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Abstract. A fundamental aspect of many evolutionary approaches to
synthesis of complex systems is the need to compose atomic elements
into useful higher-level building blocks. However, the ability of genetic
algorithms to promote useful building blocks is based critically on ge-
netic linkage - the assumption that functionally related alleles are also
arranged compactly on the genome. In many practical problems, linkage
is not known a priori or may change dynamically. Here we propose that
a problem’s Hessian matrix reveals this linkage, and that an eigenstruc-
ture analysis of the Hessian provides a transformation of the problem to
a space where first-order genetic linkage is optimal. Genetic algorithms
that dynamically transforms the problem space can operate much more
efficiently. We demonstrate the proposed approach on a real-valued adap-
tation of Kaufmann’s NK landscapes and discuss methods for extending
it to higher-order linkage.

1 Introduction

A fundamental aspect of many evolutionary algorithms is the need to compose
atomic elements into higher-level building blocks. This compositional process
should continue recursively to generate increasingly complex modules from lower
level components, until the desired solution is attained. The importance of dis-
covery of partial building blocks was initially stressed by Holland in “The build-
ing block hypothesis” [5] that described how Genetic Algorithms (GAs) work.
GAs promote useful building blocks represented as schemata and compose them
through the process of crossover. As the Schema Theorem shows, however, the
ability of GAs to promote useful building blocks is based critically on genetic
linkage - the assumption that functionally related alleles are also arranged com-
pactly on the genome. If genetic linkage is poor (i.e., there is little correlation
between functional dependency and genetic proximity) then the crossover oper-
ator is more likely to break useful building blocks than it is likely to compose
them.

The effect of poor genetic linkage can be dramatic. Before proceeding to
describe previous work and our proposed solution, we demonstrate the grave
effect of poor linkage in Fig.[Il. The graph shows the best fitness of a GA running
on a hard test problem. The test problem consists of 16 real-valued dimensions,
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Fig. 1. Performance of a GA on a 16 dimensional problem with poor and tight linkage,
with and without diversity maintenance. A parallel Simulated Annealing optimizer,
a parallel hillclimber, and a random search are provided for comparison. All meth-
ods perform equal number of evaluations per generation. Error bars of one standard
deviation are based on 10 runs on the same problem

each of which is deceptive (gradients lead in the wrong direction) and contains
significant coupling between the variables. The test problem will be described
in detail later; for now, it will suffice to notice the difference in performance of
the GA between the top curve, where the genome is ordered so that coupled
variables are close to each other (tight linkage) versus the lower curve, where
the genome is shuffled so that coupled variables are far from each other (poor
linkage.) In both of these cases, diversity maintenance techniques were also used.
Without diversity, the crossover operator has little or no effect, and the GA’s
performance is inferior even to standard optimizers such as a well-tuned parallel
simulated-annealing optimizer and a parallel random mutation hillclimber (a
basic gradient optimizer.) A random search process is shown for reference. All
methods perform an equal number of samplings per generation.

2 Prior Work

Since genetic linkage is not necessarily known in advance and may change dy-
namically as solution progresses or as the problem varies, new evolutionary al-
gorithms have been proposed that either change linkage dynamically, or that do
not rely on genetic linkage at all (at an additional computational cost.) Origi-
nally, Holland [5] proposed an inversion operator that would reorder alleles on
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the genome, with the expectation that genomes with better orderings (tighter
genetic linkage) would gradually take over the population. However, this opera-
tor turned out to be too slow in practice. A variety of algorithms were proposed
that do not assume linkage and build up the genome from scratch starting with
the founding building blocks. Goldberg et al [4], and later Watson and Pollack
[10], developed GAs that co-evolve partial solutions in which linkage can be
adapted through new kinds of combination and split operators. Kargupta intro-
duced new operators which search explicitly for relationships between genes [12].
Genetic programming [7] combines building blocks in tree hierarchies, allowing
arbitrary branches of solutions to be swapped thereby permitting promotion
of useful subcomponents without relying on linkage. More recently, Harik and
Goldberg [TT] proposed a linkage learning genetic algorithm (LLGA) that inter-
sperses alleles in the partial solutions with variable-sized gaps (introns) allowing
the GA more control over linkage tightening and exchange of complete building
blocks. A more recent version of this algorithm uses evolved start expressions to
assist in the process of nucleation of tightly linked groups [I]. All of these meth-
ods increase computational cost through the exploration of many compositional
permutations.

