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Abstract. Gene space, as it is currently formulated, cannot provide a solid basis
for investigating the behavior of the GA. We instead propose an approach that
takes population effects into account. Starting from a discussion of diversity, we 
develop a distance measure between populations and thereby a population met-
ric space. We finally argue that one specific parameterization of this measure is
particularly appropriate for use with GAs. 

1    Introduction: The Need for a Population Metric 

All previous attempts to characterize gene space have focused exclusively on the
Hamming distance and the hypercube. However, this 'chromosome space' cannot fully
account for the behavior of the GA.

An analysis of the GA using chromosome space implicitly assumes that the fitness
function alone determines where the GA will search next. This is not correct. The 
effect that the population has on the selection operation can easily be seen in the fol-
lowing (obvious) examples:  In fitness proportional selection (fps) the fitness values
associated with a chromosome cannot be derived from the fitness function acting on
the chromosome alone, but also takes into account the fitness of all other members in
the population. This is because the probability of selection in fps is based on the ratio
of the ‘fitness’ of the individual to that of the total population. This dependence on
population for the probability of selection is true not just for fitness proportional se-
lection, but also for rank selection as the ranking structure depends on which chromo-
somes are in the population, and tournament selection since that can be reduced to a
subset of all polynomial rank selections. Finally, and most glaringly, the probability
of selecting a chromosome that is not in the population is zero; this is true no matter
the fitness of the chromosome! Consequently the fitness value associated with the
chromosome is meaningless when taken independently of the population. 

As the above examples demonstrate, any metric that is used to analyze the behavior
of the GA must include population effects. These effects are not made evident if only
the chromosome space is examined. Therefore the metric used must include more
information than just the distance between chromosomes; we must look to the popula-
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tion as a whole for our unit of measure. In other words, we need a distance between
populations. 

There are four sections in this paper. The first section examines the well-known
population measure ‘diversity’ since the definitions and methodologies developed for
it will form the basis of the distance measures.  In the two sections after, two different
approaches are introduced that attempt to determine the distance between populations.
The first approach, the all-possible-pairs approach, is a natural extension of the tradi-
tional diversity definition. The second approach describes the mutation-change dis-
tance between populations. In the final section, a synthesis of these two distance con-
cepts is developed eventually leading to a single definition of the distance between
populations

2    Diversity 

Before attempting to find a relevant distance between populations, it will be instruc-
tive to first discuss the related concept of ‘diversity’.

There are three reasons for this. First, diversity is a known measure of the popula-
tion that is independent of the fitness function. Since the distance between populations
should likewise be independent of the fitness, useful insights may be derived from a
study of diversity. Second, several techniques shall be introduced in this section that
will become important later when discussing the distance between populations. Fi-
nally, the concept of diversity itself will be used in the analysis of the distance be-
tween populations. 

3    All-Possible-Pairs Diversity 

The simplest definition of diversity comes from the answer to the question “how dif-
ferent is everybody from everybody else?” If every chromosome is identical, there is
no difference between any two chromosomes and hence there is no diversity in the
population. If each chromosome is completely different from any other, then those 
differences add, and the population should be maximally diverse. So the diversity of a
population can be seen as the difference between all possible pairs of chromosomes
within that population.

While the above definition makes intuitive sense, there is one aspect not covered:
what do we mean by different? If a pair of chromosomes is only different by one
locus, it only seems reasonable that this pair should not add as much to the diversity
of the population as a pair of chromosomes with every locus different. Consequently
the difference between chromosomes can be seen as the Hamming distance or chro-
mosome distance, and hence the population diversity becomes the sum of the Ham-
ming distances between all possible pairs of chromosomes [1]. In cluster theory this is
called the statistic scatter [2]. 

Now, since the Hamming distance is symmetric, and is equal to 0 if the strings are
the same, only the lower (or, by symmetry, only the upper) triangle in a chromosome-
pairs-table need be considered when computing the diversity. Consequently the all-
possible-pairs diversity can be formalized as
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Div P( ) = hd(c
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j
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(1) 

where P is the population, n is the population size, chromosome c
i

∈P , l is the length
of a chromosome and hd(ci,cj ) is the Hamming distance between chromosomes. 

