. Furthermore, 2-~! — 1 is the last point in the second
quadrant and therefore (2°~1 — 1 — i) must also be in the second quadrant. Similarly
2L=1 is the first point in the third quadrant and therefore (22~ 4- i) must be in the third
quadrant. Finally 27 — 1 is the last point in the fourth quadrant and therefore (2% — 1 —1)
is in the fourth quadrant.

If we interpret each of these integers as Gray encoded bit strings, we can find each
of these points using exclusive-or (denoted by @) as follows:
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Fig. 1. The neighbor structure across and within quadrants
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Note that under a Gray code 2° — 1 is a string of all zeros except for a single 1
bit in the first position and 2X~1 — 1 is a string of all zeros except for a single 1 bit in
the second position. Therefore, moving from one of these points to the other involves
flipping the first bit, the second bit, or both. (Also note that i @ (2F — 1) @ (281 — 1)
is a Hamming distance 1 neighbor of ¢ under a Binary encoding [1]].)

Also, since the exclusive-or operator really just applies a mask that flips the first or
second bit, it works regardless of the quadrant in which the point ¢ actually appears.

On average, flipping these bits moves the search the greatest distance. Recently
published proofs show that these are the only moves that are critical in order to achieve
convergence in a linear number of steps under a steepest local search algorithm algorithm
[L]. We next construct the Quad Search algorithm to exploit these same moves.

3 Quad Search

Consider a unimodal function encoded using an L bit Gray code. We can break the space
into four quadrants, defined by the two high order bits of the current individual. Note
that any given point has two neighbors in quadrants outside of its own quadrant; they
are the points generated by flipping the two high order bits. The highest order unfixed
bit is called the major bit. The second highest order unfixed bit is called the minor bit.
Flipping any other bit must generate a neighbor inside the current quadrant.

Consider a point Npp located inside Quadrant 2, as illustrated in Fig.[T]. In general,
BB denotes the first two bits that map to an arbitrary quadrant. We can flip the major
bit to generate the point at N ; and the minor bit to generate the point at N ;7. We flip
both bits to reach the point at N57. We will also refer to the quadrants as Quadrant BB,
each with its respective index.

In Fig.[the point located at X is a neighbor of point N g that is located in Quadrant
BB. X canbeleft orright of Np 5. We will express the problem in terms of minimization.
One of the 4 quadrant neighbors is the current point from which the search is being carried
out.
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Theorem: Quad Search converges to the global optimum on bijective unimodal 1-D
functions after at most 2L + 2 evaluations from an arbitrary starting point.

Proof: The proof is recursive in nature. Assume the search space contains at
least 8 points. means there are at least 2 points in each quadrant. After initializing the
search, we show the search space can be cut in half after at most 2 new evaluations.

Sample a point Ngp and its reflected neighbors N5, N ;7 and IV,

Let Z represent a string of zeros when interpreted as a string and the number of
zeros when interpreted as an integer. Without loss of generality, we can relabel the
points {N BB, N5, N5, N5 B} using exclusive-or so that the minimal neighbor is
point Nyooz. Then {000Z,1007,010Z,110Z} denotes the same strings where the first
3 bits are as shown, and the remaining bits are all zero. We add one additional sample at
point 001Z.

Because the function is unimodal, the global minimum cannot be in Quadrant 11.
Note that samples 000Z and 001Z are from Quadrant 00 which contains the current
best known solution. Without loss of generality, assume that 1002 + ¢ < 000Z + ¢ <
001Z + ¢ < 010Z + c when the strings are interpreted as integers and the integers are
shifted by constant c using addition mod 2%. (The function can be shifted by a constant,
reversed, or relabeled using exclusive-or without changing the neighborhood structure:
all that is really required for the proof is that there is 1 out of quadrant point to the left

and the right and 2 samples in the middle quadrant.)

