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Abstract. A new scheme of detector generation and matching mechanism for
negative selection algorithm is introduced featuring detectors with variable
properties. While detectors can be variable in different ways using this concept,
the paper describes an algorithm when the variable parameter is the size of the
detectors in real-valued space. The algorithm is tested using synthetic and real-
world datasets, including time series data that are transformed into multiple-
dimensional data during the preprocessing phase. Preliminary results
demonstrate that the new approach enhances the negative selection algorithm in
efficiency and reliability without significant increase in complexity.

1 Introduction

Soft computing is an increasingly active research area in computational intelligence.
Artificial Immune Systems are soft computing techniques that are based on metaphor
of the biological immune system. [1][2][3][4] The immune system shows
computational strength from different aspects in problem solving. Most existing AIS
algorithms imitate one of the following mechanisms of the immune system: negative
selection, immune network, or clonal selection. Negative selection-based algorithm
[1][2] has potential applications in various areas, in particular anomaly detection. The
inspiration of negative selection comes from the T cell maturation process in the
immune system: if a T cell in thymus recognizes any self cell, it is eliminated before
deploying for immune functionality. In a similar manner, the negative selection
algorithm generates detector set by eliminating any detector candidate that match
elements from a collection of self samples. These detectors subsequently recognize
non-self data by using the same matching rule. In this way, it is used as an anomaly
detection algorithm that only requires normal data to train [5].

Most works in negative selection used the problem in binary representation [6][7].
There are at least two obvious reasons of this choice: first, binary representation
provides a finite problem space that is easier to analyze; second, binary presentation is
straightforward to use for categorized data. However, many applications are natural to
be described in real-valued space. Furthermore, these problems can hardly be
processed properly using negative selection algorithm in binary representation [8]. On

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 287298, 2004.
© Springer-Verlag Berlin Heidelberg 2004



288 Z.lJiand D. Dasgupta

the other hand, this work and some other works [9]{10] demonstrated that despite the
intrinsic  difficulty of real-valued representation, it can also provide unique
opportunity in dealing with higher dimensionality.

Matching rule is one of the most important components in a negative or positive
pattern detection algorithm [6]{71[8](11][12]. For binary representation, there exist
several matching rules like rcb (r-contiguous bit), 7-chunks, and Hamming distance
[6][8]. For real-valued representation, however, the Euclidean distance is primarily
used [8][9][10][13]. Matching is determined when the distance between a data point
and some detector is within a certain threshold. In some cases, variations of Euclidean
distance are used, for example, a Euclidean distance defined in a lower dimensional
space projected from the original higher dimensional problem space [13].

Independent of the type of matching rule, the detectors usually have some basic
characteristics, e.g., the number of bits, r, in binary representation, or the distance
threshold, A, to decide a matching in real-valued representation, that are constant
through out the entire detector set. However, the detector features can reasonably be
extended to overcome this limitation. The algorithm introduced in this paper
demonstrates that allowing the detectors to have some variable properties will enhance
the performance of negative detectors. We call this idea and the algorithm based on it
as V-detector. In the case of real-valued negative selection algorithm, the detectors are
in fact hyper-sphere-shaped. The threshold used by Euclidean distance matching rule
defines the radius of the detectors. The radius is an obvious choice to make variable
considering that the non-self regions to be covered by detectors are very likely to be in
different scales. The flexibility provided by the variable radius is easy to realize.
However, variable radius is not the only possibility provided by V-detector. Detector
variability can also be achieved by other ways, such as different detector shapes,
variable matching rules, etc.

(a) Constant-sized detectors (b) Variable-sized detectors

Fig. 1. Main concept of Negative Selection and V-detector

Figure 1 illustrates the core idea of variable-sized detectors in 2-dimensional space.
The dark grey area represents the actual self region, which is usually given through the
training data (self samples). The light grey circles are the possible detectors covering
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the non-self region. Figure 1(a) shows the case where the detectors are of constant
size. In this case, a large number of detectors are needed to cover the large area of
non-self space. The well-known issues of “holes™ are illustrated in black. In figure 1
(b), using variable-sized detectors, the larger area of non-self space can be covered by
fewer detectors, and at the same time, smaller detectors can cover the holes. Since the
total number of detectors is controlled by using the large detectors, it becomes more
feasible to use smaller detectors when necessary.

