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Abstract. The General Yard Allocation Problem (GYAP) is a resource
allocation problem faced by the Port of Singapore Authority. Here, space
allocation for cargo is minimized for all incoming requests for space re-
quired in the yard within time intervals. The GYAP is NP-hard for which
we propose several heuristic algorithms, including Tabu Search, Simu-
lated Annealing, Genetic Algorithms and the recently emerged “Squeaky
Wheel” Optimization (SWO). Extensive experiments give solutions to
the problem while comparisons among approaches developed show that
the Genetic Algorithm method gives best results.

1 Introduction

The Port of Singapore Authority (PSA) operates this world’s largest integrated
container port and transshipment hub in Singapore. In year 2000, PSA han-
dled 19.77 million Twenty-foot Equivalent Units (TEUs) of containers world-
wide, including 17.04 million TEUs in Singapore. This represents 7.4% of the
global container throughput and 25% of the world’s total container transship-
ment throughput.

Typically, storage is a constraining component in port logistics management.
Factors that impact on terminal storage capacity include stacking heights, avail-
able net storage area, storage density (containers per acre) and dwell times for
empty containers and breakbulk cargo. The port in Singapore, faces such storage
constraints in heightened way due to scarcity of land available for port activities.
As such, the optimization of storage of cargo in its available yards is crucial to
its operations. In studying its operations with the view of finding better ways
to utilize storage space within the dynamic environment of the port, we have
focused on a central allocation process in storage operations which allows for
improved usage of space. In this process, requests are made from operations
which coordinate ship berthing and ship-to-apron loading as well as apron-to-
yard transportation. Each request consists of a set of yard spaces required for
a single time interval. If space is allocated to the request, this space cannot be

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1986–1997, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



The General Yard Allocation Problem 1987

freed until completion of the request, i.e, until the end time. The major reason
for such a constraint is that once a container is placed in the yard, it will not be
removed until the ship for which it is bound arrives to reduce labor cost. The
purpose is to pack all such requirements into a minimum space. The current al-
location is made manually, hence it requires a considerable amount of manpower
and the yard arrangement generated is not efficient.

Sabria and Daganzo [1] give a bibliography on port operations with the fo-
cus on berthing and cargo-handling systems. On the other hand, traffic and
vehicle-flow scheduling on landside upto yard points have been studied well (see
for example, Bish et al.[2]). Other than studies such as Gambardella et al. [3],
which address spatial allocation of containers on a terminal yard using simula-
tion techniques, there has been little direct study on yard space allocation as
described in this paper. We propose a basic model to address this port storage
optimization problem. The model is applicable elsewhere as it is generic in form.
We call it General Yard Allocation Problem (GYAP), which is an extended study
of The Yard Allocation Problem (YAP) (see [4] [5]). The yard is treated as a
two dimensional space instead of one dimensional in YAP.

This paper is organised as follows: problem definition is given in Sect. 2,
followed by a discussion on two-dimensional packing, which is highly related to
our problem, in Sect. 3. Different heuristic approaches including Tabu Search,
”Squeaky Wheel” Optimization, Simulated Annealing and Genetic Algorithms,
as discussed in the next four sections, are applied. Before we conclude in Sect. 9,
experimental results are presented and analyzed in Sect. 8.

2 Problem Description and Formulation

The main objective of the GYAP problem is to minimize the container yard
space used while satisfying all the space request. The GYAP problem can be
described as follows:

A set R of n yard space requests, as described above, and a two-dimensional
infinite container yard E are given. We can think of E as the being first quadrant
in �2. Each request Ri ∈ R (i = 1, ..., n) has a series of (continuous) space
requirements Yij

with length Lij and width Wij , where j ∈ [Tistart , Tiend
], where

the latter time interval is defined by the request Ri.
A mapping, F , such that F (Yij ) = (x, y), where (x, y) ∈ E gives the coordinate of
the bottom left corner of Yij

as it is aligned in E with its sides parallel to the X-Y
axes. Each map, F, must also satisfy the condition that for all p, q ∈ [Tistart , Tiend

