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Abstract. Despite several recent successful comparisons and applica-
tions of the accuracy-based learning classifier system XCS, it is hardly
understood how crucial parameters should be set in XCS nor how XCS
can be expect to scale up in larger problems. Previous research identified
a covering challenge in XCS that needs to be obeyed to ensure that the
genetic learning process takes place. Furthermore, a schema challenge
was identified that, once obeyed, ensures the existence of accurate clas-
sifiers. This paper departs from these challenges deriving a reproductive
opportunity bound. The bound assures that more accurate classifiers get
a chance for reproduction. The relation to the previous bounds as well
as to the specificity pressure in XCS are discussed as well. The derived
bound shows that XCS scales in a machine learning competitive way.

1 Introduction

The XCS classifier system has recently gained increasing attention. Especially in
the realm of classification problems, XCS has been shown to solve many typical
machine learning problems with a performance comparable to other traditional
machine learning algorithms [I5/[11[7]

On the theory side, however, XCS is still rather poorly understood. There
are few hints for parameter settings and scale-up analyses do not exist. Wilson
(607 suggested that XCS scales polynomially in the number of concepts that
need to be distinguished and in the problem length. However, this hypothesis
has not been investigated to date.

This paper derives an important population size bound that needs to be
obeyed to ensure learning. The derivation departs from the previously identified
covering challenge, which requires that the genetic learning mechanism takes
place, and the schema challenge, which requires that important (sufficiently spe-
cialized) classifiers are present in the initial population [3]. The two challenges
were shown to result in specificity-dependent population size bounds.

In addition to these requirements, the population must be large enough to
ensure that more accurate classifiers have reproductive opportunities. Following
this intuition, we derive a reproductive opportunity bound that bounds the pop-
ulation size of XCS in O(I*¢) where | denotes the problem length and k4 denotes
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the minimal schema order in the problem. Since k; is usually small, Wilson’s
hypothesis holds that XCS scales polynomially in problem length /. In general,
our analysis provides further insights on scale-up behavior, necessary parameter
settings, and basic XCS functioning.

After a short overview of the XCS system, we review the previous identified
problem bounds, identify a time dimension in the schema challenge, and then
analyze the additional reproductive opportunity bound. Empirical confirmation
of the derived bound is provided. Summary and conclusions complete the paper.

2 XCS in Brief

The XCS classifier system investigated herein is based on the work in [T6J17]
10] and derived from the algorithmic description in [6]. This XCS overview pro-
vides only the details necessary for the rest of the paper. The interested reader
is referred to the cited literature. For simplicity, we introduce XCS as a pure
classifier. The results, however, should readily carry over to multi-step problems
in which reward needs to be propagated.

We define a classification problem as a binary problem that provides problem
instances o € {0,1}! (denoting problem length by ). After an instance is clas-
sified, the problem provides feedback in terms of scalar payoff p € R reflecting
the quality of the classification. The task is to maximize this feedback effectively
always choosing the correct classification.

XCS is basically a rule learning system. A population of rules, or classifiers,
is evolved and adapted. Each rule consists of a condition part and a classification
part. The condition part C' specifies when the rule is active, or matches. It is
coded by the ternary alphabet {0,1,#} (i.e. C € {0,1,#}!) where a #-symbol
matches both zero and one. The proportion of non-don’t care symbols in the
condition part determines the specificity of a classifier. In addition to condition
and classification parts, classifiers specify a reward prediction p that estimates
resulting payoff, prediction error e that estimates the mean absolute deviation
of p, and fitness F' that measures the average relative scaled accuracy of p with
respect to all competing classifiers. Further classifier parameters are experience
exp, time stamp ts, action set size estimate as, and numerosity num.

XCS continuously evaluates and evolves its population. Rule parameters are
updated by the Widrow-Hoff rule [14] and reinforcement learning techniques
[13]. Effectively, the parameters approximate the average of all possible cases.

The population is evolved by the means of a covering mechanism and a ge-
netic algorithm (GA). Initially, the population of XCS is empty. Given a prob-
lem instance, if there is no classifier that matches the instance for a particular
classification, a covering classifier is generated that matches in that instance and
specifies the missing classification. At each position of the condition, a #-symbol
is induced with a probability of Py. A GA is applied if the average time in the
action set [A] since the last GA application, recorded by the time stamp ts, is
greater than the threshold 6 4. If a GA is applied, two classifiers are selected
in [A] for reproduction using fitness proportionate selection with respect to the
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fitness of the classifiers in [A]. The classifiers are reproduced and the children
undergo mutation and crossover. In mutation, each attribute in C' of each classi-
fier is changed with a probability u to either other value of the ternary alphabet
(niche mutation is not considered herein). The action is mutated to any other
possible action with a probability u. For crossover, two-point crossover is applied
with a probability x. The parents stay in the population and compete with their
offspring. The classifiers are inserted applying subsumption deletion in which
classifiers are absorbed by experienced, more general, accurate classifiers.

