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Abstract. This paper assumes a search space of fixed-length strings, where the
size of the alphabet can vary from position to position. Structural crossover is
mask-based crossover, and thus includes n-point and uniform crossover. Struc-
tural mutation is mutation that commutes with a group operation on the search
space. This paper shows that structural crossover and mutation project naturally
onto competing families of schemata. In other words, the effect of crossover and
mutation on a set of string positions can be specified by considering only what
happens at those positions and ignoring other positions. However, it is not possible
to do this for proportional selection except when fitness is constant on each schema
of the family. One can write down an equation which includes selection which
generalizes the Holland Schema theorem. However, like the Schema theorem, this
equation cannot be applied over multiple time steps without keeping track of the
frequency of every string in the search space.

1 Introduction

This paper describes the remarkable properties of structural crossover and mutation
with respect to families of competing schemata. Recall that a schema defines certain
components as taking on fixed values, while the remaining components are free to vary.
Two schemata are in the same family if they specify fixed values for the same set of
components. They are competing if they specify different values at these components.
Given a set of components, the set of all possible fixed values that can be assigned to
them gives us a whole competing family of schemata.

Vose and Wright, 2001 showed that each schema corresponds to a vector in pop-
ulation space. These schema vectors make up the components of a generalized (and
redundant) coordinate system for population space. As the genetic algorithm moves
from point to point in population space, it might be said to “process” schemata in the
sense that each point in population space determines the frequency of each schema.
This processing of many schemata has traditionally been called “implicit parallelism”.
However, the components corresponding to nontrivial schemata families are not inde-
pendently processed and thus any implication that the genetic algorithm gains processing
leverage due to the processing of schemata is misguided.

The set of components corresponding to a competing family of schemata may be
picked out by a binary mask, and we can view such a mask as being a projection onto
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a smaller search space (in which we ignore what happens at the other positions). The
remarkable result that we will prove is that structural crossover and mutation project
naturally onto these families. That is, we can specify the effect of crossover and mutation
just on the set of positions under consideration, ignoring what happens at other positions.
Because this result applies to all schemata families simultaneously, we dub it the “Implicit
Parallelism Theorem”. In doing so, we hope to eradicate the previous usage of this phrase
(which did not apply to a theorem at all, but to a fundamental mistake) and rescue it for
a more suitable usage.

The result that operators project naturally onto schemata families applies only to
crossover and mutation. It would be nice if it also applied to selection, and this possibility
is investigated. The conclusion, however, is that it cannot (except in the trivial case where
fitness is a constant for each schema in a schema family). One can, of course, write down
an equation which involves selection, as well as crossover and mutation. This equation
is, in fact, more elegant and meaningful than Holland’s original Schema Theorem, but
it suffers from the same fundamental flaw. In order to compute the average fitness of a
schema at a given generation, one needs to know all the details of the entire population
at that generation. It is therefore impossible to project onto a schemata family and ignore
what happens at the other components. One implication of this is that one cannot iterate
the equation: like the Schema Theorem, it can be applied over more than one time-step
only by keeping track of the frequency of every string in the search space.

2 Structural Search Spaces and Operators

We generalize Vose, 1999 by introducing a class of genetic operators associated with a
certain subgroup structure (for more details, see Rowe et al., 2002). Suppose the search
space forms a group (Ω, ⊕) which has nontrivial subgroups A0, . . . , A�−1 such that for
all i, j, x,

1. Ω = A0 ⊕ . . . ⊕ A�−1
2. i �= j =⇒ Ai ∩ Aj = {0}
3. x ⊕ Ai = Ai ⊕ x

Then Ω is the internal direct sum of the Ai (which are normal subgroups of Ω) and each
element x ∈ Ω has a unique representation x = x0 ⊕ . . . ⊕ x�−1 where xi ∈ Ai. The
map

x �−→ 〈x0, . . . , x�−1〉
is an isomorphism between Ω and the product group A0 × . . .×A�−1 (see Lang, 1993),
where

〈x0, . . . , x�−1〉 ⊕ 〈y0, . . . , y�−1〉 = 〈x0 ⊕ y0, . . . , x�−1 ⊕ y�−1〉
and


〈x0, . . . , x�−1〉 = 〈
x0, . . . ,
x�−1〉
(where 
 indicates the inverse of an element). In this case the search space is called
structural. Assume for the remainder of this paper that Ω is structural, and identify
x ∈ Ω with 〈x0, . . . , x�−1〉.
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As an example, consider a length � string representation where the cardinality of the
alphabet at string position j is cj . The alphabet at position j can be identified with Zcj

(the integers modulo cj), and the ⊕ operator can be componentwise addition (modulo cj

at position j). Then Ω is isomorphic to the direct product Zc0 ×. . .×Zc�−1 . This example
extends the situation considered in Koehler et al., 1997 where c0 = c1 = · · · = c�−1.
The standard example of fixed-length binary strings is a special case in which cj = 2
for all positions j.