]
such that p = q − 1, and for F (Yip

) = (xip
, yip

) and F (Yiq
) = (xiq

, yiq
), we must

have x
ip

≥ x
iq

, yip
≥ yiq

, xip + Lip ≤ xiq + Lia and yip + Wip ≤ yiq
+ Wiq .This

constraint provides the fact that the total space requests increase in time, as
would be expected in a realistic situation. Our objective is then to minimize,
over all possible mappings F , :

max
i,j,Yij

∈Ri

[(ProjXF (Yij ) + Lij )] × max
i,j,Yij

∈Ri

[(ProjY F (Yij ) + Wij )]
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Fig. 1. A valid request R3 in GYAP. The coordinates for P1 and P2 are (2, 4) and
(1, 3) respectively. Same amount of space is required at time 4 and 5.

where ProjX(ProjY ) denotes the orthogonal projections from �2 onto the X (Y)
axis. In other words, we would like to minimize the total area used in the yard
while satisfying all the space requests.

Figure 1 shows a layout with only one valid request, R3. Time T is taken as
a discrete variable with a minimum unit of 1. R3 has four space requirements,
at times 3, 4, 5, and 6, two of which are the same at time 4 and 5, within the
time interval [T3start = 3, T3end

= 6]. The final positions for Y35 and Y36 are
F (Y35) = (2, 4) and F (Y36) = (1, 3), respectively, as shown. The corresponding
mappings for R3 will then be {(3, 4), (2, 4), (2, 4), (1, 3)}, where all the constraints
imposed can be seen to hold. The maximum value in this case, which is the
product of the maximum X−coordinate and the maximum Y−coordinate, is 72.
Note that the space requests is look like a inverted pyramid when together. We
will call the each space requirement at each time slot a layer.

It is clear that GYAP is NP-hard, since (see [4] ) we have found YAP is
NP-hard, which is a special case of GYAP in the case when each request has the
same length (width) which equals to the length(width) of the yard.

3 Two-Dimensional Rectangular Packing Problem

In finding solutions for the GYAP, we confront, at each time slot, a Two-
Dimensional Rectangular Packing Problem (2-DRPP) with certain boundary
constraints.

The 2-DRPP has been proven to be NP-hard. Various heuristic methods have
been proposed. However, most of these are meta-heuristics because the complex
representation of the 2DRPP makes it difficult to apply other heuristics. Such
meta-heuristics usually use a lower-level packing algorithm, for example, greedy
packing, and higher-level algorithms, such as Tabu Search.
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A lower-level greedy packing routine allocates the objects according to certain
given ordering, which is determined by the higher-level heuristics. A greedy
packing routine is the Bottom Left (BL) heuristic [6] [7] [8]. Starting from the
top right corner each item is slid as far as possible to the bottom and then as
far as possible to the left of the object. These successive vertical and horizontal
operations are repeated until the item locks in a stable position.

The major advantage of this routine is its simplicity. Its time complexity
is only O(N2), where N is the total number of items to be packed. Due to
its low complexity this simple heuristic is favorable in a hybrid combination
with a meta-heuristic, since the decoding routine has to be executed every time
the quality of a solution is evaluated and hence contributes significantly to the
running time of any hybrid algorithm [8].

The BL packing routine uses a deterministic algorithm, hence the input or-
dering of the objects fully determines the final layout. Heuristics can be applied
to optimize the ordering. In fact, such orderings can also be considered as per-
mutations, and hence, in this work, we use the word permutation for a solution
representation.

As the objective of GYAP is to minimize the total yard space while satis-
fying all the space requests, A procedure, called EVALUATE SOLUTION, is
required. It takes a solution (i.e permutation) and computes the minimum space
required by applying BL heuristic on packing those pyramids into �3

+ (with two
dimensions representing the yard and one dimension for the time axis).

