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Abstract. Evolutionary computation can successfully create control po-
licies for single-agent continuous control problems. This paper extends
single-agent evolutionary computation to multi-agent systems, where a
large collection of agents strives to maximize a global fitness evaluation
function that rates the performance of the entire system. This problem is
solved in a distributed manner, where each agent evolves its own popula-
tion of neural networks that are used as the control policies for the agent.
Each agent evolves its population using its own agent-specific fitness eva-
luation function. We propose to create these agent-specific evaluation
functions using the theory of collectives to avoid the coordination pro-
blem where each agent evolves neural networks that maximize its own
fitness function, yet the system as a whole achieves low values of the
global fitness function. Instead we will ensure that each fitness evalua-
tion function is both “aligned” with the global evaluation function and
is “learnable,” i.e., the agents can readily see how their behavior affects
their evaluation function. We then show how these agent-specific evalua-
tion functions outperform global evaluation methods by up to 600% in a
domain where a collection of rovers attempts to maximize the amount of
information observed while navigating through a simulated environment.

1 Introduction

Evolutionary computation combined with neural networks can be very effective
in finding solutions to continuous single-agent control tasks, such as pole ba-
lancing, robot navigation and rocket control [10,7,8]. The single-agent task of
these evolutionary computation methods is to produce a highly fit neural net-
work, which is used as the controller for the agent. Applying these evolutionary
computation methods to certain multi-agent problems such as controlling con-
stellations of satellites, constructing distributed algorithms and routing over a
data network offer a promising approach to solving difficult, distributed control
problems. Unfortunately the single-agent methods cannot be extended directly
to a large multi-agent environment due to the large state-space and possible
communication limitations. Instead we use an alternative approach of having
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each agent use its own evolutionary algorithm and attempt to maximize its own
fitness evaluation function. For such a system to produce good global soluti-
ons, two fundamental issues have to be addressed: (i) ensuring that, as far as
the provided global evaluation function is concerned, the agents do not work at
cross-purposes (i.e., making sure that the private goals of the agents and the
global goal are “aligned”); and (ii) ensuring that the agents’ fitness evaluation
functions are “learnable” (i.e., making sure the agents can readily see how their
behavior affects their evaluation function). This paper provides a solution that
satisfies both criteria in the problem of coordinating a collection of planetary
exploration rovers based on continuous sensor inputs.

Current evolutionary computation methods address multi-agent systems in a
number of different ways [2,9,1]. In [2], the algorithm takes advantage of a large
number of agents to speed up the evolution process in domains where agents do
not have the problem of working at cross-purposes. In [9] beliefs about about
other agents are update through global and hand-tailored fitness functions. In
addition ant colony algorithms [6] solve the coordination problem by utilizing
“ant trails,” providing good results in path-finding domains. Instead this paper
presents a framework based on the theory of collectives that directs the evo-
lutionary process so that agents do not work at cross-purposes, but still evolve
quickly. This process is performed by giving each agent its own fitness evaluation
function that is both aligned with the global evaluation function and as easy as
possible for the agent to maximize. These agents can then use these evaluation
functions in conjunction with the system designer’s choice of evolutionary com-
putation method. New evolutionary computation methods can replace the one
used here without changing the evaluation functions, allowing the latest advan-
ces in evolutionary computation to be leveraged, without modifying the design
of the overall system.

This paper will first give a brief overview of the theory of collectives in Section
2, showing how to derive agent evaluation functions that are both learnable and
aligned with the global evaluation function. In Section 3 we discuss the “Rover
Problem” testbed where a collection of planetary rovers use neural networks to
determine their movements based on a continuous-valued array of sensor inputs.
In Section 4 we compare the effectiveness of three different evaluation func-
tions. We first use results from the previous section to derive fitness evaluation
functions for the agents in a simple version of the Rover Problem in a static
environment. Then we show how these methods perform in a more realistic do-
main with a changing environment. Results show up to a 600% increase in the
performance of agents using agent-specific evaluation functions.

