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Abstract. A novel methodology for empirical model building using GP-
generated symbolic regression in combination with statistical design of experi-
ments as well as undesigned data is proposed.  The main advantage of this 
methodology is the maximum data utilization when extrapolation is necessary.  
The methodology offers alternative non-linear models that can either linearize 
the response in the presence of Lack or Fit or challenge and confirm the results 
from the linear regression in a cost effective and time efficient fashion.  The 
economic benefit is the reduced number of additional experiments in the pres-
ence of Lack of Fit. 

1 Introduction 

The key issues in empirical model development are high quality model interpolation 
and its extrapolation capability outside the known data range.  Of special importance 
to industrial applications is the second property since the changing operating condi-
tions are more a rule than an exception.  Using linear regression models based on 
well-balanced data generated by Design of Experiments (DOE) is the dominant ap-
proach to effective empirical modeling and several techniques have been developed 
for this purpose [1].  However, in many cases, due to the non-linear nature of the sys-
tem and unfeasible experimental conditions, it is not possible to develop a linear 
model.  Among the several approaches that can be used either to linearize the prob-
lem, or to generate a non-linear empirical model is Genetic Programming (GP)-
generated symbolic regression.  This novel approach uses simulated evolution to gen-
erate non-linear equations with high fitness [2].  The potential of symbolic regression 
for linearizing the response in statistical DOE when significant Lack of Fit is detected 
and additional experimentation is unfeasible was explored in [3].  The derived trans-
formations based on the GP equations resolved the problem of Lack of Fit and dem-
onstrated good interpolation capability in an industrial case study in The Dow Chemi-
cal Company.  However, the extrapolation capability of the derived non-linear models 
is unknown and not built-in as in the case of linear models. 

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



1976         F. Castillo et al. 
 

 

Extrapolation of empirical models is not always effective but often necessary in 
chemical processes because plants often operate outside the range of the original ex-
perimental data used to develop the empirical model.  Of special importance is the use 
of this data since time and cost restrictions in planned experimentation are frequently 
encountered. 

In this paper, a novel methodology integrating GP with designed and undesigned 
data is presented.  It is based on a combination of linear regression models based on a 
DOE and non-linear GP-generated symbolic regression models considering interpola-
tion and extrapolation capabilities.  This approach has the potential to improve the ef-
fectiveness of empirical model building by maximizing the use of plant data and sav-
ing time and resources in situations where experimental runs are expensive or 
technically unfeasible.  A case study with a chemical process was used to investigate 
the utility of this approach and to test the potential of model over-fitting.  The promis-
ing results obtained give the initial confidence for empirical model development 
based on GP- generated symbolic regression in conjunction with designed data and 
open the door for numerous industrial applications.  

2 A Methodology for Empirical Model Building Combining 
Linear and Non-linear Models 

With the growing research in evolutionary algorithms and the speed, power and avail-
ability of modern computers, genetic programming offers a suitable possibility for 
real-world applications in industry.  This approach based on GP offers four unique 
elements to empirical model building.  First, previous modeling assumptions, such as 
independent inputs and an established error structure with constant variance, are not 
required [4].  Second, it generates a multiplicity of non-linear equations which have 
the potential of restoring Lack of Fit in linear regression models by suggesting vari-
able transforms that can be used to linearize the response [3].  Third, it generates non-
linear equations with high fitness representing additional empirical models, which can 
be considered in conjunction with linearized regression models or to challenge and 
confirm results even when a linear model is not significant [3].  Fourth, unlike neural 
networks that require significant amount of data for training and testing, it can gener-
ate empirical models with small data sets. 

One of the most significant challenges of Genetic programming for empirical 
model building and linearizing regression models is that it produces non-parsi-
monious solutions with chunks of inactive terms (introns) that do not contribute to the 
overall fitness [4].  This drawback can be partially overcome by computational algo-
rithms that quickly select the most highly fit and less-complex models or by using 
parsimony pressure during the evolution process. 