1. If £(000Z) > f(001Z) < f(010Z), then the global optimum must reside in
Quadrant 00 or 01. The major bit is fixed to 0. The points 000Z,0017,010Z,
becomes the points 002, 012, 107 in the reduced space. Only 2 additional points are
needed to continue the search. First we evaluate 11Z. Then the space is remapped
again so that the minimum of these 4 points is at 00Z. Then we evaluate 001(Z — 1).

2. If f(100Z) > f(000Z) < f(001Z), then the global optimum must reside in
Quadrant 00 or 10. The minor bit is fixed to 0. The points 000Z,0017,100Z,
becomes the points 007,017, 10Z in the reduced space. Only 2 additional points
are needed to continue the search. First we evaluate 11Z. Then the space is remapped
again so that the minimum of these 4 points is at 00Z. Then we evaluate 001(Z — 1).

After the first 5 evaluations, the search space contains 2(F—1) points. At each
iteration, the search space is cut in half after at most 2 new evaluations. After (L-3)
iterations the search space is reduced to at most 4 points, since 2(Z — 1) /2(L — 3) = 4.
However, at this point, we have already evaluated 00,01 and 10 (remapped so that
00 is the best solution so far). Only 11 remains to be evaluated. The total number of
evaluationis 5 +2(L-3) + 1 =2(L)+ 2. O

We assume the function is a bijection. Obviously, this is not true for many uni-
modal functions. While Quad Search cannot make progress over functions that are
largely flat, it can step across small to moderate size flat regions. There are a number
of ways ties might be handled. The current implementation does not always guarantee
global convergence if there are flat regions, but its behavior is similar to that of next
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ascent. In general, convergence times that are less than exponential cannot be guaranteed
if the space is largely flat (even if the space is unimodal).

At the beginning of the algorithm, the ordering of the quadrants is completely de-
termined by the two high order bits. However, as bits are fixed, the high order bits used
in the computation refer to the two highest order bits which remain unfixed. After a “1”
bit has been fixed in a Gray code, this ordering is destroyed. The major bit is always
the leftmost bit that has not been fixed. The minor bit is always the second bit from the
left that has not been fixed. The major and minor bits need not be adjacent, but all bits
to the right of the minor bit are unfixed. The only bit to the left of the minor bit that is
unfixed in the major bit. Thus, “quadrants” are not always physically adjacent. However,
the search space can always be remapped to a new physical space such that the major
and minor bits can be used to move between adjacent quadrants in the wrapped space.

4 Performance of Quad Search versus Local Search

We examined the following variants of local search in this study: next-ascent local search,
steepest-ascent local search, and Quad Search. We used Davis’ Random Bit Climbing
algorithm (RBC) [2] as our implementation of next-ascent. RBC is a simple next-ascent
hill climber that randomizes the order in which bits are flipped. A random permutation is
generated and used to determine the order in which to test bits. All L bits flips are tested
before any bit flips are retested; after all bits have been flipped, a new permutation is
generated and the process repeated. RBC also accepts bit flips resulting in equal fitness.
The steepest-ascent algorithm, which we call steepest-ascent bit climbing, or SABC,
differs in that it tests all bit flips, and accepts only the one that results in the largest
improvement in fitness; ties are broken randomly.

Our implementation of Quad Search is based on an earlier proof that showed that not
more than 8L evaluations were required [|1]. It evaluates all of the potential Hamming
1 neighbors before evaluating any Hamming distance 2 neighbors. Also, the current
implementation does not “reuse" samples inside of the middle quadrant. Obviously, this
results in unnecessary computation; empirically, the current implementation uses just
under 3L evaluations. This will be corrected in a future implementation.

We executed each local search algorithm on the set of three common test functions
shown in Table [l Each parameter was encoded using a 32-bit reflected Gray represen-
tation, and we considered 10, 20, and 30 dimensional variations of each test function.
Each trial was executed until the global optimum was located.