2 Multi-agent System Evaluation Functions

This section summarizes how to derive good evaluation functions, using the
theory of collectives described by Wolpert and Tumer [11]. We first assume that
there is a global evaluation function, G(z), which is a function of all of the
environmental variables and the actions of all the agents, z. The goal of the multi-
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agent system is to maximize G(z). However, the agents do not maximize G(z)
directly. Instead each agent, η, attempts to maximize its private evaluation
function gη(z). The goal is to design g(z)s such that when all of the g(z)s are
close to being maximized, G(z) is also close to being maximized.

2.1 Factoredness and Learnability

For high values of the global evaluation function, G, to be achieved, the private
evaluation functions need to have two properties, factoredness and learnabi-
lity. First we want the private evaluation functions of each agent to be factored
with respect to G, intuitively meaning that an action taken by an agent that
improves its private evaluation function also improves the global evaluation fun-
ction (i.e. G and gη are aligned). Specifically when agent η takes an action that
increases G then gη should also increase. Formally an evaluation function g is
factored when:

gη(z) ≥ gη(z′) ⇔ G(z) ≥ G(z′) ∀z, z′ s.t. z−η = z′
−η .

where z−η and z′
−η contain the components of z and z′ respectively, that are not

influenced by agent η.
Second, we want the agents’ private evaluation functions to have high learn-

ability, intuitively meaning that an agent’s evaluation function should be sensi-
tive to its own actions and insensitive to actions of others. As a trivial example,
any “team game” in which all the private functions equal G is factored [5]. Ho-
wever such systems often have low learnability, because in a large system an
agent will have a difficult time discerning the effects of its actions on G. As a
consequence, each η may have difficulty achieving high gη in a team game. We
call this signal/noise effect learnability:

λη,gη (ζ) ≡ ‖∇ζη
gη(ζ)‖

‖∇ζ−η
gη(ζ)‖ . (1)

Intuitively it shows the sensitivity of gη(z) to changes to η’s actions, as oppo-
sed to changes to other agent’s actions. So at a given state z, the higher the
learnability, the more gη(z) depends on the move of agent η, i.e., the better the
associated signal-to-noise ratio for η.

2.2 Difference Evaluation Functions

Consider difference evaluation functions, which are of the form:

Dη ≡ G(z) − G(z−η + cη) (2)

where z−η contains all the variable not affected by agent η. All the components
of z that are affected by agent η are replaced with the fixed constant cη. Such
difference evaluation functions are factored no matter what the choice of cη,
because the second term does not depend on η’s actions [11]. Furthermore, they
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usually have far better learnability than does a team game, because of the second
term of D, which removes a lot of the effect of other agents (i.e., noise) from η’s
evaluation function. In many situations it is possible to use a cη that is equivalent
to taking agent η out of the system. Intuitively this causes the second term of
the difference evaluation function to evaluate the fitness of the system without
η and therefore D evaluates the agent’s contribution to the global evaluation.

3 Continuous Rover Problem

In this section, we show how evolutionary computation with the difference eva-
luation function can be used effectively in the Rover Problem. In this problem,
there is a set of rovers on a two dimensional plane, which are trying to observe
points of interests (POIs). A POI has a fixed position on the plane and has a
value associated with it. The observation information from observing a POI is
inversely related to the distance the rover is from the POI. In this paper the
distance metric will be the squared Euclidean norm, bounded by a minimum
observation distance, d:1

δ(x, y) = min{‖x − y‖2, d2} . (3)

While any rover can observe any POI, as far as the global evaluation function is
concerned, only the closest observation counts2. The global evaluation function
for a trial is given by:

G =
∑

t

∑

i

Vi

minη δ(Li, Lη,t)
, (4)

where Vi is the value of POI i, Li is the location of POI i and Lη,t is the location
of rover η at time t.