A concrete example of the above is: � = 2, c0 = 3, c1 = 2, so Ω is isomorphic to
Z3 × Z2. When we write elements of Ω as strings, the standard practice of putting the
least significant bit to the right is followed. Thus,

Ω = {00, 01, 10, 11, 20, 21} = {0, 1, 2, 3, 4, 5}
The group operator works by applying addition modulo 3 to the left bit, and addition
modulo 2 to the right bit. For example

21 ⊕ 11 = 00

The element 00 is the identity.
The set B of binary masks corresponding to Ω is

B = {〈b0, . . . , b�−1〉 : bi ∈ Z2}
where Z2 is the set of integers modulo 2. Note that B is an Abelian group under
component-wise addition modulo 2. It is notationally convenient to let ⊕ also denote
the group operation on B; hence ⊕ is polymorphic.1 Let ⊗ denote component-wise
multiplication on B, and let 1 ∈ B be the identity element for ⊗. For b ∈ B, define b̄ by

b̄ = 1 ⊕ b

It is notationally convenient to extend ⊗ to a commutative operator acting also between
elements b ∈ B and elements x ∈ Ω by

〈b0, . . . , b�−1〉 ⊗ 〈x0, . . . , x�−1〉 = 〈b0x0, . . . , b�−1x�−1〉
where 0xi = 0 ∈ Ω and 1xi = xi ∈ Ω. Here the right hand sides are elements of Ω;
hence ⊗ is polymorphic.

It is easy to check that for all x, y ∈ Ω and u, v ∈ B
x = x ⊗ 1

1 = u ⊕ ū

0 = u ⊕ u

0 = u ⊗ ū

(x ⊕ y) ⊗ u = (x ⊗ u) ⊕ (y ⊗ u)
(x ⊗ u) ⊕ (y ⊗ ū) = (y ⊗ ū) ⊕ (x ⊗ u)

(x ⊗ u) ⊗ v = x ⊗ (u ⊗ v)

(u ⊗ x) = u ⊗ (
x)

1 An operator is polymorphic when its definition depends upon the type of its arguments.
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To simplify notation, ⊗ takes precedence over ⊕ by convention. If b ∈ B is a mask then
#b denotes the number of ones it contains.

Let χ be a probability distribution over the set of binary masks,

χb = the probability of mask b

Structural crossover with distribution χ applied to parents u and v corresponds to choos-
ing binary mask b with probability χb and then producing the offspring u ⊗ b ⊕ b̄ ⊗ v.
The probability that parents u, v ∈ Ω have child k is therefore

r(u, v, k) =
∑

b∈B
χb[u ⊗ b ⊕ b̄ ⊗ v = k]

The corresponding crossover scheme C is also called structural and satisfies

C(p)k =
∑

u,v

pupv

∑

b∈B

χb + χ
b̄

2
[u ⊗ b ⊕ b̄ ⊗ v = k]

where p ∈ R
|Ω| is a distribution over the search space Ω. That is, p is a population

vector in which pk is the proportion of the population made up of copies of element
k. C(p) gives the expected distribution after the application of crossover. For example,
for uniform crossover with crossover rate u, the probability distribution χ is given by
χ0 = 1 − u + u/2� and χb = u/2� for b �= 0.

Let µ be a probability distribution over Ω,

µk = the probability of k

Structural mutation with distribution µ applied to v ∈ Ω corresponds to choosing k with
probability µk and then producing the result v ⊕ k. The probability that v mutates to u
is therefore

Uu,v = µ�v⊕u

The corresponding mutation scheme U is also called structural. U(p) = Up gives the
effect of applying mutation to population vector p ∈ R

|Ω|.