We compare local search against Evolution Strategies because Evolution Strategies
are proven to converge on unimodal functions and outperform other genetic algorithms
in unimodal spaces. We did not use correlated mutation for 20 and 30 dimensional test
functions due to the explosion of the number of correlation-strategy variables (for & object
variables there are O (k?) correlation-strategy variables). In addition, a restart mechanism
was included in the ES to allow them to escape the condition noted by Mathias et. al., [4]]
whereby the strategy variables become so small as to halt the progress of the search. The
specific restart mechanism employed is drawn from the CHC genetic algorithm [5]. Upon
detection of convergence (defined to be all strategy variables in the population falling
below some critical threshold) the best individual is copied into the new population.
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Table 1. Test functions used in this study. We consider n = 10, n = 20, and n = 30.

Function Definition Domain
Sphere S, (@i +5)° —20<z; <20
Parabolic Ridge —10z1 — ", (%:)® — 1000 —100 < z; <100
Sharp Ridge —10x1 — ‘/ZZ:Z x? — 1000 —100 < z; <100

The remainder of the population is filled with mutated copies of the best individual, and
all strategy variables are reset to new values in the range [—1.0, 1.0]. In this study, the
threshold for restarting was chosen as 1.0 x 10~%, and the mutations were performed
on 35% of the variables in each individual. In our implementation, restarting does not
modify the object variables in the population, it simply resets the strategy variables. To
facilitate comparisons with local search, we used a 32-bit floating-point representation
to encode each parameter. All trials were terminated after 1,000,000 fitness evaluations
or when the fitness of the best individual reached or exceeded —1.0 x 10719,

Table[2 shows the performance of each algorithm on the Sphere and Parabolic Ridge
functions; the results for the Sharpe Ridge function are similar to the Parabolic Ridge
function and are not shown. All local search methods are guaranteed to find the optimum.
RBC and Quad Search empirically display linear time search behavior. The number of
evaluations needed for the SABC steepest ascent algorithm to find the optimum is, as
expected, O(L?). The performance of the Evolution Strategies is roughly comparable
to SABC.

The reader should be aware that this is probably not the most efficient form of
Evolution Strategies for these test problems. Evolution Strategies using a 1/5 rule to
control the mutation rate should lead to linear time convergence on the sphere function.

One problem with the Evolution Strategies we have implemented is that they are
often unable to make the fine adjustments necessary to reach optimality to the desired
accuracy. Often all but one (or a small number) of the parameters are set to the optimal
values, while the remaining parameters are near-optimal. Sometimes the ES is not able
to optimize the near-optimal parameters without disturbing the values of the optimal
parameters; the values of the strategy variables become too small to be effective and the
search stagnates.

Restarts rarely help on these particular functions — restarting resets several strategy
variables, causing future mutations to disturb the parameters that are already optimal. It
may also be the case that the Evolution Strategies used here would have displayed much
better performance if we had used a less conservative convergence criteria.

5 A Quad Search/Genetic Algorithm Hybrid

We now evaluate the performance of Quad Search on a suite of multimodal test functions
which are relatively difficult for most optimization algorithms [6]. The specific functions
we consider are shown in Table 3l Powell’s function is 4-dimensional, and we encode
each parameter using 20 bits under a reflected Gray representation. For the other three
functions, we use 10-dimensional variants, encoding each parameter using 10 bits under
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Table 2. Number of evaluations to find the optimum of the Sphere and Parabolic Ridge functions.
The Evolution Strategies used in this study used a restart mechanism. # Solved refers to the number
of times the optimal solution was found out of 30 independent trials. # Evaluations refers to the
number of evaluations that were required.