The Reformulation of the All-Possible-Pairs Diversity:
A Linear Time Algorithm

A problem with formula (1) is its time complexity. Since the Hamming distance be-
tween any two pairs takes O(l ) time and there are n2 possible pairs (actually
1

2
n n − 1( )  pairs when symmetry is taken into account), then the time complexity

when using (1) is O l n
2( ). Since the time complexity of the GA is O( l ⋅ n)  calculat-

ing the diversity every generation would be expensive. 

Surprisingly, a reformulation of definition (1) can be converted into an O(l ⋅ n)  algo-
rithm to compute the all-possible-pairs diversity. 

Gene Counts and the Gene Frequencies 
We will now introduce two terms that not only will be used to reformulate the defini-
tion of the all-possible-pairs diversity, but also will become ubiquitous throughout
this paper. They are the gene count across a population, and the gene frequency of a
population.

The gene count c
k
(α)  is the count across the population of all genes at locus k

that equal the symbol α. This means that 

c
k
(α) = δ

i, k
(α)

i =1

n

(2) 

where δ
i , k

(α)  is a Kronecker δ  that becomes 1 when the gene at locus k in chromo-

some i equals the symbol α, and otherwise is 0. Later in the paper we will frequently
write c

k
(α)  as cα , k

, or just as cα  if the locus k is understood in the context.

The array of the gene counts of each locus will be called the gene count matrix. 

The gene frequency f
k
(α)  is the ratio of the gene count to the size of the popula-

tion. In other words,

f
k
(α) =

c
k
(α)

n
(3) 

Again, later in the paper we will frequently write f
k
(α)  as fα |k

, or just as fα  if the
locus k is understood in the context.
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The array of the gene frequencies of each locus will be called the gene frequency 
matrix. 

The Reformulation 
With the notation in place we can present the alternate form of writing the all-
possible-pairs diversity:

Theorem 1: The all-possible-pairs diversity can be rewritten as 

Div P( ) =
n

2

2 l
f

k
(α) (1 − f

k
(α))

∀α ∈Ak =1

l

(4) 

Proof: Let us first examine a chromosome ci that at locus k has gene α. When com-
puting all of the possible comparison pairs, 0 is obtained when compared to all of the
other chromosomes that also have gene α at locus k. There are n fk(α) of those. Con-

sequently there are n − n fk(α) comparisons that will return the value 1. So the com-
ponent of the distance attributable to ci is n − n fk(α) . Since there are n f(α ) chromo-
somes that have the same distance component, the total distance contributed by chro-
mosomes with gene α at locus k is n fk(α)(n − n fk (α )) , which simplifies to

n
2

fk(α)(1 − fk (α )) . Summing over all α will give us double the comparison count

(since we are adding to the count both hd
k
(c

i
,c

j
)  and hd

k
(c

j
,c

i
) ). So the true com-

parison count is n2

2 fk (α)(1 − fk (α))
∀α ∈A

. Averaging over all loci gives us the result we

want. •
Normalizing (4) assuming that the alphabet size a  < n  and that a  divides into n

evenly, we get

Div(P) =
a

l (a − 1)
f

k
(α) (1 − f

k
(α))

∀α ∈Ak =1

l

  . (5) 

Since in the majority of GA implementations a binary alphabet is used with an even
population size (because crossover children fill the new population in pairs), the 
above equation becomes

Div(P) =
2

l
f

k
(α ) (1 − f

k
(α))

∀α ∈Ak =1

l

  . (6) 

The gene frequencies can be pre-computed for a population in O(l ⋅ n )  time. Con-
sequently, the formula above can be computed in O(a ⋅ l ⋅ n ) , which reduces to
O(l ⋅ n )  since a is a constant of the system (usually equal to 2). Thus we show that
the all-possible-pairs diversity can be computed in O(l ⋅ n )  time, which is much faster

than the O(l ⋅ n
2
)  time that the original naïve all-possible-pairs algorithm would take. 
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4    An All-Possible-Pairs “Distance” between Populations 

The obvious extension of the all-possible-pairs diversity of a single population would
be an all-possible-pairs distance between populations. Here we would take the Carte-
sian product between the two populations producing all possible pairs of chromo-
somes, take the Hamming distance between each of those pairs of chromosomes, and
sum the results. Since there are O(n ⋅ m)  such pairs (where n and m are the two popu-

lation sizes) then assuming m ∝ n , there would be O(n
2
)  distances being combined.