3 Masks as Projections

This section generalizes Vose and Wright, 2001. Assume Ω is structural, crossover is
structural, and mutation is structural. Each binary mask b has associated subgroup

Ωb = b ⊗ Ω

The map
x �−→ b ⊗ x

is a homomorphism from Ω to Ωb since b ⊗ (x ⊕ y) = b ⊗ x ⊕ b ⊗ y. The kernel
is the normal subgroup Ωb̄, and, therefore, the following map from the image Ωb to the
quotient group Ω/Ωb̄ is an isomorphism Lang, 1993,

z = z ⊗ b �−→ Ωb̄ ⊕ z
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The quotient group Ω/Ωb̄ = {Ωb̄ ⊕ z : z ∈ Ωb}, being comprised of disjoint schemata,
is referred to as the schema family corresponding to b, and schema Ωb̄ ⊕ z is referred to
as the schema corresponding to z ∈ Ωb.

For b ∈ B, define Λb as

Λb =
{

p ∈ R
|Ωb| : pk ≥ 0,

∑
pk = 1

}

The linear operator Ξb : R
|Ω| −→ R

|Ωb| with matrix

(Ξb)i,j = [j ⊗ b = i]

is called the operator associated with the schema family corresponding to b; it has rows
indexed by elements of Ωb and columns indexed by Ω. Notice that Ξb(Λ) ⊆ Λb. To
simplify notation, we will refer simply to Ξ when the binary mask b is understood.

For the example of the fixed length string representation where Ω is isomorphic to
Z3 × Z2, for b = 10,

Ξ10 =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1





and for b = 01,

Ξ01 =
[

1 0 1 0 1 0
0 1 0 1 0 1

]

Note that
∑

i

(Ξp)i =
∑

i∈Ωb

∑

j

[j ⊗ b = i]pj

=
∑

j

pj

∑

i∈Ωb

[j ⊗ b = i]

=
∑

j

pj

Hence if p ∈ Λ is a probability vector, then Ξp ∈ Λb is a probability vector. As the
following computation shows, the i th component of Ξp is simply the proportion of the
population p which is contained in the schema Ωb̄ ⊕ i which corresponds to i ∈ Ωb,

(Ξp)i =
∑

j

[j ⊗ b = i]pj

=
∑

j

[j ⊗ b̄ ⊕ j ⊗ b = j ⊗ b̄ ⊕ i]pj

=
∑

j

[j = j ⊗ b̄ ⊕ i]pj

≤
∑

j

[j ∈ Ωb̄ ⊕ i]pj
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Conversely, given i ∈ Ωb,

∑

j

[j ∈ Ωb̄ ⊕ i]pj ≤
∑

j

[b ⊗ j ∈ b ⊗ Ωb̄ ⊕ b ⊗ i]pj

=
∑

j

[j ⊗ b = i]pj

The matrix Ξ therefore projects from the distribution over all possible strings to a
distribution over a family of competing schemata. For example, using traditional schema
notation, we could write:

Ξ10(p00, p01, p10, p11, p20, p21) = (p0 ∗, p1 ∗, p2 ∗)

and

Ξ01(p00, p01, p10, p11, p20, p21) = (p∗ 0, p∗ 1)

Let Bb = b ⊗ B. It is notationally convenient to make Ξb polymorphic by extending
it to also represent the linear map Ξb : R

|B| −→ R
|Bb| with matrix

(Ξb)i,j = [j ⊗ b = i]

Here the rows are indexed by elements of Bb and columns are indexed by B. Again, we
will drop the subscript and refer simply to Ξ when the mask is understood.

For the example of the fixed length string representation where Ω is isomorphic to
Z3 × Z2, the set of masks is B = {00, 01, 10, 11}. For b = 10,

Ξ10 =
[

1 1 0 0
0 0 1 1

]
,

and for b = 01,

Ξ01 =
[

1 0 1 0
0 1 0 1

]
.