Using DOE in conjunction with genetic programming results in a powerful ap-
proach that improves empirical model building and that may have significant eco-
nomic impact by reducing the number of experiments. 

The following are the main components of the proposed methodology. 
 

Step 1. The Experimental Design 
A well-planned and executed experimental design (DOE) is essential to the develop-
ment of empirical models to understand causality in the relationship between the input 
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variables and the response variable.  This component includes the selection of input 
variables and their ranges, as well as the response variable. It also includes the analy-
sis and the development of a linear regression model for the response(s). 

 
Step 2. Linearization via Genetic Programming  
This step is necessary if the linear regression model developed previously presents 
Lack of Fit and additional experimentation to augment the experimental design such 
as a Central Composite Design (CCD) is not possible due to extreme experimental 
conditions.  An alternative is to construct a Face-Centered Design by modification of 
the CCD [5].  However, this alternative often results in high correlation between the 
square terms of the resulting regression models.  GP-generated symbolic regression 
can be employed to search for mathematical expressions that fit the given data set 
generated by the experimental design.  This approach results in several analytical 
equations that offer a rich set of possible input transformations which can remove lack 
of fit without additional experimentation.  In addition, it offers non-linear empirical 
models that are considered with the linearized regression model.  The selection be-
tween these models is often a trade-off between model complexity and fitness. Very 
often the less complex model is easier to interpret and is preferred by plant personnel 
and process engineers. 

 
Step 3. Interpolation 
This step is a form of model validation in which the linearized regression model and 
the non-linear model(s) generated by GP are tested with additional data within the ex-
perimental region.  Here again, model selection considers complexity, fitness, and the 
preference of the final user. 

 
Step 4. Extrapolation  
This is necessary when the range of one or more of the variables is extended beyond the 
range of the original design and it is desirable to make timely predictions on this range. 

 
Step 5. Linear and Non-linear Models for Undesigned Data and Model Comparison 
When the models developed in the previous sections do not perform well for extrapo-
lation, it is necessary to develop a new empirical model for the new operating region.  
The ideal approach is to consider an additional experimental design in the new range 
but often it can not be done in a timely fashion.  Furthermore, it is often desirable to 
use the data set already available.  In these cases, while a multiple regression ap-
proach can be applied to build a linear regression model with all available data, the 
risk of collinearity, near linear dependency among regression variables, must be 
evaluated since the data no longer conforms to an experimental design.  High collin-
earity produces ambiguous regression results making it impossible to estimate the 
unique effects of individual variables in the regression model. In this case regression 
coefficients have large sampling errors and are very sensitive to slight changes in the 
data and to the addition or deletion of variables in the regression equation.  This af-
fects model stability, inference and forecasting that is made based on the regression 
model.  Of special interest here is a model developed with a GP-generated symbolic 
regression algorithm because it offers additional model alternatives. 

One essential consideration in this case is that the models generated with this new 
data can not be used to infer causality.  This restriction comes from the fact that the 
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data no longer conforms to an experimental design.  However, the models generated 
(linear regression and non-linear GP-generated models) can be used to predict the re-
sponse in the new range.  Both types of models are then compared in terms of com-
plexity, and fitness, allowing the final users to make the decision. 

The proposed methodology will be illustrated with an industrial application in a 
chemical reactor. 

3 Empirical Modeling Methodology for a Chemical Reactor 

3.1  The Experimental Design and Transformed Linear Model  
(Steps 1 and 2 in Methodology) 

The original data set corresponds to a series of designed experiments that were con-
ducted to clarify the impact on formation of a chemical compound as key variables 
are manipulated.  The experiments consisted of a complete 24 factorial design in the 
factors x1, x2, x3, x4 with three center points.  Nineteen experiments were performed.  
The response variable, Sk, was the yield or selectivity of one of the products.  The fac-
tors were coded to a value of  –1 at the low level, +1 at the high level, and 0 at the 
center point.  The complete design in the coded variables is shown in Table 1, based 
on the original design in [3]. 