Another advantage of this new method is that estimated coverage, instead of the
number of detectors, can be used as a control parameter. The algorithm can evaluate
the estimated coverage automatically when the detector set is generated. On the other
hand, we need to set the number of detectors in (advance) when constant sized
detectors are used. This will be discussed in more details in the following sections.

2 Algorithm and Analysis

Detector - Set(S,m, rg)
S :set of self samples
m :number of detectors
rg :self radius

1:D« 9

2 :Repeat

3  x ¢« random sample from[1, 0]"

4  Repeat foreverys; in§ = {s;i=12,..}

5 d « Euclidean distance between s; and x
6: ifd<r,goto2

7. DeDu{x}

8:Until| D|=m

9 : return D

Fig. 2. Detector generation algorithm in negative detection using constant-sized detectors

A negative selection algorithm basically consists of two phases. First, the detector set
is generated in the training or generation phase. Then, the new sample is examined
using the detector set during the detection phase. To highlight the feature of V-
detector, let us first describe the real-valued negative detection algorithm using
constant-sized detectors, where candidate detectors are generated randomly. Those
that match any self samples (training data) using Euclidean distance matching rule are
eliminated. The generation phase finishes when a preset number of detectors are
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obtained. The generation phase of this aigorithm is shown in the figure 2. The time
complexity of this algorithm is O(m|S]|), where m is the preset number of detectors and
|S| is the size of training set (self samples). Self radius, in this case is the same as the
detector radius, which represents the allowed variability of the self points [10].

V - Detector - Set(S, Tyax, #55C0)

S :set of self samples

Tiax :maximum number of detector

rg :self radius

¢ -estimated coverage

1: DD
2 :Repeat

10

12
13
14
15
16
17

18:

«0
Te«0
r < inifinite
x < random sample from 1, 0]"
Repeat for every di inD= {di.i =1,2,..}
dg < Euclidean distance between d, and x
ifd as r(di) then, where r(di) is the radius of d
tet+
if t 21/(1-c) then return D
goto4:
Repeat for everys; in S
d « Euclidean distance between s; and x
ifd-rg <rthenr «d-ry:
if r > 1 then D « DU {< x,r >}, where < X, 1 > is a detector
elseT « T+1

if T >1/(1- maximum self coverage)exit

19 :Until| D |= Tyax
20 :return D

Fig. 3. Detector generation algorithm of V-detector
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V-detector algorithm also generates candidate detectors randomly. However, when
we check the matching rule of Euclidean distance, we keep the distance in record and
assign a variable radius based on the minimum distance to each detector that is going
to be retained. The detector’s detector generation phase is described in figure 3.
Comparing with the version of constant-sized detectors, the most important
differences lie in steps 13 through 15. Now that we let each detector has its own radius
in addition to the location, the radius is basically decided by the closest self sample.
Self radius still specifies the variability represented by the training data, but it is not
used as detector radius anymore.

The algorithms of detection phase are similar for constant and variable detectors
except that matching threshold for each variable-sized detector is difference. In the
experiments of this paper, matching is decided by the closest detector.

The control parameters of V-detector are mainly self radius r, and estimated
coverage ¢y Maximum number of detectors, shown as T, in figure 3, is preset to be
the maximum allowable in practice, which does not need much further discussion. Self
radius is an important mechanism to balance between detection rate and false alarm
rate, in the other words, the sensitivity and accuracy of the system.

Estimated coverage is a by-product of variable detectors. If we samplem points in
the considered space and only one point is not covered, the estimated coverage would
be 1-1/m. Therefore, when we randomly try m times without finding an uncovered
point, we can conclude that the estimated coverage is at least o =1-1/m. Thus, the
necessary number of tries to ensure estimated coveragea. is

m=1/(1-0) 1)

Despite the enhancement, complexity of V-detector is not increased comparing to
basic negative selection. The computation of radius has linear complexity to the
number of the training set size. Steps 13 through 15 has complexity O (/S/), where /S/
is the set size of training data, just the same as steps 4 through 6 in figure 2’s basic
negative selection. Furthermore, not only are the complexities of the same order ofn,
but the times to actually compute the distance, which is potentially a costly step, is the
same as well. If the final number of detectors is m, the total complexity if O(m/S)). If
m has the same order of magnitude as the preset number in the algorithm using
constant-sized detectors, the complexity doesn’t change; ifm is reduced significantly,
the complexity is further improved.