3 Identifying Linkage through the Hessian

Here we propose an alternative way of identifying building blocks through dy-
namic eigenstructure analysis of the problem landscape’s Hessian matrix. The
Hessian matrix H is defined by measuring the cross-correlation effect of the vari-
ation of each of the n variables z; on the variation effect of each other locus of the
genome on the fitness function F'(X). Essentially, the Hessian matrix determines
the first-order functional dependencies between gene locations. The Hessian is
defined as

0?F(X)
Hy;=—F—+ 1
By definition, it is a symmetric matrix. For example, if
X = (21, 22,23, 74) (2)

and the fitness function to be optimized is

F(X) =sin(2z1 x3) + sin(3z2 z4) (3)
then computingﬂ H and evaluating at X = 0 would yield
0020
0003
H= 2000 (4)
0300

! Note that the Hessian can easily be computed numerically with the fitness given as
a black box.
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Highly coupled variable pairs are represented by large magnitude elements in
H. Large off-diagonal elements imply coupling between variables that are not
adjacent on the genome; to improve linkage, variables can be rearranged so
that coupled pairs are proximate on the genome, bringing their corresponding
Hessian coefficient closer to the diagonal. Rearranging the order of parameters
on the genome is equivalent to swapping rows and columns of H, effectively
transforming it by a permutation transformation. To bring the elements of H
in the example above closer to the diagonal (effectively tightening the genetic
linkage) we can use the permutation matrix 7', where

0100
0010
= 1000 (5)
0001
to yield a new Hessian H’
0200
) T 12000
H=T"HT = | 0 4 3 (6)
0030
and the improved genome ordering X’
X/:XT:(,Ig,Il,I‘Q,JM) (7)

H’ above is as close as we can bring the non-zero elements to the diagonal
by reordering, and the resulting genome ordering of Eq. () has indeed improved
its linkage compared to the original ordering of Eq. (). But is there a way to
bring them even closer to the diagonal?

3.1 Generalized Genome Reordering

The optimal linkage ordering is not necessarily sequential. The permutation ma-
trix simply reorders elements on the genome. However, there might not be a
perfect sequential ordering if variables are coupled in any way but a linear serial
chain. For example, if three variables are coupled equally, there is no way to
arrange them in linear progression so that all are equally close to each other
(the first will be less proximate to the last than it is to the middle variable.)
Similarly, in the previous example of Eq. (), ;1 is coupled to x3, but not to z
so the genome ordering provided in Eq. (@) is still not optimally tight, and that
is why H' is not exactly diagonal.

However, since the permutation matrix is nothing but an orthogonal lin-
ear transformation, we can think of any reordering process as merely a linear
transformation. In this form, by allowing the transformation to have non-integer
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elements, we can find even more compact orderings. The optimal transformation
is essentially the one that will bring all elements of the Hessian matrix ezactly to
the diagonal. We thus seek the optimal transformation 7j to a diagonal matrix
A

TIHTy = A (8)

Solving for Ty yields the Hessian’s eigenvectors. Because the Hessian matrix
is always symmetric, the eigenvectors have no imaginary component. In our
example,

0 -1 -1 0
V211 0 01
=10 1 -10 )
10 0 1
and
~3.0 00
o 0 =200
Hy=T"HT=| o 5, (10)
0 0 03

and the optimal genome ordering X is given by

2
Xo=XTy = g (< T, —Ty >, < X3,—T1 >, < —T1,—T3 >,< T, T4 >)
(11)

To understand why the linkage-optimal vector Xy above has even less cou-
pling than the compactly ordered vector X’ = (z3, x1, 22, 24) of Eq. (), consider
the following. A small positive mutation ¢ applied to z1, a gene of X', will result
in either an increase or decrease of the fitness function. Whether it will be an
increase or a decrease depends on the sign of another gene, x3. Thus there is still
coupling between alleles on the genome. On the other hand, a small positive mu-
tation in ¢ applied to (multiplied by) < 21, z3 > will always result in an increase
in fitness, regardless of the states of other genes. Therefore, < x1,x3 > is more
suited to be a gene than any single variable. Similarly, a small positive mutation
0 applied to the complementary vector < z1, —x3 >, the second gene of X, will
do nothing to the fitness function, independent of the value of the other vari-
ables. These two genes thus span the search space much more effectively because
they are uncoupled.