If the number of (micro-)classifiers in the population exceeds the maxi-
mal population size N, excess classifiers are deleted. A classifier is chosen for
deletion with roulette wheel selection proportional to its action set size esti-
mate as. Further, if a classifier is sufficiently experienced (exp > 64¢;) and
significantly less accurate than the average fitness in the population (f <
0 % che[P] fet/ che[P] num,;), the probability of being selected for deletion is
further increased. Note that the GA is consequently divided into a reproduction
process that takes place inside particular action sets and a deletion process that
takes place in the whole population.

3 Specificity Change and Previous Problem Bounds

Previous investigations of XCS have proven the existence of intrinsic general-
ization in the system. Also, a covering challenge was identified that requires
that the GA takes place as well as a schema challenge that requires that impor-
tant classifiers are present in the initial population. This section gives a short
overview of these bounds. Moreover, assuming that none of the important clas-
sifiers are present in the initial population, a time estimate for the generation of
the necessary classifiers is derived.

3.1 Specificity Pressure

Since XCS reproduces classifiers in the action set but deletes classifiers from
the whole population, there is an implicit generalization pressure inherent in
XCS’s evolutionary mechanism. The change in specificity due to reproduction
can be derived from the expected specificity in an action set sj4) given current
specificity in the population s;p; which is given by [2]:

S[P]

—_— 1

SlA =

Additionally, mutation pushes towards an equal number of symbols in a classifier
so that the expected specificity of the offspring s, can be derived from parental
specificity s, [4]:

Ay = 80— 8p = 0.5u(2 — 3s,) (2)
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Taken together, the evolving specificity in the whole population can be asserted
considering the reproduction of two offspring in a reproductive event and the
impact on the whole population [4] (ignoring any possible fitness influence):

2(spa1 + Am — sipee))
Sppiesr) = faa AT S = A ®)

Parameter f;, denotes the frequency the GA is applied on average which de-
pends on the GA threshold 6,, but also on the current specificity sjp as well
as the distribution of the encountered problem instances. While the specificity
is initially determined by the don’t care probability P, the specificity changes
over time as formulated by Equation[3. Thus, parameter Py can influence XCS’s
behavior only early in a problem run.

From equation [3 we can derive the steady state value of the specificity s(p
as long as no fitness influence is present. Note that the speed of convergence is
dependent on fg, and IV, the converged value is independent of these values.

S[A] + Ay — Sp] = 0
M SP]
Lk -3 = 4
2—3[P]+2( 2—s[p]> 517 @
Solving for s(p;:

sip)” — (2.5 4 1)s(p) + 21 =10

1+25u—/6.2502 — 3u + 1
2

Sip) = (5)
This derivation enables us to determine the converged specificity of a population
given a mutation probability u. Table[Ilshows the resulting specificities in theory
and empirically determined on a random Boolean function (a Boolean function
that returns randomly either zero or one and thus either 1000 or zero reward).
The empirical results are slightly higher due to higher noise in more specific clas-
sifiers, the biased accuracy function, the fitness biased deletion method, and the
parameter initialization method [4]. Although mutation’s implicit specialization
pressure (as long as s;p] < 2/3) can be used to control the specificity of the pop-
ulation, too high mutation most certainly disrupts useful problem substructures.
Thus, in the future other ways might be worth exploring to control specificity

in [P].

Table 1. Converged Specificities in Theory and in Empirical Results

1 | 0.02] 0.04] 0.06] 0.08] 0.10] 0.12| 0.14| 0.16] 0.18] 0.20
s(p), theory [0.040[0.078[0.116]0.153|0.1880.223]0.256/0.288[0.318[0.347
s(p], empirical|0.053]0.100|0.160|0.2400.287|0.310|0.329|0.350|0.367|0.394
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3.2 Covering and Schema Bound

Before specificity change and evolutionary pressure in general apply, though, it
needs to be assured that the GA takes place in the first place. This is addressed
by the covering challenge [3]. To meet the challenge, the probability of covering a
given random input needs to be sufficiently high (assuming uniformly distributed

#-symbols):
2 N
P(cover) =1— (1 - <_28[P]> ) >0 (6)

Once the covering bound is obeyed, the GA takes place and specificity changes
according to Equation Bl To evolve accurate classifiers, however, more accurate
classifiers need to be present in a population. This leads to the schema challenge
which determines the probability of the existence of a schema representative in
a population with given specificity [3].