At every time step, the rovers sense the world through eight continuous
sensors. From a rover’s point of view, the world is divided up into four quadrants
relative to the rover’s orientation, with two sensors per quadrant (see Figure 1).
For each quadrant, the first sensor returns a function of the POIs in the quadrant
at time t. Specifically the first sensor for quadrant q returns the sum of the values
of the POIs in its quadrant divided by their squared distance to the rover:

s1,q,η,t =
∑

i∈Iq

Vi

δ(Li, Lη,t)
(5)

1 The square Euclidean norm is appropriate for many natural phenomenon, such as
light and signal attenuation. However any other type of distance metric could also
be used as required by the problem domain. The minimum distance is included to
prevent singularities when a rover is very close to a POI

2 Similar evaluation functions could also be made where there are many different levels
of information gain depending on the position of the rover. For example 3-D imaging
may utilize different images of the same object, taken by two different rovers.
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where Iq is the set of observable POIs in quadrant q. The second sensor returns
the sum of square distances from a rover to all the other rovers in the quadrant
at time t:

s2,q,η,t =
∑

η′∈Nq

1
δ(Lη′ , Lη,t)

(6)

where Nq is the set of rovers in quadrant q.

Rover Sensor

POI Sensor

Fig. 1. Diagram of a Rover’s Sensor Inputs. The world is broken up into four
quadrants relative to rover’s position. In each quadrant one sensor senses points of
interests, while the other sensor senses other rovers.

With four quadrants and two sensors per quadrant, there are a total of eight
continuous inputs. This eight dimensional sensor vector constitutes the state
space for a rover. At each time step the rover uses its state to compute a two
dimensional action. The action represents an x,y movement relative to the rover’s
location and orientation. The mapping from state to action is done with a multi-
layer-perceptron (MLP), with 8 input units, 10 hidden units and 2 output units.
The MLP uses a sigmoid activation function, therefore the outputs are limited
to the range (0, 1). The actions, dx and dy, are determined from substracing 0.5
from the output and multiplying by the maximum distance the rover can move
in one time step: dx = d(o1 − 0.5) and dy = d(o2 − 0.5) where d is the maximum
distance the rover can move in one time step, o1 is the value of the first output
unit, and o2 is the value of the second output unit.

The MLP for a rover is chosen by a simple evolutionary algorithm. In this
algorithm each rover has a population of MLPs. At the beginning of each trial,
the rover selects the best MLP from its population 90% of the time and a ran-
dom MLP from its population 10% of the time (ε-greedy selector). The selected
MLP is then mutated by adding a value sampled from the Cauchy Distribution
(with scale parameter equal to 0.3) to each weight, and is used for the entire
trial. When the trial is complete, the MLP is evaluated by the rover’s evaluation
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function and inserted into the population. The worst performing member of the
population is then deleted. While this algorithm is not sophisticated, it is effec-
tive if the evaluation function used by the agents is factored with G and highly
learnable. The purpose of this work is to show gains due to principled selection
of evaluation functions in a multi-agent system. We expect more advanced al-
gorithms from evolutionary computation, used in conjunction with these same
evaluation functions, to perform even better.

4 Results

The Rover Problem was tested in three different scenarios. There were ten rovers
in the first two scenarios and thirty rovers in the third scenario. In each scenario,
a trial consisted of 15 time steps, and each rover had a population of MLPs of
size 10. The world was 100 units long and 115 units wide. All of the rovers star-
ted the trial near the center (65 units from the left boundary and 50 units from
the top boundary). The maximum distance the rovers could move in one direc-
tion during a time step, d, was set to 10. The rovers could not move beyond the
bounds of the world. The minimum distance, d, used to compute δ was equal to
5. In the first two scenarios, the environment was reset at the beginning of every
trial. However the third scenario showed how learning in changing environments
could be achieved by having the environment change at the beginning of each
trial. Note that in all three scenarios other forms of continuous reinforcement
learners could have been used instead of the evolutionary neural networks. Ho-
wever neural networks are ideal for this domain given the continuous inputs and
bounded continuous outputs.