Algorithm Sphere 10-D Sphere 20-D Sphere 30-D

# Solved # Evaluations| # Solved # Evaluations| # Solved # Evaluations
Quad Search 30 932.7 30 1801.0 30 2659.7
RBC 30 5875.3 30 12115.9 30 18420.2
SABC 30 51478.7 30 208198.0 30 458078.0
(1+1) ES 5 563967.0 0 - 0 -
(1+5) ES 8 412074.3 0 - 0 -
(10+10) ES 30 13206.2 30 151866.0 6 574046.0
(10+50) ES 30 17957.7 30 146173.0 17 477820.0
(50+50) ES 30 30707.3 30 130571.0 28 500807.0
(50+250) ES 30 50106.3 30 153628.0 28 418223.0
(100+100) ES 30 50868.3 30 191504.1 28 595862.3
(100+500) ES 30 89413.7 30 242475.6 28 544634.4
Algorithm Parabolic Ridge 10-D Parabolic Ridge 20-D Parabolic Ridge 30-D

# Solved # Evaluations| # Solved # Evaluations| # Solved # Evaluations
Quad Search 30 951.9 30 1825.6 30 2670.3
RBC 30 5918.1 30 13013.3 30 19605.4
SABC 30 50151.9 30 201809.0 30 446225.5
(1+1) ES 9 457005.1 0 - 0 -
(1+5) ES 9 298370.4 0 - 0 -
(10+10) ES 30 15438.8 30 228059.1 531212.2
(10+50) ES 30 21234.3 30 122101.0 11 568849.0
(50+50) ES 30 36132.1 30 120264.7 28 539147.3
(50+250) ES 30 60439.7 30 169586.2 29 413286.7
(100+100) ES 30 61381.3 30 236389.5 28 665666.7
(100+500) ES 30 108480.2 30 284724.0 23 564163.3

Table 3. Test functions: Griewangk, EF101, and EF102 are 10-Dimensional and Powell is 4-
Dimensional. EF101 and EF102 were also tested in 20-Dimensional variants. Powell’s function
was encoded with 20 bits per parameter. All others used 10-bit encodings.

Name Function Global Optimum
Griewangk L+ 000 — Limy (cos(Z£)) 0.0
Powell (z1 + 1022)* + (V5(x3 — x4))*+ 0.0
((z2 = 225)*)* + (V10(z1 — 24)*)*
EF101 |—asin(y/|x — L557)) — (y + 47)sin(y/|y + 47 + Z]) -939.8
EF102 wsin(y/|y + 1 — z])cos(/|z +y + 1])+ -511.7
(y + Deos(y/]y +1 — z)sin(y/|z + y + 1])
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Table 4. Performance of local search and genetic algorithms on multimodal test functions. Mean
refers to the mean value of the best solution averaged over 30 runs. # Evaluations refers to the
mean number of evaluations averaged over 30 runs. # Solved refers to the number of trials (out of
30) in which the optimum was located. If # Solved=0, then 500,000 evaluations were consumed
in all trials. o denotes the standard deviation of the quantity in the adjacent left column.

l Function [ Algorithm | Mean [ o [# Solved|# Evaluations o

QuadSearch| 0.073 0.032 2 233222.0 |92175.1
Griewangk RBC 0.009 0.014 21 181605.3 [129114.3
SABC 0.0 0.0 30 85053.8 82216.0
Genitor 0.108 0.058 2 13761.5 570.3
CHC 0.001 0.005 29 62179.0 |80013.5
QuadSearch|1624.330({1519.975 0 — —
Powell RBC 2.62e-4 | 5.56e-5 0 — —
SABC 2.06e-4 | 9.94e-5 0 — —
Genitor | 2.92e-4 | 7.24e-5 0 — —

CHC 0 0.0 30 200998.1 | 94196.4
QuadSearch|-724.880| 25.322 0 — —
EF101 RBC -759.683| 28.087 0 — —
SABC |-756.576| 34.588 0 — —
Genitor | -817.61 | 69.70 5 83151.2 |117792.3
CHC -939.82 | 0.02 30 17171.3 | 11660.1

QuadSearch|-434.873| 8.744
EF102 RBC -446.421| 9.905
SABC |-442.754| 11.301
Genitor | -443.45 | 17.87
CHC -495.56 | 5.53

(=l eoNeBeNoel
|
|

a reflected Gray representation. EF101 and EF102 are both based on the 2-dimensional
functions shown in Table[3} the 10-dimensional versions are constructed using a wrapped
weighting scheme [6].