Similarly, the complexity of detection algorithms is O(m) although m has different
interpretation in the two methods. The difference in space complexity also only lies in
the possible different m, which can always be limited in V-detector.

The V-detector algorithm normally converges in one of the two ways. Type 1
convergence is when the estimated coverage is reached in step 11 of figure 3. This is
the scenario that V-detector shows more of its strength in controlling detector number.
Type 2 convergence is when the limit of detector number is reached in step 19. Even
in this case, the algorithm still has the potential to cover holes better then basic
algorithm. There is another possibility that the algorithm will halt, which we are not
going to discuss further, If the training data cover almost all space, say 99.99%, the
algorithm terminates as a special case at step 18. It may happen when self-radius is set
to be too big so that the whole space is all “normal”.
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The small “holes” are easier to be covered not by just using smaller detectors,
rather by using the automatic decision of how small the detectors need to be. The total

numbers of detectors, on the other hand, are dealt with by using larger detectors
whenever possible.

3 Experiments and Results
3.1 V-detector’s Basic Property on Synthetic Data

A synthetic 2-dimensional datasets are used to demonstrate the properties of V-
detector algorithm. Figures 4(a) shows a cross-shaped self region over the entire space
(unit square) [0, 1P. The training set is 100 random picked points in the self region
and the test set is 1000 random distributed points over the entire space. The shaded
area in figures 4(b) and 4(c) shows the coverage achieved by detector set generated
using different self radius. Comparing (b) and (c), it is easy to see the effect of self
radius on the results. The smaller self radius would result in high detection rate but
high false alarm rate too, so it is suitable for the scenario when detecting all or most
anomalies is very important. On the other hand, larger self radius would result in low
detection rate and low false alarm rate, thus suitable when we need to try the best to
avoid false alarm.

(a) Actual self space T (b) self dius =0.05 (c) self radius = 0.1

Fig. 4. Cross-shaped self space
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Figure 5 shows the complete trend of self radius’ affect on the results for self radius
from 0.01 up to 0.2. The results using two different values of estimated coverage, 99%
and 99.99%, are presented together to show that parameter’s influence. All the results

shown in this figure are average of 100 repeated experiments. Detection rate and false
alarm rate are defined as

FA = FP/(FP+TN), 3

respectively, where TP, FN, FP, TN are the counts of true positive, false negative,
false positive, and true negative. As shown in these results, high detection rate and low
false alarm rate are the two goals between which we need to balance according to
specific application. While V-detector algorithm uses much fewer detectors for both
cases, more detectors are needed to obtain the estimated coverage when the self radius
is small. The shape of self region also have direct effect on the detector number.

3.2 Comparison with Similar Methods on Real-World Data

To study the property and possible advantages of V-detector, experiments were
also carried out to compare with the results obtained using other anomaly detection
methods that only use normal data to train as V-detector. Two such AIS methods were
reported in [13], namely MILA (Multilevel /mmune Learning Algorithm) and NSA
(NVegative Selection Algorithm, single level to compare with MILA). MILA is a
multilevel model of combined negative detection and positive detection [13][14]. It
provides a very flexible yet complex mechanism for anomaly detection. Single Level
NSA to be compared is to some extent similar to the negative selection using constant-
sized detectors described earlier in this paper. However, both MILA and Single Level
NSA use a subset of all the dimensions of the problem space to calculate the
Euclidean distance for the matching rule. While MILA’s model involves multiple
ways to choose the subset, Single Level NSA can be seen a extended version of rcb ¢-
contiguous bits) — » contiguous dimensions out of all the dimensions [13][14].
Nevertheless, the detectors are constant sized both in MILA and in Single Level NSA.