Order of Problem Difficulty. To understand the schema challenge, we use
the traditional schema notation [8] of GAs to define a schema representative.
Hereby, a schema can be characterized by its order k, which denotes the number
of specified attributes, and its defining length §, which is the distance between the
outermost specified attributes. For example, schema **11*x*x0*000* has order
six and defining length nine whereas schema **1x0*0****x** has order three and
defining length four. As proposed in [3], a classifier is said to be a schema repre-
sentative if its condition part has at least all k attributes of the corresponding
order k schema specified and its action corresponds to the schema correspond-
ing action. For example, a classifier with condition C=##1#0#0##000# would be
a representative of the second schema but not of the first one. Consequently, the
specificity of a representative is at least equal to the order k of the schema it
represents. If the specificity of a representative cl exactly equals k, then it is said
to be mazximally general with respect to the schema.

A problem is now said to be of order of problem difficulty kq if the smallest
order schema that supplies information gain is of order k;. Thus, if a problem is
of order of problem difficulty k4 any schema of order less than kg will have the
same (low) accuracy and essentially the same accuracy as the completely general
schema (order k = 0). Similarly, only classifiers that have at least kq attributes
specified can have higher accuracy, higher fitness, and can thus provide fitness
guidance. Thus, a problem of order of difficulty k4 can only be solved by XCS
if representatives of the order k4 schema exist (or are generated at random) in
the population.

Given a particular problem, any schema can be assigned a probability of
being correct. It has been shown in [3] that the more consistently a classifier is
correct or incorrect, the more accurate the classifier will be. Thus, a problem
provides fitness guidance from the over-general side, if classifiers that specify
parts of the relevant attributes are more consistently correct/incorrect.
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An extreme case of this is the parity problem in which all k£ relevant bits
need to be specified to reach any fitness guidance. The specification of any sub-
set of those k bits will result in a 50/50 chance for correct classification and
consequently a base accuracy which is equal to the completely general classifier.
Thus, in the parity problem there is no fitness guidance before reaching full ac-
curacy (effectively going from zero to completely accuracy in one step) so that
the order of problem difficulty in the parity problem is equal to the size of the
parity.

Note that the order of problem difficulty measure also affects many other
common machine learning techniques. For example, the inductive decision tree
learner C4.5 [12] totally relies on the notion of information gain. If a problem has
an order of difficulty ky > 1, C4.5 would basically decide at random on which
attribute to expand first. Consequently, C4.5 would generate an inappropriately
large decision tree.

Schema Representative. With this notion we can formulate the probability
that there exists an order k schema representative in a population that has
specificity sip) [3]:

o 1 /sp\* N
P(representative in [P]) =1 — (1 - (7) ) >0 (7)
where n denotes the number of possible outcome classes.
Similar to the probability of a representative in a population, the probability
that a particular classifier in the population is a representative as well as the
expected number of representatives in the population can be assessed:

1
P(representative) = E(S[p])k
1
E(representative) = Nﬁ(S[p])k (8)

Requiring that at least one representative exists in a particular population with
specificity s;p) we derive the following representative bound on the population
size:

E(representative) > 1

N> (9)
5[P)

While this bound is rather easy to obey given a reasonable high specificity,
the more interesting result is the constraint on the specificity given an actual
population size N:

1k
sip) > () (10)

This shows that with increasing population size, the required specificity de-
creases.
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3.3 Extension in Time

As mentioned above, initially the population has a specificity of sjpj = 1 — Pg.
From then on, as long as the population is not over-specific and the GA takes
place, the specificity changes according to Equation Bl For example, say we set
Py = 1.0 so that the initial specificity will be zero, the specificity will gradually
increase towards the equilibrium specificity.