For each local search algorithm (QuadSearch, RBC, and SABC), we execute 30 in-
dependent trials on each test function for a maximum of 500,000 evaluations. Search is
terminated if a global optimum is encountered, and is re-initiated from a randomly gen-
erated starting point when descent terminates at local optima. For comparative purposes,
we also consider two standard GAs: Genitor and CHC. For Genitor, we used a population
size of 300. CHC is a state-of-the-art GA with its own form of diversity management
[5]. We execute each GA for 500,000 evaluations or until a globally optimal solution
is located. Such a methodology favors algorithms that produce the best results possible
given a large number of evaluations; an algorithm might give good quick approximate
results but not perform well in the current competition.

We show the results in Table[dl The data indicate that Quad Search performs poorly
on multimodal, multi-dimensional test functions. This is not surprising. Quad Search
behaves much like a greedy search algorithm: after finding the best move among 4
neighbors, it eliminates half the space from further consideration at each step. In contrast,
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RBC and SABC continue to sample the entire search space. But this also means that
Quad Search often does much less work than RBC or SABC.

The advantage of Quad Search seems to be that it quickly locates the first local
optimum it can find while evaluating only a few points in each dimension of the search
space. It is interesting to note that RBC is usually the best of the local search methods
when used in isolation, except on Griewangk, where SABC finds the optimal solution
every time. Additionally, Quad Search can work within the normal bit representations
often used by genetic algorithms. It is therefore natural to combine Quad Search with a
genetic algorithm. Such algorithms are called hybrid genetic algorithms [7]]. There has
also been a recent trend to refer to such algorithms as memetic algorithms [§]].

We consider hybrid genetic algorithms based on the Genitor algorithm [9]. Genitor
is an elitist steady state GA which utilizes rank-based selection. It has proven to be
amenable to hybridization, due to a number of factors. Selection is based solely on rank,
which helps to maintain diversity; this can be especially important for hybrid genetic
algorithms since local search often produces highly fit individuals. Under proportional
selection, such individuals can quickly come to dominate the population.

All of the hybrid genetic algorithms we examine use uniform crossover and bitwise
mutation with probability 0.001 per bit. The population size was 100. In addition, two-
point reduced surrogate [[10] and HUX crossover (a variant of uniform crossover in which
exactly half of the bits are exchanged) [5] were tested and yielded negligible differences
in performance. We investigate hybrid genetic algorithms based on the following local
search algorithms: Quad Search, RBC, and SABC. Each algorithm can be executed in
the following modes:

1. Full Local Search: Use a local search method to improve each member of the
population until a local optimum is reached.

2. Stochastic Local Search: Use local search to improve each member of the
population with probability 0.05; again local search is run until a local optimum is
reached.

3. Restricted Local Search: Apply local search to every member of the population
until a single improving move is found.

For the Restricted and Stochastic forms of local search, only the best results are given
for SABC and RBC. The local search methods were not hybridized with CHC because
we were not able to develop a hybrid form of CHC that improved on the original form
of CHC.

Overall, the hybrid genetic algorithm combining Genitor and Quad Search is the best
hybrid genetic algorithm; it was best on Powell, EF101 and Rana’s function (EF102).
The RBC and SABC algorithms were best on Griewangk, but Griewangk is also solved
by using SABC alone.

Both CHC and the Genitor/Quad Search Hybrid solved EF101 every time, but CHC
did so faster. CHC was somewhat better than the Genitor/Quad Search Hybrid on Pow-
ell’s functions, but the Genitor/Quad Search algorithm was dramatically better than CHC
on Rana’s function (EF102). To the best of our knowledge, this is the first time any search
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Table 5. Performance of Hybrid GAs on 4 multimodal test functions. For RBC and SABC, results
for the Stochastic and Restricted forms of local search are reported, depending on which worked
best. Mean is the mean value of the best solution averaged over 30 runs. # Evaluations refers to
the mean number of evaluations averaged over 30 runs. # Solved is the number of trials (out of
30) that found the optimum. If # Solved=0, then 500,000 evaluations were consumed in all trials.
o denotes the standard deviation of the quantity in the adjacent left column.