3.2 What Can We Learn from the Eigenvalues?

The eigenvalues A hold the scaling factors of the new space, by which any varia-
tion operators can be calibrated; in our example, these are 2 and 3. Dividing the
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mutation operators by these factors would allow all blocks to be explored at the
same resolution. Similarly, subspaces with large eigenvalues are more dominant
and should be explored first if gradual complexification is employed [L5].

Degenerate eigenvalues(two or more equal eigenvalues) indicate a subspace
of the landscape space, spanned by the corresponding eigenvectors, where vari-
ables are uniformly coupled (or decoupled.) Negative eigenvalues may indicate
collapsed subspaces.

3.3 Using Transformations in a GA
Based on the analysis above, we conclude that

— The genome reordering is equivalent to a linear transformation of the fitness

landscape, therefore,

There exist non-discrete genome orderings, and

— The ordering that yields optimal genetic linkage at a point in the landscape
is given by the eigenvectors of the Hessian at that point.

— FEigenvalues of the Hessian reveal properties of the search space.

Once a linkage-optimal ordering transformation has been determined by com-
puting the eigenvectors of the Hessian of F(X), a GA can proceed regularly by
evolving individuals h; but evaluating F'(Tph;) instead of directly F'(h;) Many
varieties of GAs, such as those incorporating partial solutions, learning, and so-
phisticated composition operators can easily be modified to use this formulation.

4 Test Function

We tested the eigenvector reordering process on evolution of a solution to a mul-
tidimensional function of real variables, Z(X), that composes n base functions
U(x) :

20 = 3 S w) (12)

where
cos(u) +1
U(y) = —~7 _ — 13
R (13)
and
k
bi = Z Qij T (itj)modn — Ci (14)
j=1

This function is a real-valued adaptation of Kauffman’s NK landscapes [6].
Kauffman defined a function with n bits, in which each bit’s fitness contribu-
tion depends arbitrarily on its k neighbors. NK landscapes thus have “tunable
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1 //\\ J
0
-15 -10 -5 0 5 10 18

Fig. 2. The base function ¥(u) used to construct the test function. The full test function
is a shuffled kth-order mixing of n base functions

ruggedness” and are often used to test GAs. Here we defined a similar problem
that uses real values instead of bits. First, we define a multimodal base function
W (u) with one global maximum at v = 0 and several smaller maxima, shown
in Fig. 2l This base function is deceptive if the search space is larger than £2m
around u = 0 because then in most of the space the gradients lead to local
optima. The function Z is a sum of the n single dimensional base functions;
however the blocks are not separable: Each base function is evaluated at po-
sition b;, which is a mixing function of k£ elements of the argument vector X.
The mixing is obtained through an array of coefficients a;; and an offset ¢;, each
set arbitrarily. Because of the mixing of order k, optimizing one dimension may
(and usually does) lead to adverse effect in the other £ — 1 dimensions. Finally,
the genome elements x; , are shuffled so that variables that contribute to the
same base function are maximally apart on the genome, so as to create the worst
linkage. The function is defined so that it always has a single global optimum
with the value n, and it occurs at X = A~ !¢ (where A is a k-diagonal matrix
with the elements of a on its diagonals, and X is the unshuffled vector.) In our
study, we generate the coefficients a;; randomly with a uniform distribution in
the range of +1, and the coefficients ¢; with a uniform distribution in the range
of £8. These values were selected arbitrarily, and were not tuned.

5 Experimental Results

We carried out a series of tests, with different setting of n and k. All problems
have bad shuffling (poor linkage.) In each experiment, the problem coefficients
were generated randomly and were not tuned. We then carried out several runs
to collect average performance and standard deviation. We also ran a paral-
lel hillclimber as a baseline control. Individuals were initialized randomly in
X = 410 with uniform distribution. Single-point crossover and mutations of
maximum size +0.1 were used for all offspring. In all experiments we used a GA
with a diversity maintenance technique known as “Deterministic Crowding” [9]
in which a more successful offspring replaces the parent it most closely resembles
after pairwise matching. Diversity maintenance is important to avoid premature
convergence, in which case crossover operators would do little and the effect we
wish to study would vanish.