4.1 Rover Evaluation Function

In each of the three scenarios three different evaluation functions were tested.
The first evaluation function was the global evaluation function (G):

G =
∑

t

∑

i

Vi

minη δ(Li, Lη,t)
(7)

The second evaluation function was the “perfectly learnable” evaluation function
(P):

Pη =
∑

t

∑

i

Vi

δ(Li, Lη,t)
(8)

Note that the P evaluation function is equivalent to the global evaluation funtion
when there is only one rover. It also has infinite learnability in the way it is
defined in Section 2, since the P evaluation function for a rover is not affected by
the actions of the other rovers. However the P evaluation function is not factored.
Intuitively P and G offer opposite benefits, since G is by definition factored, but
has poor learnability. The final evaluation function is the difference evaluation
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function. It does not have as high learnability as P, but is still factored like G.
For the rover problem, the difference evaluation function, D, is defined as:

Dη =
∑

t

[
∑

i

Vi

minη′ δ(Li, Lη′,t)
−

∑

i

Vi

minη′ �=η δ(Li, Lη,t)

]

=
∑

t

∑

i

Ii,η,t(z)
Vi

δ(Li, Lη,t)

where Ii,η,t(z) is an indicator function, returning one if and only if η is the
closest rover to Li at time t. The second term of the D is equal to the value of
all the information collected if rover η were not in the system. Note that for all
time steps where η is not the closest rover to any POI, the subtraction leaves
zero. The difference evaluation can be computed easily as long as η knows the
position and distance of the closest rover to each POI it can see. If η cannot
see a POI then it is not the closest rover to it. In the simplified form, this is
a very intuitive evaluation function yet it was generated mechanically from the
general form of the difference evaluation function [11]. In this simplified domain
we could expect a hand-crafted evaluation function to be similar. However the
difference evaluation function can still be used in more complex domains with a
less tractable form of the global utility, even when it is difficult to generate and
evaluate hand-crafted solution. Even in domains where an intuitive feel is lacking,
the difference evaluation function will be provably factored and learnable.

4.2 Learning in Static Environment

The first experiment was performed using ten rovers and a set of POIs that
remained fixed for all trials (see Figure 2). The POIs were placed in such a way
as to create the potential of congestion problems around one highly valued POI,
testing the cooperation level among the rovers. This was achieved by creating a
grid of 15 POIs, with value 3.0, to the left of the rovers’ starting location, and a
high valued POI of value 10.0 to the right of the rovers’ starting location. There
was also a POI of value 10.0, which was ten units to the left of the rovers’ starting
location. System performance was measured by how well the rovers were able
to maximize the global evaluation function (even though from a rover’s point of
view, it is trying to maximize its private evaluation function).

Results from Figure 3 (left) show that the rovers using D performed the best,
by a wide margin. Early in training, rovers using P performed better than rovers
using G. However since the learning curve of these rovers using P remained
flat, while the ones using G increased, the rovers using G eventually overtook
the ones using P. The error bars (smaller than the symbols) show that these
results are statistically significant. In essence agents using P converge quickly
to a poor solution, while agents using G move slowly towards a good solution,
while agents using D converge rapidly to a good solution. This phenomenon is
explained by factoredness and learnability. The P evaluation function is highly
learnable since it is only affected by the moves of a single rover. However since
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P is not factored, a rover that maximizes it occasionally takes actions that hurt
its fitness with respect to the global evaluation. In contrast rovers using G learn
slowly, since the global evaluation is effected by the actions of all the other rovers.

High Valued

POI

Low Valued

POIs

Rovers

Fig. 2. Diagram of Static Environment. Points of interests are at fixed locations
for every trial.