l Function ‘Local Search| Mode ‘ Mean ‘ o ‘# Solved‘# Evaluations‘ o ‘
Griewangk|Quad Search| Full 0.016 | 0.014 13 100090.3 |45138.8
Griewangk RBC Full 0 0 30 144024.0 |45507.5
Griewangk| SABC Full 0 0 30 418697.8 |14614.9
Griewangk RBC Restricted| 0.011 | 0.016 20 1234745 |41413.3
Griewangk| SABC  |[Stochastic| 0.013 | 0.018 19 76160.2 |37452.1
Powell |Quad Search| Full |3.46e-9|9.07e-9| 22 262931.2 |57478.2
Powell RBC Full |2.14e-4|8.44e-5 0 — —
Powell SABC Full |9.87e-5(8.34e-5 0 — —
Powell RBC Stochastic|1.94e-7|7.83e-7 5 351407.2 (44262.3
Powell SABC Restricted|5.55e-5(6.28e-5 0 — —
EF101 |[Quad Search| Full [-939.84| 0.01 30 216299.3 [38496.7
EF101 RBC Full |-924.63| 34.95 25 395994.2 |52569.5
EF101 SABC Full |-772.59| 45.55 1 448305.0 —
EF101 RBC Stochastic|-906.79| 55.21 22 237970.1 |87683.9
EF101 SABC |[Stochastic|-892.53| 70.75 20 283078.8 [80614.8
EF102 |Quad Search| Full |-510.29| 2.53 26 267792.7 (42256.3
EF102 RBC Full |-471.45| 7.09 0 — —
EF102 SABC Full |-447.55| 13.14 0 — —
EF102 RBC Stochastic|-484.08| 7.66 0 — —
EF102 SABC |[Stochastic|-463.64| 9.56 0 — —

algorithm has solved a 10-D version of Rana’s function to optimality. Overall, the Gen-
itor/Quad Search Hybrid is better than any of the other hybrid genetic algorithms we
tested and is competitive with and sometimes superior to CHC.

What make the Genitor/Quad Search combination so effective? We explored two
hypotheses in an attempt to explain its behavior.

1. Hypothesis 1: Quad search improves strings quickly with minimal effort.
2. Hypothesis 2: Quad search works because it sustains genetic diversity.

The two hypotheses are not mutually exclusive, but experiments were performed to
try to determine if one of these factors might be more important.

Figure [3] shows two graphs. The test function in this case was Rana’s EF102. On
the left, we show the speed with which improving moves are found using Genitor in
combination with Quad Search (QS), RBC and SABC. On the right, we measured the
entropy in the population.

Entropy(Population) = —B1 log Bl — B0 log B0
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Fig. 2. Performance of a Hybrid Genetic Algorithm utilizing Quad Search, RBC, and SABC as
local optimizers. Fitness of the best individual versus number of evaluations is shown in the left
figure. Entropy of the population versus number of evaluations is shown in the right figure. The
test function was Rana’s EF102

where B1 counts the number of 1 bits in the population and B0 counts the number of 0
bits in the population. The figure shows that the Hybrid GA combining Genitor and Quad
Search does not preserve diversity. Instead, it drives diversity out of the population faster
than the other two local search methods when used as part of a hybrid genetic algorithm.
It also shows that Genitor using Quad Search finds improvements more rapidly that
Genitor used in combination with RBC or SABC.

6 Conclusions

The theoretical analysis of Quad Search presented in the paper, along with the empirical
data, shows that Quad Search can be both extremely fast and effective on a special
subclass of problems.

Because Quad Search is so fast, it may also have important practical uses in the
construction of hybrid genetic and evolutionary algorithms. Empirical studies show that
a hybrid genetic algorithm combining Genitor and Quad Search is generally superior to
a hybrid genetic algorithm based on RBC or SABC.
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