Consequently the resulting summation, if it turns out to be a distance, would be a
squared distance.  So formally we have:

Dis ′ t P
1
,P

2
( ) = hd(chr1

i
,chr2

j
)

j =1

n 2

i=1

n1

(7) 

where P
1
 and P

2
 are populations with population sizes of n1 and n2 respectively,

chr1
i

∈P
1
 and chr2

j
∈P

2
, and i and j are indices into their respective population. The

reason we are using the function name Dis ′ t  instead of Dist  shall be explained in
the next subsection. This ‘distance’ between populations is used in some pattern rec-
ognition algorithms and is called the average proximity function1.

Following the same argument as with diversity presented when reformulating the
diversity to become a linear algorithm, a frequency-based version of the same formula 
can be produced: 

Dis ′ t P
1
,P

2
( ) =

nm

l
f
1, k

(α) (1 − f
2, k

(α ))
∀α ∈Ak =1

l

(8) 

where f
1, k

(α)  is the gene frequency of the gene α at locus k across population P1, and

f
2, k

(α ) is the corresponding gene frequency for population P2. 

Problems

While initially attractive for its simple intuitiveness, the all-possible-pairs “distance” 
is unfortunately not a distance. While it is symmetric and non-negative, thus obeying
distance properties M2 and M3, it fails on properties M1 and M4

2.  
The failure of property M1 is readily seen. M1 states that the distance must be 0 iff

the populations are identical; consequently the all-possible-pairs “distance” of a popu-
lation to itself should be equal to 0. Instead it is actually the all-possible-pairs diver-
sity measure, which is typically greater than 0. In fact, the diversity only equals 0
when all of the chromosomes in the population are identical!

Furthermore the all-possible-pairs “distance” also fails to satisfy M4, the triangle
inequality. This can be seen from the following example. Let A  be a binary alphabet
{0, 1} from which the chromosomes in all three populations that form the triangle 

1 [3] pg. 378.
2 See Appendix A.
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will be drawn. Let populations P
1
 and P

3
 both have a population size of 2 and P

2
 have 

in it only a single chromosome. To make the situation even simpler, in all populations
let each chromosome consist of only 1 locus. Now look at an example where the
population make-up is as follows:

P
1

= {< chr
1, 0

,0 >, < chr
1, 1

, 0 >} ,

P
2

= {< chr
2, 0

,0 >}  

P
3

= {< chr
3, 0

,1 >,< chr
3, 1

,1 >} .

The corresponding gene frequencies are f
1
(0) = 1, f

1
(1) = 0, f

2
(0) = 1, f

2
(1) = 0 ,

f
3
(0) = 0 and f

3
(1) = 1. Using the all-possible-pairs “distance” definition (8) we can

calculate that Dist(P
1
, P

2
) + Dist(P

2
,P

3
) = 0 + 2 = 2, and that

Dist(P
1
, P

3
) = 4 = 2 . Consequently Dist(P

1
, P

2
) + Dist(P

2
,P

3
) < Dist(P

1
, P

3
) and so

the triangle inequality does not hold.

Thus the all-possible-pairs “distance” cannot be considered a  metric3. It is for this 
reason that we put the prime after the ‘distance function’ that has been developed so
far. 

Correcting the All-Possible-Pairs Population Distance 

We will now modify the formula to turn it into a true distance. 
We shall first deal with the failure to meet the triangle inequality. Definition (8)

was written to be as general as possible. Consequently, it allows for the comparison of
two populations of unequal size. In the counter-example showing the inapplicability
of the triangle inequality, unequal sized populations were used. When populations of 
equal size are examined no counter-example presents itself. This holds even when the
largest distance between P1 and P3 is constructed and with a P2 specially chosen to

produce the smallest distance to both P1 and P3. Generalizing this, we could redefine
the definition (8) such that small populations are inflated in size while still keeping 
the equivalent population make-up. The same effect can be produced by dividing
definition (8) by the population sizes, or in other words through normalization. 

Now let us address the problem of non-zero self-distances. As noted in the previ-
ous subsection, this property fails because the self-distance, when comparing all pos-
sible pairs, is the all-possible-pairs diversity, which need not be zero. To rectify the
situation we could simply subtract out the self-distances of the two populations from
the all-possible-pairs distance equation4. Again we are removing the problems
through normalization.  