The time dimension is determined from the time it takes that a representative
is created due to random mutations. Given a current specificity sip), we can
determine the probability that a representative of a schema with order k is
generated in a GA invocation:

P(generation of representative) = (1 — p)*t1k . ,(1=stp)k (11)

Out of this probability, we can determine the expected number of steps until
at least one classifier may have the desired attributes specified. Since this is a
geometric distribution,

E(t(generation of representative)) =

1/P(generation of representative) =

S[p]k
n _
—p

To derive a lower bound on the mutation probability, we can assume a current
specificity of zero. The expected number of steps until the generation of a rep-
resentative then equals to ©~*. Thus, given we start with a completely general
population, the expected time until the generation of a first representative is
less than =" (since s[p) increases over time). Requiring that the expected time
until a classifier is generated is smaller than some threshold @, we can generate
a lower bound on the mutation u:

p <o
> o~F (13)

This representative bound actually relates to the existence of a representative
bound determined above in equation[I0. Setting © equal to N/n we get the same
bound (s can be approximated by a- i where a = 2, see Table[I). Assuming that
no representative exists in the population, the order of difficulty of a problem
kq influences speed of learning to take place due to possible delayed supply of
representatives. In the extreme case of the parity function, the bound essentially
bounds learning speed since a representative is automatically fully accurate.

4 Reproductive Opportunity Bound

Given the presence of representatives and GA application, another crucial re-
quirement remains to be satisfied: The representative needs to get the chance to
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reproduce. Since GA selection for reproduction takes place in action sets, repro-

duction can only be assured if the representative will be part of an action set

before it is deleted. To derive an approximate population size bound to ensure

reproduction, we can require that the probability of deletion of a representative

is smaller than the probability that the representative is part of an action set.
The probability of deletion is

1
P(deletion) = N (14)

assuming that there are no action set size estimate influences nor any fitness
influences in the deletion process. This is a reasonable assumption given that
the action set size estimate is inherited from the parents and fitness is initially
decreased by 0.1.

Given a particular classifier ¢l that has specificity s.;, we can determine the
probability that ¢l will be part of an action set given random inputs.

P(in [4]) = %o.sﬂ'%l (15)

This probability is exact if binary input strings are encountered that are uni-
formly distributed over the whole problem instance space {0, 1}'.

Combining equations [[4l and [[5] we can now derive a constraint for successful
evolution in XCS by requiring that the probability of deletion is smaller than
the probability of reproduction. Since two classifiers are deleted at random from
the population but classifiers are reproduced in only one action set (the cur-
rent one), the probability of a reproductive opportunity needs to be larger than
approximately twice the deletion probability:

P(in[A]) > 2P(deletion)
1 l~SCl 2
50.5 N

N > p2bsat! (16)

This bounds the population size by O(n2'*). Note that the specificity s depends
on the order of problem difficulty k4 and the chosen population size N as ex-
pressed in Equation Since kg is usually small, s can often be approximated
by s = 1/l so that the bound diminishes. However, in problems in which no
fitness guidance can be expected from the over-general side up to order kg > 1,
specificity s cannot be approximated as easily.

The expected specificity of such a representative of an order k schema can
be estimated given a current specificity in the population s;pj. Given that the
classifier specifies all k£ positions its expected average specificity will be approx-
imately:

k+(1— k)S[p]

E(s(representative of schema of order k)) = i

(17)
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Substituting s.; in equation [L6] with the expected specificity of a representative
of a schema of order k = k; necessary in a problem of order of difficulty kg4, the
population size N can be bounded by

kg+(—kg)s[p)
— T  tl

N > n2t
N > pokat(—ka)sip+1 (18)

This bound ensures that classifiers necessary in a problem of order of difficulty
kq will get reproductive opportunities. Once the bound is satisfied, existing rep-
resentatives of the necessary order k; schemata are ensured to reproduce and
XCS is enabled to evolve a more accurate population.

Note that this population size bound is actually exponential in schema or-
der k4 and in string length times specificity [ - s;p). This would mean that XCS
would scale exponential in the problem length which is certainly highly unde-
sirable. However, as seen above the necessary specificity actually decreases with
increasing population sizes.

Considering this, we show in the following that out of the specificity con-
straint a general reproductive opportunity bound (ROP-bound) can be derived
that shows that population size needs to grow in O(I*¢). Equations [l and [
can both be denoted in O-notation:

sip) = O((5)'%)
N = O(2'5171) (19)

Ignoring additional constants, we can derive the following population size bound
which solely depends on problem length [ and order of difficulty kq.
N > 2l
N (logy N)ka > nika (20)
This reproductive opportunity bound essentially shows that population size N

needs to grow approximately exponential in the order of the minimal building
block k4 (i-e., order of difficulty) and polynomial in the string length.

N = O(i*) (21)
Note that in the usual case kg is rather small and can often be set to one (see

Sect. [32). As shown in the extreme case of the parity problem, though, k4 can
be larger than one.