First, let us look closely at the effect of using a Hessian Eigenvector transfor-
mation. Figure B shows average performance of an Eigenvector GA on a problem
with n = 16 and k = 4. Population size is 100, and average and standard devia-
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Fig. 3. Performance of a GA on a shuffled real-valued NK landscape with n = 16 and
k = 4. Reordering transformation is recomputed every 100 generations (at vertical
lines,) and performance boosts are visible at those instances. Statistics are of 20 runs.
Eigenvector GA uses 5% more evaluations than regular GA

134 GA Using Eigenvectors and diversity GA Usmg E\genvectors and diversity

R L ,;,Jr/

13
g 10 11
£ o / ? 0l / GA (standard, with dwersny)
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3 o] | 7 2 e -
S s [ ] -
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4] — 6|
3 - /
A 54 V
2] Vv
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0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Generations Generations

Fig. 4. Performance comparison on a shuffled real-valued NK landscape with n=16
and k=4. Reordering transformation is recomputed every 100 generations. Statistics
are of 20 runs

tion is based on 20 runs. The transformation is re-computed numerically every
100 generations, around the currently best solution, adding 5% evaluations. We
will discuss the cost of this computation in the next section. The points of re-
computation are marked with a vertical solid line; note how the curve “boosts”
its optimization rate at those intervals. Figure [ shows the long-term behavior
of the solver over 3000 generations using the same parameter settings. Both av-
erage fitness of the population and best fitness in the population are shown. We
see that the eigenvector GA has significantly outperformed the regular GA. The
contribution of the eigentransformation has been exhausted after 500 generations
or so. After that period, both algorithms progress at roughly the same rate. We
hypothesize this point is where contribution of first-order (linear) linkage has
been exhausted.
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46 1 GA (Eigenvectors, with Diversity)

Best Fitness
T

Parallel Hillclimber
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Fig. 5. Performance comparison on a shuffled real-valued NK landscape with n = 64
and k& = 8. Reordering transformation is recomputed every 100 generations. Statistics
are of 10 runs

The performance boost provided by the eigentransformation becomes more
significant as the problem becomes harder both in the number of parameters
(n) and in the amount of coupling between the parameters (k). Figure Bl shows
average performance of an Eigenvector GA on a problem with n=64 and k=8.
Population size is 100, and average and standard deviation is based on 10 runs.
At n=256 and k=16, we observed similar performance boosts.

6 Computational Cost

Additional computational cost is incurred by the linear transformation and eigen-
structure calculation, as well as by additional evaluations. The transformation
cost adds O(n?) arithmetic operations per evaluation and O(n?) arithmetic op-
erations per Hessian calculation for computing derivatives from the samples, and
computing the eigenvectors. Both of these are typically negligible compared to
the cost of a single evaluation of a hard practical problem.

6.1 Evaluation Cost

The evaluation cost is especially critical because direct numerical calculation of
the Hessian matrix involves approximately 2n? samplings of the search space. If
each individual is at a different location of the landscape, this may amount to
2n%p extra evaluations per generation, where p is the population size. This cost
is prohibitive, and so more efficient schemes must be found. If linkage properties
of the landscape are consistent over time, significantly fewer than n?p samplings
are necessary. For example, the results shown in Fig. [ required only one Hes-
sian calculation per 100 generations. Since for that problem n=16, this amounts



Finding Building Blocks through Eigenstructure Adaptation 1527

to only 5% additional evaluations, and the advantage gained is well worth it.
The number of evaluations grows as O(n?) but the interval at which Hessian-
recalculation is required increases too since propagation of building blocks is
slower. If the linkage properties of the landscape are consistent over space, the
Hessian does not need to be tracked for every individual. For the results shown
in Fig. 4] we recalculated the Hessian only around the currently best individ-
ual, but use it for all individuals in the diverse population. A harder class of
problems exists where linkage properties of the landscape change over time and
over space (nonlinear linkage.) Prior work dealing with various forms of linkage
learning and composition typically assumed that the linkage properties are fixed
for the given problem. For such linkage-variable problems we might either spend
more evaluations to track separate Hessian matrices for clusters of individuals,
and also update them more frequently. Alternatively, we could extract Hessian
information indirectly from the samplings already being done by the GA anyway.