EVALUATE SOLUTION (P )
1 for each R ∈ P
2 while the position of R changes
3 SHIFT (R, Rend, 0, 0, bottom)
4 SHIFT (R, Rend, 0, 0, left)
5 return Minimum area used

SHIFT (R, t, l, b, o)
01 B :=bottom most position to shift all layers (time t′)
02 if B < b
03 B = b
04 L :=left most position to shift all layers (time t′′)
05 if L < l
06 L = l
07 if o = bottom
08 for all layers r after t′ − 1
09 shift r bottomwards to B
10 SHIFT (R, t′ − 1, L, B, o)
11 else
12 for all layer r after t′′ − 1
13 shift r leftwards to L
14 SHIFT (R, t′′ − 1, L, B, o)
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4 Tabu Search

Tabu Search (TS) is a local search meta-heuristic that uses the best neighbor-
hood move that is not “tabu” active to move out from local optimum by incorpo-
rating adaptive memory and responsive exploration [9]. According to the different
usage of memory, conventionally, Tabu Search has been classified into two cate-
gories: Tabu Search with Short Term Memory (TSSTM) and Tabu Search with
Long Term Memory (TSLTM) [10] [11].

4.1 Tabu Search with Short Term Memory

The usage of memory of TSSTM is via the Tabu List. Such an adaptation
is also known as recency-based Tabu Search. The neighborhood solution can
be obtained by swapping any two numbers in the permutation. For example:
[2, 3, 0, 1, 4] is a neighborhood solution of [1, 3, 0, 2, 4] by interchanging the posi-
tions of 1 and 2. Neighborhood solutions that are identical to the original solution
after normalization are excluded for efficiency reasons.

4.2 Tabu Search with Long Term Memory

TSLTM uses more advanced Tabu Search techniques including intensification
and diversification strategies. It archives total or partial information from all
the solutions it has visited. This is also known as frequency- based Tabu Search.
It attempts to identify certain potentially “good” patterns, which will be used
to guide the search process towards possibly better solutions [12]. Two kinds
of diversification techniques are used. One is random re-start. The other is ran-
domly picking a sub-sequence and inserting it to a random position. For example,
[0, 1, 2, 3, 4] may be changed to [0, 3, 2, 1, 4] if (2, 3) is chosen as the sub-sequence
and its inverted order (or original, if random) is inserted back in the position in
ahead of 1. Intensification is similar to TSSTM. TSLTM uses a frequency-based
memory by recording both residence-frequency and transition-frequency of the
visited solutions.

5 “Squeaky Wheel” Optimization

“Squeaky Wheel” Optimization (SWO) is a new heuristic approach proposed
in [13]. Until now, this concept can only be found in a few papers: [14], [15]
and [16]. In 1996, a “doubleback” approach was proposed to solve the Resource
Constrained Project Scheduling (RCPS) problem [17] , which motivated the
development of SWO in 1998. The YAP is similar to the RCPS except that
it has no precedence constraints and the tasks (requirements) are Stair Like
Shapes (SLS). Instead of Left-Shift and Right-Shift in “doubleback”, we only
use a “drop” routine similar to Left-Shift. We continue using this technique in
GYAP.

The ideas in SWO mimic how human beings solve problems by identifying the
“trouble-spot” or the “trouble-maker” and trying to resolve problems caused by
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the latter. In SWO, a greedy algorithm is used to construct a solution according
to certain priorities (initially randomly generated) which is then analyzed to find
the “trouble-makers”, i.e. the elements whose improvements are likely to improve
the objective function score. The results of the analysis are used to generate new
priorities that determine the order in which the greedy algorithm constructs the
next solution. This Construct/Analyze/Prioritize (C/A/P) cycle continues until
a certain limit is reached or an acceptable solution is found. This is similar to
the Iterative Greedy heuristic proposed in [18]. Iterative Greedy is especially
designed for Graph Coloring Problem and may not be directly applicable to
other problems, whereas SWO is a more general optimization heuristic.