Note that

∑

i

(Ξx)i =
∑

i∈Bb

∑

j

[j ⊗ b = i]xj

=
∑

j

xj

∑

i∈Bb

[j ⊗ b = i]

=
∑

j

xj

Hence if x ∈ R
|B| is a probability vector, then Ξx ∈ R

|Bb| is a probability vector.
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4 The Implicit Parallelism Theorem

Given that Ω = A0 ⊕ · · · ⊕ A�−1 is structural, Ωb is also structural,

Ωb = Ak0 ⊕ · · · ⊕ Ak#b−1

where {k0, . . . , k#b−1} = {i : bi = 1}. Moreover, Λb is precisely the Λ previously
defined as corresponding to the search space, if the search space is chosen to be Ωb.
Likewise, Bb is precisely the B previously defined as corresponding to the search space,
if the search space is chosen to be Ωb. Therefore, since Ξχ and Ξµ are probability vectors
indexed by Bb and Ωb (respectively), they have corresponding structural crossover and
mutation schemes Cb and Ub which represent crossover and mutation on the state space
Λb.

Theorem 1. If M = U ◦ C, then ΞM(x) = Ub ◦ Cb(Ξx)

Proof Let Mb = Ub ◦ Cb. The k th component of ΞM(x) is

∑

k′∈Ωb⊕k

M(x)k′ =
∑

k′∈Ωb

M(x)k⊕k′

=
∑

u,v∈Ωb

∑

u′,v′∈Ωb

xu⊕u′xv⊕v′
∑

k′∈Ωb

Mu⊕u′�k�k′,v⊕v′�k�k′

=
∑

u,v∈Ωb

∑

u′∈Ωb

xu⊕k⊕u′
∑

v′∈Ωb

xv⊕k⊕v′
∑

k′∈Ωb

Mu�k′,v⊕v′�u′�k′

The innermost sum above is

∑

k′∈Ωb

∑

i∈Ωb

∑

i′∈Ωb

∑

j∈Bb

∑

j′∈⊗Bb

µi⊕i′
χj⊕j′ + χ

j⊕j′

2

[(i ⊕ i′) ⊕ (u 
 k′) ⊗ (j ⊕ j′) ⊕ (j ⊕ j′) ⊗ (v ⊕ v′ 
 u′ 
 k′) = 0]

Note that the indicator function above is equivalent to

[i′ 
 k′ ⊗ j′ ⊕ (b ⊕ j′) ⊗ (v′ 
 u′ 
 k′) = 0][i ⊕ u ⊗ j ⊕ (b ⊕ j) ⊗ v = 0]

The first factor above is equivalent to [i′ ⊕ (b ⊕ j′) ⊗ (v′ 
 u′) = k′] which determines
k′. This is most easily seen by choosing the search space to be Ωb̄, in which case the first
factor is an expression over the search space and its binary masks, and b is the identity
element for ⊗; in that context (b ⊕ j′) is j̄′ and the first factor becomes

[i′ 
 k′ ⊗ j′ ⊕ j̄′ ⊗ (v′ 
 u′ 
 k′) = 0]
= [i′ 
 k′ ⊗ j′ ⊕ j̄′ ⊗ (v′ 
 u′) 
 j̄′ ⊗ k′ = 0]
= [i′ ⊕ j̄′ ⊗ (v′ 
 u′) 
 k′ ⊗ j′ 
 j̄′ ⊗ k′ = 0]
= [i′ ⊕ j̄′ ⊗ (v′ 
 u′) 
 k′ = 0]
= [i′ ⊕ j̄′ ⊗ (v′ 
 u′) = k′]
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It follows that the sum above is

∑

i∈Ωb

∑

j∈Bb

[i ⊕ u ⊗ j ⊕ (b ⊕ j) ⊗ v = 0]
∑

i′∈Ωb

µi⊕i′
∑

j′∈⊗Bb

χj⊕j′ + χ
j⊕j′

2

=
∑

i∈Ωb

∑

j∈Bb

[i ⊕ u ⊗ j ⊕ (b ⊕ j) ⊗ v = 0] (Ξµ)i

(Ξχ)j + (Ξχ)j

2

= (Mb)u,v

Where Mb is the mixing matrix for Mb. Therefore, the The k th component of ΞM(x)
is

∑

u,v∈Ωb

(Mb)u,v

∑

u′∈Ωb

xu⊕k⊕u′
∑

v′∈Ωb

xv⊕k⊕v′

=
∑

u,v∈Ωb

(Mb)u,v(Ξx)u⊕k(Ξx)v⊕k

= Mb(Ξx)k

�

Corollary 1 (Implicit Parallelism).

M = U ◦ C =⇒ ΞM = Mb ◦ Ξ where Mb = Ub ◦ Cb

M = C ◦ U =⇒ ΞM = Mb ◦ Ξ where Mb = Cb ◦ Ub

In particular, ΞU = Ub ◦ Ξ and ΞC = Cb ◦ Ξ .