The second experiment is similar to the first one except that the value of a
POI goes down each time it is observed by the closest agent. This reduction in
value models a domain where an agent receives less useful new information with
each successive observation. This is a harder problem than the previous one,
since the values of the POIs change at every time step during a trial. Figure 3
(right) verifies that this domain is more difficult as rovers using all three eva-
luation function performed worse than in the pervious domain. However rovers
using D, still performe significantly better than rovers using the other evaluation
functions. Note also that rovers using G suffer the most in this domain since they
were cut off at a steeper portion in their learning curve than the agents using
the other evaluation function. By the time the trial had ended, the rovers using
G had just begun to learn their domain because of G’s low learnability.

4.3 Learning in Changing Environment

In the first two experiments, the environment was returned to its starting state at
the beginning of each trial. Therefore the rovers learned specific control policies
for a specific configuration of POIs. This type of learning is most useful when the
rovers learn on a simulated environment and are then deployed to an environment
closely matching the simulation. However it is often desirable for the rovers to
be able to learn a control policy after they are deployed in their environment.
In such a scenario the rovers generalize what they learned in the parts of the
environment they were first deployed in, to other parts of the environment. The
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Fig. 3. Results for Three Different Evaluation Functions in Static Environ-
ment. Points of interests are at fixed locations for every trial. Right Figure: Results
when POI values constant for duration of trial. Left Figure: Results when POI values
decrease as they are observed. Difference evaluation is superior since it is both factored
and learnable.

last experiment tests the rovers’ ability to generalize what they learned in early
environmental conditions to later environmental conditions.

In the last experiment there were thirty rovers and thirty POIs. POI locations
were set randomly at the beginning of each trial using a uniform distribution
within a 70 by 70 unit square centered on the rovers starting location (see Figure
4). The value of the POIs were set to random values uniformly chosen between
one and ten. Changing locations at each trial forced the rovers to create a general
solution, based on their sensor inputs, since each new trial was different from all
of the trials they had previously seen. This type of problem is common in real
world domains, where the rovers typically learn in a simulator and later have to
apply their learning to the environment in which they are deployed. Note that
learning in this scenario does not depend on the use of multiple trials as the
rovers can continuously learn, and generalize from their past experience.

Figure 5 shows that rovers using D performed best in this scenario. Ro-
vers using D were effective in generalizing the knowledge gained from exploring
previous POI configurations and applying that knowledge to new POI configu-
rations. In contrast, rovers using the P evaluation were especially ineffective in
this scenario. We attribute this to the congested nature of the problem, where
the rovers competed rather than cooperating with each other. Since a rover’s P
evaluation only returns the value of what that rover observes, a rover using the
P evaluation tends to move towards the highest valued POI in its area. However
all the other rovers in that vicinity are also moving towards the same high-valued
POI, and thus many other POIs are not properly observed.

5 Conclusion

This paper has shown that even simple evolutionary algorithms can be used
in complex multi-agent systems, if the proper evaluation functions are used. In
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Fig. 4. Changing Environment. POIs are placed at random locations at the be-
ginning of each trial. Rovers have to generalize their knowledge from one trial to the
next.
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Fig. 5. Results in Changing Environment. Difference evaluation is superior since
it is both factored and learnable.

simple continuous problems, the neural network based rovers using the diffe-
rence evaluation function D, derived from the theory of collectives, were able
to achieve high levels of performance because the evaluation function was both
factored and highly learnable. These rovers performed 300% better (over ran-
dom rovers) than rovers using the non-factored perfectly learnable utility and
more than 200% better than rovers using the hard to learn global evaluations.
These results were even more pronounced in a more difficult domain with a
changing environment where rovers using the difference evaluation performed
up to 600% better than rovers using global evaluations. These rovers were still
able to learn quickly even though they had to generalize a solution learned in
earlier environmental configurations to new environmental configurations. These
results show the power of using factored and learnable fitness evaluation func-
tions, which allow evolutionary computation methods to be successfully applied
to large distributed systems.
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