The selectivity of the chemical compound (Sk), was first fit to the following first-
order linear regression equation considering only terms that are significant at the 95% 
confidence level: 
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Table 1.  24 factorial design with three center points 

Runs x1 x2 x3 x4 Sk Pk 
1 1 -1 1 1 1.598 0.000
2 0 0 0 0 1.419 0.000
3 0 0 0 0 1.433 0.016
4 -1 1 1 1 1.281 0.016
5 -1 1 -1 1 1.147 0.009
6 1 1 -1 1 1.607 0.012
7 -1 1 1 -1 1.195 0.019
8 1 1 1 -1 2.027 0.015
9 -1 -1 -1 1 1.111 0.009
10 -1 1 -1 -1 1.159 0.007
11 -1 -1 -1 -1 1.186 0.006
12 1 -1 -1 1 1.453 0.013
13 1 1 -1 -1 1.772 0.006
14 -1 -1 1 -1 1.047 0.018
15 -1 -1 1 1 1.175 0.009
16 1 1 1 1 1.923 0.023
17 1 -1 -1 -1 1.595 0.007
18 1 -1 1 -1 1.811 0.015
19 0 0 0 0 1.412 0.017



A Methodology for Combining Symbolic Regression and Design of Experiments          1979 

 

Lack of Fit was induced (p = 0.046) by omission of experiment number 1 of the 
experimental design. This was done to simulate a common situation in industry in 
which LOF is significant and additional experimental runs are impractical due to the 
cost of experimentation, or because it is technically unfeasible due to restrictions in 
experimental conditions. 

The GP algorithm (GP-generated symbolic regression) was applied to the same 
data set.  The algorithm was implemented as a toolbox in MATLAB.  Several models 
of the selectivity of the chemical compound as a function of the four experimental 
variables (x1, x2, x3, x4) were obtained by combining basic functions, inputs, and nu-
merical constants. The initial functions for GP included: addition, subtraction, multi-
plication, division, square, change sign, square root, natural logarithm, exponential, 
and power.  Function generation takes 20 runs with 500 population size, 100 number 
of generations, 4 reproductions per generation, 0.6 probability for function as next 
node, 0.01 parsimony pressure, and correlation coefficient as optimization criteria.  

The functional form of the equations produced a rich set of possible transforms. 
The suggested transforms were tested for the ability to linearize the response without 
altering the necessary conditions of the error structure needed for least-square estima-
tion (uncorrelated and normally distributed errors with mean zero, and constant vari-
ance).  The process consisted of selecting equations from the simulated evolution with 
correlation coefficients larger than 0.9.  These equations were analyzed in terms of the 
R2 between model prediction and empirical response.  Equations with R2 higher than 
0.9 were chosen and the original variables were transformed according to the func-
tional form of these equations.  The linear regression model presented in equation (1) 
was fitted to the data using the transformed variables and the fitness of this trans-
formed linear model was analyzed considering Lack of Fit and R2.  The error structure 
of the models not showing lack of fit was then analyzed.  This process ensured that 
the transformations given by GP not only linearized the response but also produced 
the adequate error structure needed for least square estimations. 

Using the process previously described, the best fit between model prediction and 
empirical response from the set of potential non-linear equations was found for the 
following analytical function with R2 of 0.98[3]:  
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The corresponding  input/output sensitivity analysis reveals that x1 is the most im-
portant input. 

The following transformations were then applied to the data as indicated by the 
functional form of the GP function shown in equation (2). 

Table 2.  Variable transformations suggested by GP model. 

Original Vari-
able 

Transformed Vari-
able 

x1 Z1 = ( )12exp x  

x2 Z2 = x2 
x3 Z3 = ln[(x3)

2] 
x4 Z4 = x4

-1 
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The transformed variables were used to fit a first-order linear regression model 
shown in equation (1).  The resulting model is referred to as the Transformed Linear 
Model (TLM).  The TLM had an R2 of 0.99, no evidence of Lack of Fit (p=0.3072) 
and retained the appropiate randomized error structure indicating that the GP-
generated transformations were succesful in linearizing the response.  The model 
parameters in the transformed variables are given in [3]. 