To summarize the above, looking first only at a single locus and normalizing the
squared distance (which simplifies the calculation) we get: 

3 It is not even a measure. See [3] pg. 378 under the properties of the average proximity func-
tion.

4 The a −1
2a  term in front of the two normalized diversities in the resulting distance equation is 

a re-normalization factor. It is needed to ensure that the resulting distance cannot go below
zero, i.e. the distance stays normalized as required.
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Dist
k

2
(P

1
, P

2
) = Dis ′ t 

k
(P

1
,P

2
)( )2

−
a − 1

2a
Div

k
(P

1
) −

a − 1

2a
Div

k
(P

2
) (9) 

Now, let us substitute (8), the definition of Dis ′ t P
1
,P

2
( ), into the above equation.

Also let Div
k
(P) =

a

(a − 1)
f

k
(α ) ⋅ (1 − f

k
(α ))

∀α ∈A

, the normalized diversity from the

diversity reformulation section modified for a single locus. Then (9) becomes

Dist
L 2 ,k (P

1
, P

2
) =

1

2
f
1, k

(α) − f
2, k

(α )( )2

∀α ∈A

(10) 

(the use of the L2 subscript will become apparent in the next section).  
Notice that the above distance is properly normalized5. Furthermore, this process

has actually produced a distance (or rather a pseudo-distance): 

Theorem 2:  The function Dist
L 2 , k

(P
1
, P

2
)  is a pseudo-distance at a locus k. 

Proof: First notice that f
1, k

(α) − f
2, k

(α ) forms a set of vector spaces (with k being 

the index of the set). Now f
1, k

(α) − f
2, k

(α )( )2

∀α ∈A

is the L2-norm on those vector 

spaces. As noted in Appendix B, we know that the norm of a difference between two 
vectors v − w  obeys all distance properties. Consequently, the equation

f
1, k

(α) − f
2, k

(α )( )2

∀α ∈A

is a distance. Any distance multiplied by a constant (in this

case 1

2
) remains a distance. However, Dist

l 2 ,k
(P

1
, P

2
)  is a distance between gene 

frequency matrices, and of course there is a many-to-one relationship between popu-
lations and a gene frequency matrix. For example, you can crossover members of a
population thus producing a new population with different members in it but with the
same gene frequency matrix. Hence you can have two distinct populations with a
distance of 0 between them. Consequently, Dist

L 2 ,k (P
1
,P

2
)  is a distance for gene fre-

quency matrices, but only a pseudo-distance for populations. !

Using the L2-norm, we can combine the distances for the various loci into a single
pseudo-distance:

Dist
L 2

(P
1
, P

2
) =

1

2l
f
1, k

(α) − f
2, k

(α)( )2

∀α ∈Ak =1

l

  . (11)

While it would be nice to have an actual distance instead of a pseudo-distance be-
tween populations, most properties of metrics are true of pseudo-metrics as well.
Furthermore, since the distances between gene frequency matrices are actual dis-

5 The maximum occurs when f
1| k

(α
1
) = f

2 | k
(α

2
) = 1 and f

1| k
(α ≠ α

1
) = f

2| k
(α ≠ α

2
) = 0 .
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tances, their use connotes a positioning in gene space, albeit with some loss of infor-
mation. 

5    The Mutational-Change Distance between Populations 

While, in the section above, we were able to derive a population distance using an all-
possible-pairs approach, it is a bit disappointing that to do so we needed to perform
ad-hoc modifications. In this section we will approach the matter from a different
perspective. We will define the distance between populations as the minimal number
of mutations it would take to transform one population into the other.

The above definition of population distance is the generalization of the Hamming
distance between chromosomes. With the distance between chromosomes we are
looking at the number of mutations it takes to transform one chromosome into the
other; with the distance between populations we directly substitute into the entire
population each mutational change to create an entirely new population.

There are, of course, many different ways to change one population into another.
We could change the first chromosome of the first population into the first chromo-
some of the other population; or we could change it into the other population’s fifth
chromosome. However, if we just examine one locus, it must be true that the gene
counts of the first population must be transformed into those of the second by the end
of the process. The number of mutations that must have occurred is just the absolute
difference in the gene counts (divided by 2 to remove double counting). 

There is one slight problem with the above definition. It only makes sense if the
two populations are the same size. If they are of different size, no amount of muta-
tions will transform one into the other. To correct for that, we transform the size of
one population to equal that of the other.