Proof The first implication is theorem 1. A special case is C = I, in which case the
conclusion is

ΞU(x) = Ub(Ξx)

Another special case is U = I, in which case the conclusion is

ΞC(x) = Cb(Ξx)

Consequently,
ΞC ◦ U = Cb ◦ Ξ ◦ U = Cb ◦ Ub ◦ Ξ

�

Corollary 1 speaks to schemata through the isomorphism Ωb
∼= Ω/Ωb̄ given by

x �−→ Ωb̄ ⊕ x

Therefore, Mb represents mixing (i.e., crossover and mutation) on a search space of
schemata (i.e., the schema family Ω/Ωb̄).

A consequence of corollary 1 is that, independent of the order of crossover and
mutation, the following commutative diagram holds, in parallel, for every choice of
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schema family, simultaneously

x −−−−−−−−→ M(x)

Ξ

�

�Ξ

Ξx −−−−−−−−→ Mb(Ξx)

Because this result does speak to parallelism and schemata—subjects which implicit
parallelism has classically dealt with—Vose (1999) has redefined the phrase “implicit
parallelism” to refer to it.2 This use of the term conflicts with that employed by GA
practitioners (for example in Holland, 1975,Goldberg, 1989). To the extent “implicit
parallelism” has traditionally indicated that some kind of “processing leverage” is en-
joyed by GAs, traditional usage has been misguided; genetic algorithms exhibit no such
behaviour, nor can the theorems of Holland establish such a result. Because corollary 1
does address exactly what happens within all schema families, in parallel, simultane-
ously, it is proposed as an appropriate alternative to take over the “Implicit Parallelism”
label, in the hope that the misguided and incorrect traditional notion be eradicated.

Example

Let us consider the implicit parallelism of mutation on the example Ω = Z3 × Z2.
Firstly, let us define our mutation operator by the probability distribution:

µj =
{

0.9 if j = 00
0.02 otherwise

That is, there is a probability of 0.9 that no mutation will take place. Otherwise, we pick
an element j ∈ Ω at random (uniformly) and apply it to our current individual. Now
suppose that we are interested in what happens in the first component. That is, we are
concerned with the effect of mutation on the family of schemata 0 ∗, 1 ∗, 2 ∗. One way to
calculate this would be to work out the effect of mutation on the whole population and
then sum up the results for each schema in the family. The implicit parallelism theorem
tells us that we don’t need to do this. Instead, we can find a mutation operator that acts
on the family of schemata itself, and has the exact equivalent effect.

For a concrete example, consider the population vector

p = (p00, p01, p10, p11, p20, p21) = (0.1, 0.2, 0.1, 0.2, 0.25, 0.15)

Our family of schemata corresponds to the mask b = 10. We have already seen that this
gives us a matrix

Ξ10 =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1





2 . . . in the binary case. This paper establishes the result more generally.
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Multiplying p by this matrix gives us the distribution of the population over the family
of schemata:

Ξ10p = (p0 ∗, p1 ∗, p2 ∗) = (0.3, 0.3, 0.4)

We now have to define a mutation operator for this reduced search space. This is given
by

Ξ10µ = (0.92, 0.04, 0.04)

So our mutation operator acting on our family of schemata consists of picking an element
of {0 ∗, 1 ∗, 2 ∗} according to the above probability distribution and applying it to the
element to be mutated. Notice that in this quotient group the element 0 ∗ is the identity.
Constructing the mutation operator that acts on Λb from this distribution gives us

U10(x) =




0.92 0.04 0.04
0.04 0.92 0.04
0.04 0.04 0.92



 x

So in our example, we calculate the effect of mutation on the family of schemata as
being




0.92 0.04 0.04
0.04 0.92 0.04
0.04 0.04 0.92








0.3
0.3
0.4



 =




0.304
0.304
0.392





Notice that to make this calculation we did not need to know the details of the population
p. We only needed to know how many elements were in each schema (given by Ξp). We
can check this result by working out the effect of mutation on the whole population and
then summing over the schemata. The implicit parallelism theorem tells us that we will
get exactly the same result.