3.2  Interpolation Capability of Transformed Linear Model (TLM) and 
Symbolic Regression model (GP) (Step 3 of Methodology) 

The interpolation capabilities of the TLM and the GP model shown in equation (2) 
were tested with nine additional experimental points within the range of experimenta-
tion. A plot of the GP and TLM models for the interpolation data is presented in 
Fig. 1. 

The models, GP and TLM, perform similarly in terms of interpolation with sum 
square errors (SSE) being slightly smaller for the TLM (0.1082) than for the GP 
model (0.1346). However, the models are comparable in terms of prediction with data 
within the region of the design.  The selection of one of these models would be driven 
by the requirements of a particular application.  For example, in the case of process 
control, the more parsimonious model would generally be preferred. 
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Fig. 1. Predicted selectivity for GP and TLM using interpolation data set 

3.3  Extrapolation Capability of Transformed Linear Model (TLM) and 
Symbolic Regression Model (GP) (Step 4 of Methodology)  

It was necessary to evaluate the prediction of the TLM and the GP model with avail-
able data outside the region of experimentation (beyond –1 and 1 for the input vari-
ables) that were occasionally encountered in the chemical system.  The most appro-
priate approach would be to generate an experimental design in this new region of 
operability.  Unfortunately this could not be completed in a timely and cost effective 
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fashion due to restrictions in operating conditions.  The data used for extrapolation in 
coded form is shown in Table 3.  Figure 2 shows the comparison between actual and 
predicted selectivity for this data set. 

Table 3.  Data used for extrapolation for GP and TLM models 

Run X1 X2 X3 X4 Selec-
tivity Sk

GP TL
M

SSE 
GP

SSE 
TLM 

1 1.0 - - - 1.614 1.63 1.61 0.000 0.000 
2 1.0 - - - 1.331 1.32 1.21 0.000 0.013 
3 1.0 - - - 1.368 1.36 1.40 0.000 0.001 
4 2.0 - - - 1.791 2.27 2.02 0.231 0.056 
5 2.0 - - - 1.359 1.65 1.24 0.086 0.013 
6 2.0 - - - 1.422 1.72 1.47 0.092 0.003 
7 3.0 - - - 1.969 3.52 2.63 2.412 0.446 
8 3.0 - - - 1.398 2.29 1.28 0.798 0.013 
9 3.0 - - - 1.455 2.43 1.57 0.960 0.014 

10 3.0 0.67 - - 1.480 2.62 2.10 1.318 0.384 
11 3.0 0.76 - 0.47 1.343 2.30 1.48 0.923 0.020 

Data is coded based on conditions of the original design 6.822 0.963 
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Fig. 2. Predicted selectivity for GP and TLM models using extrapolation data 

The deviations between model predictions and actual selectivity (SSE) are larger 
for the GP model (6.822) than for the TLM (0.963) suggesting that the TLM had bet-
ter extrapolation capabilities.  Table 3 shows that the sum squares errors (SSE) gets 
larger for both models as the most sensitive input x1 increases beyond 1,which is the 
region of the original design. This finding confirms that extrapolation of a GP model 
in terms of the most sensitive inputs is a dangerous practice.  This is not a disadvan-
tage of the GP or TLM per se, it is a fact that has challenged and will always chal-
lenge empirical models, whether linear or non-linear in nature.  This is because, un-
like mechanistic models that are deduced from the laws of physics and which apply in 
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in general for the phenomena being modeled, empirical models are developed from 
data in a limited region of experimentation.  

3.4  Linear Regression and Symbolic Regression for Undesigned Data  
(Step 5 of Methodology) 

Given that extrapolation of the previously developed models was not effective, a dif-
ferent approach was explored by combining all of the data sets previously presented 
(DOE, interpolation and extrapolation data sets) to build a linear regression model and 
a GP model.  However since the combined data sets do not conform to an experimen-
tal DOE, the resulting models are only to be used for prediction within the new region 
of operability and not to infer causality.  