To give the intuition behind the process that will be used, imagine two populations,
one double the size of the other. If we want to enlarge the second population to the
size of the first population, the most obvious approach is to duplicate each chromo-
some. The effect that this has is the matching of the size of the second population to
the first while still maintaining all of its original gene frequencies. Since a population
will not always be a multiple of the other, we duplicate each population n times,
where n is the other population's size. Now both populations will have the same popu-
lation size. So the duplication factor in front of the first population is n2 , the duplica-
tion factor in front of the second population is n1, and the common population size is

n
1
n

2
. So we can now define the mutational-change distance between two populations 

at a locus as 

Dist
L

1
, k

(P
1
, P

2
) = n

2
c

1, k
(α ) − n

1
c

2, k
(α)

∀α ,α ∈A

= n
1

n
2

c
1, k

(α )

n
1

−
c

2, k
(α)

n
2∀α , α ∈A

= n
1

n
2

f
1, k

(α ) − f
2, k

(α)
∀α , α ∈A
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which, when normalized, becomes 

Dist
L 1,k

(P
1
, P

2
) =

1

2
f
1, k

(α ) − f
2, k

(α)
∀α , α ∈A

(12) 

Notice the similarity between the above and the all-possible-pairs distance at a locus
(10). We basically have the same structure except that the L2-norm is replaced by the
L1-norm (hence the use of the L1 and L2 subscripts). Therefore, the argument that was
used to prove Theorem 2 applies here as well. Consequently the mutational-change
distance between populations at a locus is also a pseudo-distance. 

Finally, averaging across the loci produces the mutational-change pseudo-distance
between populations:

Dist
L 1

(P
1
,P

2
) =

1

2l
f

1, k
(α) − f

2, k
(α)

∀α ,α ∈Ak =1

l

(13) 

6    The Lk-Norms and the Distance between Populations 

In the previous two sections we have seen two different distances (actually pseudo-
distances) between populations derived through two very different approaches. Yet
there seems to be the same underlying structure in each: the norm of the differences
between gene frequencies. In one case the norm was the L1-norm, in the other the L2-
norm, otherwise the two results were identical. Generalizing this, we can define an Lk-
distance on the population:

Dist
L k

(P
a
,P

b
) =

1

2 l
f

a , i
(α) − f

b , i
(α )

k

∀α , α ∈Ai =1

l

k (14) 

and 

Dist
L ∞

(P
a
, P

b
) = max

∀α , α ∈A

∀i , i ∈[1, l ]

f
a , i

(α ) − f
b, i

(α )( )  . (15) 

Interestingly, the L ∞- distance  restricted to a single locus can be recognized as
the Kolmogorov-Smirnov test. The K-S test is the standard non-parametric test to
determine whether there is a difference between two probability distributions. 

Realizing that there are an infinite number of possible distance measures between
populations, the question naturally arises: is one of the distance measures preferable
or will any one do?  

Of course, to a great degree the choice of distance measure depends on matching
its properties to the purpose behind creating that distance measure in the first place;
i.e. different distances may or may not be applicable in different situations.  
That being said, there is a property possessed by the distance based on the L1-norm
which none of the others possess, making it the preferable distance. This property 
becomes evident in the following example. Let us examine 4 populations; the chro-

Σ
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mosomes in each population are composed of a single gene drawn from the quater-
nary alphabet {a, t, c, g}. The 4 populations are:

P
1a

= {< chr
1
, a >, < chr

2
,a >, < chr

3
,a >, < chr

4
,a >}

P
1b

= {< chr
1
, c >, < chr

2
,c >, < chr

3
,c >, < chr

4
,c >}

P
2a

= {< chr
1
,a >, < chr

2
, a >, < chr

3
, t >, < chr

4
, t >}

P
2b

= {< chr
1
,c >, < chr

2
, c >, < chr

3
, g >, < chr

4
,g >}

and so

f
1a

(a) = 1, f
1a

(t ) = 0, f
1a

(c) = 0, f
1a

(g) = 0,

f
1b

(a) = 0, f
1b

(t ) = 0, f
1b

(c) = 1, f
1b

(g) = 0,

f
2a

(a) = 1

2
, f

2a
(t) = 0, f

2a
(c) = 1

2
, f

2a
(g) = 0,

f
2b

(a) = 0, f
2b

(t) = 1

2
, f

2b
(c) = 0, f

2b
(g) = 1

2
.