5 Implicit Parallelism and Fitness-Based Selection

It would be especially useful if, in the commutative diagram above, M could be gener-
alized to G so the effects of selection could be incorporated. For proportional selection
at least, Vose has pointed out the difficulties involved and concluded that such commu-
tativity is in general not possible Vose, 1999. In an attempt to force commutativity, a
selection scheme Fb might be defined on the quotient by

Fb(Ξx) = ΞF(x)

The problem here is that Fb is not well defined; the right hand side might depend on the
particular x involved even though the left hand side does not (i.e., even if Ξx does not).
In an attempt to ignore this complication, one might define a “fitness vector” fb (over
Ωb) for which

Fb(Ξx) =
diag(fb) Ξx

fT
b Ξx
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Since the complication cannot be ignored, the vector fb must depend on x. If fb is defined
as

fb = diag(Ξx)−1 Ξ diag(f) x

then

fT
b Ξx =

∑

i

(Ξx)−1
i (Ξ diag(f) x)i (Ξx)i

=
∑

i

(Ξ diag(f) x)i

=
∑

j

(diag(f) x)j

= fT x

Therefore, by way of notational sleight of hand,

Fb(Ξx) =
diag(fb) Ξx

fT x

=
diag(diag(Ξx)−1Ξ diag(f) x) Ξx

fT x

=
Ξ diag(f) x

fT x

= ΞF(x)

Of course, this definition for fb is precisely the one given in the “schema theorem”
Holland, 1975. Using this definition, one could define

Gb = Mb ◦ Fb

and appeal to implicit parallelism to conclude

ΞG(x) = ΞM ◦ F(x) = Mb ◦ Ξ ◦ F(x) = Mb ◦ Fb(Ξx) = Gb(Ξx)

thereby “extending” implicit parallelism from M to G. Unlike Holland’s result, the
relation ΞG(x) = Gb(Ξx)

– is an equality which in every case provides nonvacuous information,
– says something nontrivial about new elements produced by mixing,
– makes explicit the relationships between the genetic operators and the underlying

group structure of the search space.

However, it should be noted that because fb depends on x, the “extension”

ΞG(x) = Gb(Ξx)

speaks only to what happens over a single time step (like Holland’s result) and the in-
formation provided is insufficient to characterize the next generation (even in Λb). In
particular, it cannot be used to map out population trajectories, and it certainly cannot
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be used to justify talk of “above average fitness building blocks being selected expo-
nentially”. The “fitness” of schemata cannot be well-defined (it is not an attribute of
schemata Ξx, but is determined instead by x). The various claims about GAs that are
traditionally made under the name of the building block hypothesis have, to date, no
basis in theory, and, in some cases, are simply incoherent. One exception is when the
fitness function is a constant for each schema of a schema family (in which case the
remaining constituents are redundant). Otherwise, one must take account of the fact that
schemata “fitnesses” are dynamic quantities that change from population to population
(see Stephens and Waelbroeck, 1999 for such a view of the building block hypothesis).
Moreover, the fitness of such a “building block” at a given time depends on the entire
microscopic structure of the population at that time.

Example

Consider the family of schemata 0∗, 1∗, 2∗ on the search space Ω = Z3 × Z2. Let the
fitness vector be f = (f00, f01, f10, f11, f20, f21). Then fb can be calculated as:

fb =





f00x00+f01x01
x00+x01

f10x10+f11x11
x10+x11

f20x20+f21x21
x20+x21





We can verify that Fb(Ξx) = ΞF(x).

Fb(Ξx) =





f00x00+f01x01
x00+x01

0 0
0 f10x10+f11x11

x10+x11
0

0 0 f20x20+f21x21
x20+x21








x00 + x01
x10 + x11
x20 + x21



 = ΞF(x)

Notice that the fitness of a schema depends on the details of the whole population x
and not just on the corresponding schemata family.

6 Conclusions

This paper has developed a framework for the theory of genetic algorithms that use a
fixed-length string representation where the cardinality of the alphabet at each string
position is arbitrary. Structural crossover and mutation represent the natural ways to
define crossover and mutation in this framework. An implicit paralllelism is proved. This
theorem states that structural crossover and mutation project naturally onto all competing
families of schemata. This kind of projection does not work for proportional selection
except when fitness is constant on each schema of the family. An exact equation which
generalizes the Holland Schema theorem can be proved, but like the Holland Schema
theorem, it cannot be applied in realistic situations for more than one time step.
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