 
The Linear Regression Model.   The linear regression model was built treating the 
three sets as one combined data set and treating them as undesigned data, or data not 
collected using a design of experiments.  Selectivity was fit to the first-order linear 
regression shown in equation (1).  The resulting model is referred to as Linear Re-
gression Model (LRM).  The analysis of variance revealed a significant regression 
equation (F ratio <0.0001) with R2 of 0.94, and no evidence of Lack of Fit (p = 
0.1520).  The parameter estimates are presented in Table 4.  

Table 4. Parameter Estimates for Linear Regression Model showing significant terms at 95% 

Term β  Estimate Std 
Error

t Ratio Prob>|t| VIF 

Intercept - 0.365 - <.000  
x1 0.008585 0.000 17.49 <.000 1.871
x2 0.086230 0.033 2.61 0.014 1.506
x3 0.105926 0.010 9.72 <.000 1.995
x4 - 0.119 -4.21 0.000 1.688
(x1-615.789)*(x2-3.73) 0.002362 0.001 2.17 0.038 1.748
(x1-615.789)*(x3-4.37447) 0.003111 0.000 10.63 <.000 1.537
(x2-3.73)*(x3-4.37447) 0.045254 0.023 1.94 0.062 1.791
(x1-615.789)*(x4-1.18474) - 0.003 -2.47 0.020 1.695
(x3-4.37447)*(x4-1.18474) 0.036342 0.074 0.49 0.628 1.605
(x1-615.789)*(x3-4.37447)*(x4- - 0.001 -2.80 0.009 1.766

effect included to preserve model precedence given that third order interaction is signifi-
cant 

VIF 16 7526 
Because the LRM was built for undesigned data, multicollinearity was analyzed 

using Variance Inflation Factors (VIF) [6].  As previously discussed, the presence of 
severe multicollinearty can seriously affect the precision of the estimated regression 
coefficients, making them very sensitive to the data in the particular sample collected 
and producing models with poor prediction.  

The VIF for each model parameter  (VIFj) were compared to the overall Model 
(VIF model).  The VIF for the LRM are listed in Table 4.  No evidence of severe multi-
collinearity was detected (VIFj < 16.7526).  A subsequent residual analysis did not 
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show indication of violations of the error structure required for least square estimation 
indicating that an acceptable LRM was achieved with the combined data set.  

 
The GP Model. The GP model was developed for the combined data set by using a 
toolbox in MATLAB.  This model is referred to as the GP2 model to differentiate it 
from the GP model that was developed using only the DOE data.  The initial func-
tions for GP2 included addition, subtraction, multiplication, division, square, change 
sign, square root, natural logarithm, exponential, and power.  Several runs were per-
formed with various function generation (20 to 40); population size (500 to 900); 
number of generations (100 to 500); parsimony pressure (0.01 to 0.1); and 40 repro-
ductions per generation with 0.6 probability for function as next node, and two differ-
ent optimization criteria (correlation coefficient and sum of squares).  

Several hundred equations were obtained.  The selection of the best equations was 
based on the value of R2.  The following equation resulted in the highest value of R2 
(0.84). 
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(3) 

 
Unlike the model of equation (1), the GP2 model shown in equation (3) is a non-

linear model, with a complex functional form that shows relationships between the 
different variables (x1, x2, x3, x4). 

 
Comparing the Linear and Non-linear Empirical Models.   Figure 3 shows the 
graph of the GP2 model and the Linear Regression Model (LRM) for the combined 
data set.  Comparing the two empirical models, the LRM performs better that the GP2 
model in terms of R2 and the sum square errors.  

In terms of influential observations, the linear regression model allows determina-
tion of influential observations by calculating the Cook’s D influence, Di [7].  Obser-
vations with large values of Di have considerable influence on the least square esti-
mates βi in equation (1) making these estimates very sensitive to these observations.  
None of the observations in the combined data set was considered influential (all cal-
culated Di<1).  This information is helpful identifying potentially interesting observa-
tions that may be replicated to confirm results. 