5 Bound Verification

To verify the derived reproductive opportunity bound as well as the time dimen-
sion of the representative bound, we apply XCS to a Boolean function problem
of order of difficulty k; where k, is larger than one. The hidden-parity problem,
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SP] dependence in ROP bound in hidden parity problem 1=20, k=5
8000 T T T T T

7000 - empirical & -
o*o5+158prH B
6000 [ /A
5000 G

4000 | §

population size

3000 [ " .
2000 F g -

1000 : ' : '
01 015 02 025 03 035 04

specificity Sip] (empirically derived from mutation)

Fig. 1. Minimal population size depends on applied specificity in the population (ma-
nipulated by varying mutation rates). When mutation and thus specificity is sufficiently
low, the bound becomes obsolete

originally investigated in [11], is very suitable to manipulate k4. The basic prob-
lem is represented by a Boolean function in which k relevant bits determine the
outcome. If the k& bits have an even number of ones, the outcome will be one and
zero otherwise. As discussed above, the order of difficulty kg is equivalent to the
number of relevant attributes k.

Figure [[] shows that the reproductive opportunity bound is well approxi-
mated by equation The experimental values are derived by determining the
population size needed to reliably reach 100% performance. The average speci-
ficity in the population is derived from the empirical specificities in Table [I
XCS is assumed to reach 100% performance reliably if all 50 runs reached 100%
performance after 200,000 steps. Although the bound corresponds to the em-
pirical points when specificity is high, in the case of lower specificity the actual
population size needed departs from the approximation. The reason for this is
the time dimension of the representative bound determined above. The lower
the specificity in the population, the longer it takes until a representative is ac-
tually generated (by random mutation). Thus, the representative bound extends
in time rather than in population size.

To validate the O(I*) bound of equation ZIl we ran further experiments
in the hidden parity problem with & = 4, varying [ and adapting mutation
rate u (and thus specificity) appropriatelyd Results are shown in Fig. B The
bound was derived from experimental results averaged over 50 runs determining
the population size for which 98% performance is reached after 300000 steps.

! XCS with tournament selection was used [5]. If not stated differently, parameters
were set as follows: B = 0.2, a =1, e =1, v =5, 04 = 25, 7 = 04, x = 1.0,
uniform crossover, p = 0.04, 04 = 20, § = 0.1, Py = 1.0, 6545 = 20.

2 Mutation was set as follows with respect to I: I = 10, u = 0.10;1 = 15, 4 = 0.075;1 =
20, = 0.070;1 = 25, = 0.065;1 = 30, = 0.060;1 = 35, = 0.057;1 = 40, =
0.055;1 = 45, u = 0.050;1 = 50, = 0.050;1 = 55, 1 = 0.048;1 = 60, u = 0.048;] =
65, n = 0.048.
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ROP bound in hidden parity problem, k=4
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Fig. 2. The reproductive opportunity bound can be observed altering problem length
[ and using optimal mutation p, given a problem of order of difficulty k4. The experi-
mental runs confirm that the evolutionary process indeed scales up in O(I¥)

With appropriate constants added, the experimentally derived bound is well-
approximated by the theory.

6 Summary and Conclusions

In accord with Wilson’s early scale-up hypothesis [16]/17], this paper confirms
that XCS scales-up polynomially in problem length [ and exponentially in or-
der of problem difficulty and thus in a machine learning competitive way. The
empirical analysis in the hidden parity function confirmed the derived bounds.
Combined with the first derived scale-up bound in XCS, the analysis provides
several hints on mutation and population size settings. All bounds so far identi-
fied in XCS assure that the GA takes place (covering bound), that initially more
accurate classifiers are supplied (schema bound—in population size and genera-
tion time), and that these more accurate classifiers are propagated (reproductive
opportunity bound).

Many issues remain to be addressed. First, we assumed that crucial schema
representatives provide fitness guidance towards accuracy. Type, strength, and
reliability of this guidance require further investigation. Second, classifier pa-
rameter values are always only approximations of their assumed average values.
Variance in these values needs to be accounted for. Third, although reproduc-
tive opportunity events are assured by our derived bound it needs to be assured
that recombination effectively processes important substructures and mutation
does not destroy these substructures. Forth, the number of to-be represented
classifier niches (denoted by [O] in [I1]) needs to be taken into account in our
model. Fifth, the distribution of classifier niches such as overlapping niches and
obliqueness needs to be considered [I5]. Integrating these points should allow us
to derive a rigorous theory of XCS functioning and enable us to develop more
competent and robust XCS learning systems.
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