In our problem, we start with a random solution, which is a random permu-
tation. The Analyzer evaluates the solution by applying the packing routine. If
the best known result (yard space) is B , then a threshold T is set to be B − 1.
The blame factor for each request is the sum of the space requirements that
exceed this threshold T , i.e. the total area of the pyramid above the cutting line
T . All blame information is passed to the Prioritizer, which is a priority queue
in our case. When the control has been handed over to the Constructor again,
it continuously deletes the elements from the priority queue and immediately
drops them into the yard. A tie, i.e. more than one element with the same pri-
ority, is broken by considering their relative positions in previous solution. This
tie-breaker also helps avoid cycles in our search process.

We also found that the performance of the SWO can be further improved if
a “quick” Tabu Search technique TSSTM is embedded in the SWO. We call this
modified algorithm SWO+TS, where TS denotes Tabu Search. The Constructor
passes its solution to a TSSTM engine, which performs a quick local search and
passes the local optimum to the Analyzer. Experiments shows a considerable
improvement against the original SWO system. Similar ideas of SWO with “in-
tensification” have been proposed in [14], where solutions are partitioned and
SWO is applied to each partition.

6 Simulated Annealing

Simulated annealing [19] stochastically simulates the slow cooling of a physical
system. We used the following Simulated Annealing algorithm on our problem:

Step 1. Choose some initial temperature T0 and a random initial starting config-
uration θ0. Set T = T0. Define the Objective function (Energy function)
to be En() and the cooling schedule σ.

Step 2. Propose a new configuration, θ′, of the parameter space, within a neigh-
borhood of the current state θ, by setting θ′ = θ + φ for some random
vector φ.

Step 3. Let δ = En(θ′) − En(θ). Accept the move to θ′ with probability

α(θ, θ′) =
{

1 ifδ < 0
exp(− δ

T ) otherwise
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Step 4. Repeat Step 2 and 3 for K iterations, until it is deemed to have reached
the equilibrium.

Step 5. Lower the temperature by T = T × σ and repeat Steps 2-4 until certain
stopping criterion, for our case T < ε (for some small ε) is met.

Due to the logarithmic decrement of T , we set T0 = 1000. The Energy func-
tion is simply defined as the length of the yard required. The probability exp(− δ

T )
is a Boltzmann factor. The number of iterations K is proportional to the input
size n. A neighborhood is defined similarly as the one in TS by swapping of any
two permutations and re-positioning a random permutation.

7 Genetic Algorithms

Genetic Algorithms [20] (GA) are search procedures based notions from natural
selection.It is clear that the classical binary representation is not a suitable in
GYAP, in which a permutation (0, 1, . . . , n − 1) is used as the solution repre-
sentation. The solution space is a permutation of (0, 1, . . . , n − 1). The binary
codes of these permutations do not provide any advantage. At times, the situa-
tion is even worse: the change of a single bit may not lead to a valid solution.
Here, we adopt a vector representation, i.e. by using a permutation directly as
the chromosome in the genetic process. We will illustrate the two major genetic
operators used in our approach, crossover and mutation.

7.1 Crossover Operator

Using permutations as chromosome, we have implemented three crossover op-
erators: Classical crossover with repair, Partially-mapped crossover and Cycle
crossover. All these operators are be tailored to suit our problem domain. A
small change in the crossover operator may cause totally different results.

Classical Crossover with Repair. The Classical Crossover operator builds
the offspring by appending the head from one parent with the tail from the
other parent, where the head and tail come from a random cut of the parents’
chromosomes. A repair procedure may be necessary after the crossover [21]. For
example, the two parents (with random cut point marked by ‘|’):

p1 = (0 1 2 3 4 5 | 6 7 8 9) and p2 = (3 1 2 5 7 4 | 0 9 6 8)

will produce the following two offsprings:

o1 = (0 1 2 3 4 5 | 0 9 6 8) and o2 = (3 1 2 5 7 4 | 6 7 8 9)

However, the two offsprings are not valid permutations after the crossover. A
repair routine replaces the repeated numbers with the missing ones randomly.
The repaired offsprings will be:

o1 = (7 1 2 3 4 5 | 0 9 6 8) and o2 = (3 1 2 5 7 4 | 6 0 8 9)