The GP algorithm does not allow the statistical determination of influential obser-
vations but it allows the determination of the most sensitive inputs.  This process is 
somehow similar to the testing of significant parameters in linear regression but it is 
not based on statistical hypothesis testing.  The GP algorithm finds the most sensitive 
inputs by determining how the fitness function of the GP-generated equations im-
proves by adding the specific input.  The input/output sensitivity analysis had shown 
x1 as the most important input.  This is in agreement with the LRM, which shows x1 as 
significant (Table 4).  

The simpler form of the LRM would generally be preferred by plant engineers be-
cause of the larger R2 and because it is more parsimonious than the GP2 model shown 
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in equation (3).  Nevertheless, the functional form of the non-linear GP2 model re-
veals relationships among the variables that account for a large percentage of the 
variation of the data.  

Therefore, designed and undesigned data are opportunities for consideration of an 
alternative GP generated model.  Even when the regression model is not significant, a 
GP model can still be built to confirm or challenge the result.  This is illustrated in the 
following section.  
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Fig. 3. Predicted selectivity for GP2 and LRM models for combined data set data 

3.5   The GP Model – LRM Not Significant 

A known weakness of some non-linear algorithms is the risk of model over-fitting 
(modeling unexplainable variation instead of real relationships that exist between in-
puts and outputs).  This risk can significantly hinder the potential of GP models. 

In order to test model over-fitting, data for the selectivity of a second chemical 
compound (Pk) was selected from the same 24 DOE experiments shown in Table 1 (Pk 
selectivity data is shown in the fourth column in Table 1).  The standard linear regres-
sion model shown in equation (1) was used to fit to the data considering selectivity Pk 
as the response variable; and x1, x2, x3, x4 as the independent variables. 

The corresponding analysis of variance indicated no evidence of Lack of Fit at the 
95% confidence (p=0.0938) but revealed a non-significant model (p=0.4932) indicat-
ing that the hypothesis that all regression coefficients βi in the model of equation (1) 
are zero could not be rejected. Thus, the linear model is reduced to the mean. 

The GP algorithm has been applied to the DOE data set.  The selectivity Pk was se-
lected as the output variable and x1, x2, x3, x4 were selected as input variables.  Several 
runs were performed with 20 runs, population size between 500 to 900, number of 
generations between 100 to 500, 40 reproductions per generation, 0.6 probability for 
function as next node, parsimony pressure between 0.01 and 0.1, and correlation coef-
ficient and sum of squares as optimization criteria.  Hundreds of non-linear GP equa-
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tions were generated.  However, no equation was found that accounted for more than 
50% of the variation in the data (the maximum correlation coefficient found was 0.5).   

This result is potentially significant.  In the Pk case, it can be demonstrated through 
statistical analysis that a statistically significant correlation does not exist between 
variables and response.  The non-linear GP algorithm produced in an independent 
way the same result from the linear regression analysis by not creating a statistically 
significant model.  This demonstrates that in this case the risk of model over-fitting is 
low. 

4 Conclusions 

A novel methodology for empirical modeling based on Design of Experiments and 
GP has been defined and applied successfully in the Dow Chemical Company.  The 
proposed methodology uses linear regression models and non-linear GP models (sta-
tistically designed experiments, linear regression models for undesigned data, and 
GP-generated symbolic regression).  A significant part of this methodology is based 
on the unique potential of GP algorithms for linearizing regression models in the 
presence of Lack of Fit and providing additional empirical non-linear functions that 
can be considered in combination with the linear ones. The proposed methodology 
has the following advantages: 

- increases the options for development of empirical models based on DOE; 
- reduces (or even eliminates) the number of additional experiments in the 

presence of Lack of Fit; 
- maximizes the use of available data when model extrapolation is required; 
- improves model validation by introducing alternative models. 

These advantages are illustrated in an industrial application.  The promising results 
obtained constitute a solid foundation for utilization of linear and non-linear models 
in industrial applications where extrapolation of an empirical model is often required. 
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