Table 1 shows the comparison using the famous benchmark Fisher’s Iris Data (self
raduis 0.1, estimated coverage 99%). The results shown are the summary of 100
repeated tests for each method and parameter setting. One of the three types of iris is
considered as normal data, while the other two are considered abnormal. The normal
data are either completely or partially used to train the system. Although the partial
training set may seem small in this case, it is necessary to demonstrate the system’s
capability to recognize unknown normal data. As we have seen, self radius is an
important control parameter of V-detector to balance its performance. The results in
this table are obtained using self radiusr, = 0.1 considering that the Single Level NSA
and MILA results were from threshold 0.1. However, we have to note that the
threshold used in Single Level NSA or MILA is not strictly comparable to the self
radius in V-detector. In the results cited here, MILA or Single Level NSA uses a
sliding window of size 2, so the distance is defined in 2-dimensional space, not the
original 4-dimensional space. The maximum detector set size is set to be 1000 for the



294  Z.lJiand D. Dasgupta

reason of comparison too. V-detector has comparable detection rate but lower false
alarm rate in most cases, especially when fewer training data were used. V-detector’s
another obvious advantage is the potentially smaller number of detectors. Table 1 also
shows that V-detector can obtain similar or better results using much smaller detector
number in all cases.

The main control parameters, self radius and estimated coverage, can be used to
balance between high detection rate and low false alarm rate. In the experiments we
Just described, false alarm did not really become a problem when all available training
data are used, so the issue is more readily illustrated when only partial data are used to
train.

Table 1. Comparison between V-detector and other methods using Fisher’s Iris Data

Training | Algorithm Detection Rate | False Alarm rate Number of
Data Detectors
Mean SD Mean SD Mean SD
Setosa MILA [95.16 179 [0 0 1000° [ 0
100% NSA 100 0 0 0 1000 [ 0
V-detector |99.98 014 |0 0 20 7.87
Setosa MILA |94.02 244 | 8.42 1.56 | 1000 | 0
50% NSA 100 0 11.18 217 [ 1000 [0
V-detector |99.97 0.17 [132 095 | 1644 | 5.63
Versicolor MILA 84.37 2.79 0 0 1000* 0
NSA  |95.67 069 |0 0 1000 | O
100% I~ getector (8595 | 244 |0 0 153.04 | 388
Versicolofn MILA | 84.46 270 | 19.60 2.00 | 1000° | 0
50% NSA 9 045 [222 125 [ 1000 |0
V-detector |88.3 277 | 842 2.12 | 110.08 | 22.61
Virginica| MILA |75.75 201 [0 0 1000° | 0
100% NSA  [9251 074 |0 0 1000 | 0
V-detector |81.87 2.78 0 0 218.36 | 66.11
Virginica | MILA |88.96 204 |[2498 256 | 1000° | 0
50% NSA 97.18 071 [33.26 096 | 1000 | 0
V-detector |93.58 2.33 13.18 3.24 | 108.12 | 30.74

* MILA has actually 1000 T-cell detectors and 1000 groups of B-cell detector.

Similar comparison was done for a biomedical dataset, which is blood
measurement of a group of 209 patients [15]. Each patient has four different types of
blood measurements. These blood measures were used to screen a rare genetic
disorder. 134 of the patients are normal; 75 patients are carrier of the disease, the
“anomalies” to be detected. Table 2 compares the results from MILA and Single
Level NSA, and the results from V-detector using self radius 0.1 and self radius 0.05.
When all the available normal data were used to train the system, the false alarm
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didn’t occur. However, the detection rate is lower than the cases trained by only part
of the normal data. Considering the balance between detection rate and false alarm,
and the much less number of detectors used, V-detector’s results are comparable.
Figure 6 shows the balance over a whole range of self radius. The results by Single
Level NSA and MILA are plotted as individual points at a comparable self radius on
the graph. V-detector’s results appears better if we consider both detection
performance and false alarm issue. It further confirms V-detector’s advantage in
balancing the goals.

Table 2. Comparison between V-detector and other methods using biomedical data

Training | Algorithm Detection Rate False Alarm rate Number of
Data Detectors
Mean SD Mean SD Mean | SD
100% MILA | 59.07 385 |0 0 1000° | 0
training NSA 69.36 267 |0 0 1000 [0
r=0.1 30.61 304 |0 0 2152 [ 729
r=0.05 | 40.51 392 |0 0 1484 | 5.14
50% MILA | 61.61 3.82 | 243 0.43 1000° | 0
training NSA 72.29 2.63 | 294 0.21 1000 | 0
r=0.1 | 3292 235 | 061 0.31 1551 | 4.85
=0.05 | 42.89 3.83 1.07 0.49 1228 | 4
25% MILA | 8047 | 2.80 14.93 2.08 1000° | 0
training NSA 86.96 2.72 19.50 2.05 1000 [0
=0.1 43.68 | 4.25 1.24 0.5 1224 | 3.97
=0.05 | 57.97 586 | 2.63 0.77 894 | 257
100 60 1200 rmeemeseeeese
g .
f ol o= frw
K i it
oo e
0 P 0 200