6.2 Indirect Computation of the Hessian

The Hessian can be computed indirectly from the GA samples using cross-
correlation statistics. As described by the ”Two-armed Bandit” problem [3],
there is a trade off between exploration and exploitation. However, with a
linkage-learning algorithm as proposed here, it is possible to use all samples to
probe linkage properties and thus enhance exploration without incurring addi-
tional function evaluations. The key to indirect extraction of linkage information
is the understanding that linkage can be learned just as efficiently even from indi-
viduals with low fitness. Hessian approximation techniques used in quasi-Newton
methods [I3][14] could be adapted to make use of this information. Another way
to gather linkage properties from arbitrary, unstructured samplings of the search
space is through least-squares fitting to a linkage modeling function. For exam-
ple, assume a two dimensional landscape F'(z1, z2) can be described very roughly
by the conic section equation

F(x1,22) = ax? + 2bx1zo + ca3 + doy +exa + f (15)

The linkage coefficient we are interested in is the magnitude of parameter b with
respect to parameters a and c. These parameters reveal how the landscape is in-
fluenced by the combination (z1x2). Note that the function is not used to model
the landscape for direct optimization; that is, we do not proceed to compute the
optimum of F', because there is no guarantee whatsoever that the landscape is
of degree 2 (if it was then much more efficient optimization techniques could be
used.) Instead, we only use it to probe how variables are dependent on each other,
by fitting a conic surface locally to a small patch of the landscape. A landscape
with n parameters will have (n+1)(n+2)/2 coefficients, and so O(n?) samplings
will be needed to determine the coefficients through least squares modeling. Di-
rect computation of the Hessian also requires O(n?) samplings, and so the new
formulation is not a improvement in terms of the number of evaluations. How-
ever, the direct computation method required structured samplings on a grid,
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whereas the new formulation can use an unstructured pattern of samples and
can therefore use samples performed anyway by the GA in course of its normal
operation, provided they are close enough. The quality of the linkage approx-
imation degrades as the sampling radius ¢ increases, just like direct numerical
computation of the Hessian degrades with O(§2) according to Taylor expansion
around the center point (6 ~ 0.1 for the test function described in this paper.) It
is therefore necessary to use samples that are within a small region with respect
to nonlinearities in the function. In a diverse set of samples this can be done by
clustering samples into groups, at the cost of cluster management.

7 Higher-Level Compositions

Direct eigenstructure transformation resolves first-order linkage, but nonlinear
transformations may resolve even higher-order linkage. We say a linkage is first
order when the linkage between two variables does not depend on any other,
third variable or on time. If it does, we would have a second-order linkage.
Higher-order linkage effects can be identified using Kronecker tensor products
of partial derivatives of arbitrary orders. Large eigenvalues of these tensors indi-
cates a strong high-order dependency that can be resolved through a nonlinear
transformation. These higher-order transformations are again provided by (non-
linear) eigenstructure analysis of tensors [8]. The approach proposed here is akin
to support vector machine (SVM) methods [2] that transform the problem space
so that data classes that were originally convoluted are now linearly separable.
In Eq. ([{8) we used second-order polynomial kernels that transform the search
space so that first-order linkage is optimal; other kernels, including higher-order
polynomials, could be used to probe and compensate for higher-order linkage.

8 Conclusions

Performance of genetic algorithms is critically based on both diversity mainte-
nance and genetic linkage. Here we propose that transformations can effectively
be used to reorder the genome, and that the first-order linkage-optimal transfor-
mation can be found through Eigenstructure analysis of the landscape’s Hessian
matrix. In a series of experiments using a highly coupled, nonlinear, deceptive
and shuffled function, we show how the presented algorithm produces signif-
icantly superior performance, at relatively low additional computational cost.
We also propose that when high-order linkage is systematic (unlike random or
“needle-in-a-haystack” landscapes) it can be resolved dynamically using high-
order statistical probes that use existing evaluations. We further suggest that
kernel methods that are traditionally used in machine learning to transform
convoluted problems into linearly separable problems can be brought to bear on
evolutionary computation to decompose high-order linkage problems into linkage
optimal space, as a principled form of adaptation of the genomic representation.
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