The classical crossover operator tries to maintain the absolute positions in the
parents.
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Partially Mapped Crossover. Partially Mapped Crossover (PMX) was first
used in [22] to solve the Traveling Salesman Problem. We have made several ad-
justments to accommodate our permutation representation. The modified PMX
builds an offspring by choosing a subsequence of a permutation from one par-
ent and preserving the order and position of as many numbers as possible from
the other parent. The subsequence is determined by choosing two random cut
points. For example, the two parents:

p1 = (0 1 2 | 3 4 5 6 | 7 8 9) and p2 = (3 1 2 | 5 7 4 0 | 9 6 8)

would produce offspring as follows. First, two segments between cutting points
are swapped (symbol ‘u’ represents ‘unknown’ for this moment):

o1 = (u u u | 5 7 4 0 | u u u) and o2 = (u u u | 3 4 5 6 | u u u)

The swap defines a series of mappings implicitly at the same time:

3 ↔ 5, 4 ↔ 7, 5 ↔ 4 and 6 ↔ 0.

The ‘unknown’s are then filled in with numbers from original parents, for which
there is no conflict:

o1 = (u 1 2 | 5 7 4 0 | u 8 9) and o2 = (u 1 2 | 3 4 5 6 | 9 u 8)

Finally, the first u in o1 (which should be 0 will cause a conflict) is replaced by 6
because of the mapping 0 ↔ 6. Note such replacement is transitive, for example,
the second u in o1 should follow the mapping 7 ↔ 4, 4 ↔ 5, 5 ↔ 3 and is hence
replaced by 3. The final offspring are:

o1 = (6 1 2 | 5 7 4 0 | 3 8 9) and o2 = (7 1 2 | 3 4 5 6 | 9 0 8)

The PMX crossover exploits important similarities in the value and ordering
simultaneously when used with an appropriate reproductive plan [22].

Cycle Crossover. Original Cycle Crossover (CX) was proposed in [23], again
for the TSP problem. Our CX builds offspring in such a way that each number
(and its position) comes from one of the parents. We explain the mechanism of
the CX with following example. Two parents:

p1 = (0 1 2 3 4 5 6 7 8 9) and p2 = (3 1 2 5 0 4 7 9 6 8)

will produce the first offspring by taking the first number from the first parent:

o1 = (0 u u u u u u u u u)

Since every number in the offspring should come from one of its parents (for the
same position), the only choice we have at this moment is to pick number 3, as
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the number from parent p2 just “below” the selected 0. In p1 , it is in position 3,
hence:

o1 = (0 u u 3 u u u u u u)

which, in turn, implies number 5, as the number from p2 “below” the selected 3:

o1 = (0 u u 3 u 5 u u u u)

Following the rule, the next number to be inserted is 4. However, selection of 4
requires the selection of 0, which is already in the list. Hence the cycle is formed
as expected.

o1 = (0 u u 3 4 5 u u u u)

The remaining ‘u’s are filled from p2 :

o1 = (0 1 2 3 4 5 7 9 6 8).

Similarly,
o2 = (3 1 2 5 0 4 6 7 8 9).

CX preserves the absolute position of the elements in the parent sequence
[21].

Our experiments shows Classical crossover and CX have a stable but slow
improvement rates, while PMX demonstrates oscillating but fast convergence. In
our later experiments, the majority of the crossover is done by PMX. Classical
crossover and CX are applied at a much lower probability.

7.2 Mutation Operator

Mutation is another classical genetic operator, which alters one or more genes
(part of a chromosome) with a probability equal to the mutation rate. There are
several known mutation algorithms which work well on different problems:

– Inversion: invert a subsequence.
– Insertion: select an number and insert it back in a random position.
– Displacement: select a subsequence and insert it back in a random position.
– Reciprocal Exchange: swap two numbers.