-@~-MILA FA
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(a) Detection rate and false alarm

Fig. 6. Balance between detection rate and false alarm rate (biomedical data)
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3.3 Application on Time Series Data

V-detector algorithm is used to detect ball bearing fault. The raw data are the time
series of measured acceleration of ball bearings [16]. As preprocessing, the time series
is first transformed into multiple-dimensional data using two common methods of
signal analysis. The first method is basically DFF (Discrete Fourier Transform). It
takes overlapped segments of 64 points from the raw time series. The step between the
segments is chosen to be 8. Fast Fourier Transform (FFT) is performed with Hanning
windowing to each segment [17][18]. Half of the Fourier transform coefficients are
taken as data points to be detected. The data is thus 32-dimensional. The second
method uses statistical moments to represent the property of each segment of 128
points [19]. The moments of first (mean), second (variance), third, four, and fifth
order are used, so the resulted data points become 5-dimensional.

Table 3. Detection Results on Fast Fourier Transform of Different Ball Bearings

Ball bearing conditions Total number of | Number of detected | Percentage

data points anomalies detected
New bearing (normal) 2739 0 0%
Outer race completely 2241 2182 97.37%
broken
Broken cage with one 2988 577 19.31%
loose element
Damage cage, four loose 2988 337 11.28%
element ;
No evident damage; 2988 209 6.99%
badly worn
Table 4. Detection Results on Statistical Moments of Different Ball Bearings
Ball bearing conditions Total number of |Number of detected | Percentage
data points anomalies detected
New bearing (normal) 2651 0 0%
Outer race completely 2169 1674 77.18%
broken
Broken cage with one 2892 14 0.48%
loose element :
Damage cage, four loose 2892 0 0%
element
No evident damage; 2892 0 0%
badly worn

Table 3 shows the results using Fourier transform. Table 4 is the corresponding
results using statistical moments. Throughout all the different conditions of ball
bearing, Fourier transform seems to be more sensitive to detect any anomaly than
statistical moments. Both methods detect better when the damage is more severe.
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Fig. 7. Summary of Detection Results on Ball Bearing Data

Figure 7 summarizes the performance in terms of detection rate and false alarm.
Detection rates are evaluated on two different assumptions: first, only the worst
damage (broken race) is considered as fault to be detected; second, all the three types
of damages or breakings are regarded as real fault. For complete new ball bearing,
there is no false alarm. Assuming the last type of condition (no evident damage) does
not count as fault to be detected, false alarm rate is also plotted in figure 7.

4 Conclusion

The paper proposed an extension of real-valued negative selection algorithm with a
variable coverage detector generation scheme. Experimental results demonstrated that
V-detector scheme is more effective in using smaller number of detectors because of
their variable sizes. Moreover, it provides a more concise representation of the
anomaly detectors derived from the normal data. The detector set generated by V-
detector is more reliable because the estimated coverage instead of the arbitrary
number of detectors is obtained by the algorithm at the end of the run.
The following are some advantages of V-detector algorithm:

e Time to generate detectors and to examine new samples is saved by using
smaller number of detectors. It also requires less space to store them.

¢ Holes can be better covered. The smaller detectors are more acceptable
because fewer detectors are used to cover the large non-self region.

e The coverage estimate is very useful to provide prediction of the
algorithmic performance even if the detection rate (for some specific
cases) is not very high due to incomplete or noisy data.

The influence of estimated coverage as a control parameter needs further study,
including more experiments and formal analysis. The implication of self radius, or
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how to interpret each self sample (training data), is also an important topic to be
explored. Future works along the line of variable detectors will be variable shape of
detectors, variable number of dimensions, etc. It also has potential use for the
problems that have very high dimensions but where only a few dimensions affect the
detection process. Limited number of detector dimensions has additional benefit of
extracting knowledge or rules in a more comprehensible form.

Acknowledgement: This work was supported in part by NIH Cancer Center Support Core
Grant CA-21765 and the American Lebanese Syrian Associated Charities (ALSAC).
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