Now, lets look at the two distances Dist
L k

(P
1a

, P
1b

)  and Dist
L k

(P
2a

,P
2b

) . In both cases

the populations have no genes in common. We should therefore expect the distance
between both pairs of populations to be the maximum distance that can be produced.
It is true that the diversity within each of the first two populations is 0, while the di-
versity within each of the second two is greater than 0; however that should have
nothing to do with the distances between the populations. One expects both distances
to be equally maximal. Working out the distances from the equation 

Dist
L k

(P
a
, P

b
) =

1

2
f

a
(α ) − f

b
(α )

∀α , α∈A

k
k

we get 

Dist
LK

(P
1a

,P
1b

) =
1

2
⋅ 2 ⋅ (1)

k +
1

2
⋅ 2 ⋅ (0)

k

1

k

= 1 and 

Dist
LK

(P
2a

, P
2b

) =
1

2
⋅ 4 ⋅

1

2

k

1

k

= 2

k −1

k

The only value of k for which the two distances will be equal (and since 1 is the
maximum, they will be both maximal) is when k = 1. For the L∞- norm ,

Dist
L ∞

(P
1a

,P
1b

) = 1 and Dist
L ∞

(P
2a

, P
2b

) = 1

2
, so it is only under the L1-norm that the 

two distances are equal and maximal. The above property of the L1-norm holds for
any alphabet and population sizes. 

Σ



Distance between Populations    1491

7    Conclusion 

The purpose of this paper is to develop a distance measure between populations. To
do so we first investigated population diversity. Using our analysis of diversity as a
template, we defined two notions of population distance, which we then generalized
into the Lk- distance set. We picked the L1-distance as the most appropriate measure
for GAs because it is the only measure that consistently gives maximum distance for
populations without shared chromosomes. This distance forms a metric space on
populations that supersedes the chromosome-based gene space. We feel that this en-
hancement to the formulation of gene space is important for the further understanding
of the GA. 
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Appendix A: Distances and Metrics 

While the concept of ‘distance’ and ‘metric space’ is very well known, there are many
equivalent but differing definitions found in textbooks. A metric space is a set of
points with an associated “distance function” or “metric” on the set. A distance func-
tion d acting on a set of points X is such that d: X × X → R , and that for any pair of
points x, y ∈X , the following properties hold:

M1 d x, y( )= 0 iff x = y

M2 d x, y( )= d y, x( ) (Symmetry)

M3 d x, y( )≥ 0
as well as a fourth property: for any 3 points x, y,z ∈X ,

M4 d x, y( )+ d y,z( )≥ d(x,z)  (Triangle Inequality)

If for x ≠ y , d x, y( )= 0 , which is a violation of M1, then d is called a pseudo-
distance or pseudo-metric. If M2 does not hold, i.e. the ‘distance’ is not symmetric,
than d is called a quasi-metric. If M4 (the triangle inequality) does not hold, d is called
a semi-metric. Finally note that if d is a proper metric then M3 is redundant, since it
can be derived from the three other properties when z is set equal to x in M4. 



1492  M. Wineberg and F. Oppacher

Appendix B: Norms 

Norms are also a commonly known set of functions. Since we make use of norms so
extensively, we felt that a brief summary of the various properties of norms would be
helpful. A norm is a function applied to a vector in a vector space that has specific 
properties. From the Schaum’s Outline on Topology6 the following definition is 
given: “Let V be a real linear vector space …[then a] function which assigns to each
vector v ∈V  the real number v  is a norm on V iff it satisfies, for all v,w ∈ V  and
k ∈R , the following axioms: 
[N1] v ≥ 0 and v = 0 iff v = 0.
[N2] v + w ≤ v + w .
[N3] kv = k v .
The norm properties hold for each of the following well-known (indexed) functions: 

Lk − norm = < a1,-,am > = ai

k
k . 

Taking the limit as k → ∞ of the Lk-norm produces the L ∞- norm:  

L∞- norm = max a1 , a2 ,..., am( ). 
The norm combines the values from the various dimensions of the vector into a

single number, which can be thought of as the magnitude of the vector. This value is
closely related to the distance measure. In fact, it is well known that the norm of the
difference between any two vectors is a metric.  

6 [4] pg. 118.

Σ
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