In fact the Inversion, Displacement and Reciprocal Exchange are quite sim-
ilar to our neighborhood solution and diversification techniques used in Tabu
Search and Simulated Annealing in previous sessions. We adopt a relatively low
mutation rate of 1%.

We use population size P = 1000 for most cases. The evolution process starts
with a random population. The population is sorted according to the objective
function, the better the quality, the higher the probability it will be selected
for reproduction. At each iteration, a new generation with population size 2P is
produced and the better half, which is of size P , survive for the next iteration.
The evolution process continues until certain stop criterion are met.
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8 Experimental Results

We conducted extensive experiments on randomly generated data 1. The graph
for each test case contains one components, so that the cases cannot be parti-
tioned into more than one independent sub-case.

All the programs implementing various heuristic methods are coded in GNU
C++, with an extensive use of Standard Template Library (STL) for efficiency
data structures like priority queue, set and map.

Due to the difficulties of finding any optimal solution in the experiments, a
trivial lower bound is taken to be the sum of the space requirements at each
time slot and used for benchmarking purpose.

Table 1. Experimental results for GYAP (Entries in the table show the minimum
length of the yard required. Names of Data Sets show the number of pyramids in the
file; LB:Lower Bound)

Data Set Lower Bound TSSTM TSLTM SWO SWO+TS SA GA
P35 47 84 80 112 84 76 76
P86 218 616 583 748 550 572 550
P108 78 205 200 270 200 210 175
P127 221 660 649 891 671 671 550
P137 239 680 670 950 690 600 560
P142 40 135 125 190 140 120 115
P160 249 828 828 996 852 840 780
P167 243 814 792 1012 825 748 649
P187 302 948 912 1032 912 816 768

Table 1 illustrates the results and Table 2 shows the running time for each
of the test performed in Table 1. GA is the most cost-effective approach while
TSSTM has the simplest implementation for which it is not surprising to see
that it achieves the poorest results. Long term memory certainly improves the
performance of TS, though the improvement is not very obvious and stable
sometimes. We believe one of the major difficulties with long term memory is
the fine tuning of parameters, including the assignment of relative weights to yard
length, residence frequency and transition frequency in the objective function.

The performance of SWO is poor in our experiments because of two reasons.
Firstly, the BL packing routine makes it difficult to identify the bottleneck, or the
“trouble makers”. The objects are manipulated in a two-dimensional space, and
assigning blame factor according to only one dimension may not well reflect the
structure of the solution. Secondly, there is the loss of correspondence between
physical layout and actual solutions. SWO is more sensitive to the problem
domain as it needs to know the exact structure of the solution in order to assign
1 All test data are available on the web with URL:
http://www.comp.nus.edu.sg/˜fuzh/GYAP

http://www.comp.nus.edu.sg/~fuzh/GYAP


1996 P. Chen et al.

Table 2. Experiment running time (in seconds) for Table 1.

Data Set TSSTM TSLTM SWO SWO+TS SA GA
P35 783 4521 1033 5462 4512 923
P86 948 6529 2312 5978 2351 1423
P108 2321 8392 4528 8432 8934 3452
P127 2783 9837 4678 10262 11023 6621
P137 2796 9640 4780 9892 9857 7048
P142 893 3428 1532 4582 3275 1094
P160 4781 15327 3085 18539 6793 3583
P167 6063 14294 3769 19852 6832 3781
P187 7806 17327 4085 20542 6673 6849

proper blame values. SA is the second best approach. We believe it is because
the cooling schedule is not much affected by the loss of correspondence.

9 Conclusion

In this paper, the General Yard Allocation Problem is studied which involves
two-dimensional rectangle packing as a related problem. We adopted a simple
Bottom Left packing strategy as a first heuristic. Heuristics like Tabu Search,
Simulated Annealing, Genetic Algorithms and “Squeaky Wheel” Optimization
were then applied to problem in the extensive experiments and solutions ob-
tained. Our approach sheds light on the use of these meta-heuristics on a set of
problems, including those of packing where packing lists can change in time. In
comparisons between results obtained, we found that the GA implementation
achieves the best results to this problem.
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