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Abstract. The aim of this paper is to clearly demonstrate the potential ability of
a similarity-based mating scheme to dynamically control the balance between
the diversity of solutions and the convergence to the Pareto front in
evolutionary multiobjective optimization. The similarity-based mating scheme
chooses two parents in the following manner. For choosing one parent (say
Parent A), first a pre-specified number of candidates (say α  candidates) are
selected by iterating the standard fitness-based binary tournament selection.
Then the average solution of those candidates is calculated in the objective
space. The most similar or dissimilar candidate to the average solution is chosen
as Parent A. When we want to increase the diversity of solutions, the selection
probability of Parent A is biased toward extreme solutions by choosing the most
dissimilar candidate. The strength of this diversity-preserving effort is adjusted
by the parameter α . We can also bias the selection probability toward center
solutions by choosing the most similar candidate when we want to decrease the
diversity. The selection probability of the other parent (i.e., the mate of Parent
A) is biased toward similar solutions to Parent A for increasing the convergence
speed to the Pareto front. This is implemented by choosing the most similar one
to Parent A among a pre-specified number of candidates (say β  candidates).
The strength of this convergence speed-up effort is adjusted by the parameter
β . When we want to increase the diversity of solutions, the most dissimilar
candidate to Parent A is chosen as its mate. Our idea is to dynamically control
the diversity-convergence balance by changing the values of two control
parameters α  and β  during the execution of evolutionary multiobjective
optimization algorithms. We examine the effectiveness of our idea through
computational experiments on multiobjective knapsack problems.

1  Introduction

The goal of evolutionary multiobjective optimization (EMO) is to efficiently find
Pareto-optimal (or near Pareto-optimal) solutions of multiobjective optimization
problems as many as possible. There are two sub-goals for achieving this goal:
maintaining the diversity of solutions in each population and increasing the
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convergence speed of solutions to the Pareto front. In this paper, we propose an idea
of using a similarity-based mating scheme for controlling the balance between these
two sub-goals during the execution of EMO algorithms.

EMO algorithms have been applied to various problems for efficiently finding
their Pareto-optimal or near Pareto-optimal solutions. Recent EMO algorithms usually
share some common ideas such as elitism, fitness sharing and Pareto ranking for
improving both the diversity of solutions and the convergence speed to the Pareto
front (e.g., see Coello et al. [1] and Deb [2]). In some studies, local search was
combined with EMO algorithms for further improving the convergence speed to the
Pareto front [10], [13], [14]. While mating restriction has been often discussed in the
literature, its effect has not been clearly demonstrated. As a result, it is not used in
many EMO algorithms as pointed out in some reviews on EMO algorithms [5], [20],
[22]. Mating restriction was suggested by Goldberg [6] and used in EMO algorithms
by Hajela & Lin [7] and Fonseca & Fleming [4]. The basic idea of mating restriction
is to ban the crossover of dissimilar parents from which good offspring are not likely
to be generated. The necessity of mating restriction in EMO algorithms was stressed
in Jaszkiewicz [14]. On the other hand, Zitzler & Thiele [21] reported that no
improvement was achieved by mating restriction in their computational experiments.
Moreover, there was also an argument for the selection of dissimilar parents. Horn et
al. [8] argued that information from very different types of tradeoffs could be
combined to yield other kinds of good tradeoffs. Schaffer [19] examined the selection
of dissimilar parents but observed no improvement.

A similarity-based mating scheme was proposed in Ishibuchi & Shibata [11] for
examining positive and negative effects of mating restriction on the search ability of
EMO algorithms. In their mating scheme, one parent (say Parent A) was chosen by
the standard fitness-based binary tournament scheme while its mate (say Parent B)
was chosen among a pre-specified number of candidates (say β  candidates) based on
their similarity or dissimilarity to Parent A. Those candidates were selected by
iterating the standard fitness-based binary tournament selection β  times. Almost the
same idea was independently proposed in Huang [9] where Parent B was chosen from
two candidates (i.e., the value of β  was fixed as =β 2). Ishibuchi & Shibata [12]
extended their similarity-based mating scheme as shown in Fig. 1. That is, first a pre-
specified number of candidates (say α  candidates) were selected by iterating the
standard fitness-based binary tournament selection α  times. Next the average
solution of those candidates was calculated in the objective space. The most dissimilar
candidate to the average solution was chosen as Parent A. On the other hand, the most
similar one to Parent A among β  candidates was chosen as Parent B.

In this paper, we further extend this mating scheme in the following manner:
(1) Selection of Parent A: We examine the choice of the most similar candidate to the

average solution as well as the choice of the most dissimilar one.
(2) Selection of Parent B: We examine the choice of the most dissimilar candidate to

Parent A as well as the choice of the most similar one.
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(3) Parameters α  and β : We do not assume that these parameters are fixed during
the execution of EMO algorithms. That is, they are handled as control parameters.

Selection of the most 
similar solution to 

parent A

Parent B

1 2 β

Parent A

Selection of the most
extreme solution

α

Parent A

1 2

Crossover

Selection of the most 
similar solution to 

parent A

Parent B

1 2 β1 2 β

Parent A

Selection of the most
extreme solution

α

Parent A

1 2

Crossover

Fig. 1. Mating scheme in Ishibuchi & Shibata [12].

This paper is organized as follows. In Section 2, we describe the motivation
behind the above-mentioned extensions of the mating scheme. The extended mating
scheme is described in Section 3. In Section 4, we perform computational
experiments on multiobjective knapsack problems by combining the extended mating
scheme with the NSGA-II algorithm [3]. Finally we conclude this paper in Section 5.

2  Motivation

In the implementation of EMO algorithms, it is very important to find an appropriate
balance between the diversity of solutions and the convergence to the Pareto front.
Let us consider a two-objective maximization problem in Fig. 2. For increasing the
diversity, the current population should be expanded in the direction of the two
arrows labeled as D in Fig. 2 (a). On the other hand, the current population should be
driven in the direction of the other arrow C in Fig. 2 (a) for the convergence to the
Pareto front. When the diversity-convergence balance is appropriate, good solution
sets may be obtained as shown in Fig. 2 (b). It is, however, not easy to find an
appropriate balance because each problem and each EMO algorithm may require its
own specification. Moreover, different specifications may be required in different
stages of evolution. For example, it may be a good idea to emphasize the diversity in
the early state of evolution and the convergence in the later stage of evolution.

This paper is motivated by Knowles & Corne [16], [17] where they proposed an
idea of designing a memetic EMO algorithm based on the landscape analysis of
multiobjective optimization problems. For example, if the search along the Pareto
front is much easier than the convergence to the Pareto front, it seems to be a good
strategy to first drive the population to the Pareto front as close as possible (see Fig. 3
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(a)). On the other hand, if the search along the Pareto front is much more difficult
than the convergence to the Pareto front, it seems to be a good strategy to first
increase the diversity of solutions as large as possible (see Fig. 3 (b)). These
discussions suggest the necessity to dynamically control the diversity-convergence
balance during the execution of EMO algorithms. Thus we extend the similarity-
based mating scheme in Fig. 1 in the above-mentioned manner in Section 1, which is
explained in the next section. The aim of this paper is to clearly demonstrate the
potential ability of the similarity-based mating scheme to dynamically control the
diversity-convergence balance during the execution of EMO algorithms.

Maximization of )(1 xfMaximization of )(1 xf

M
ax

im
iz

at
io

n 
of

)
( 2
x

f
M

ax
im

iz
at

io
n 

of
)

( 2
x

f
)

( 2
x

f

C

D

D

Current Population

Pareto Front

         Maximization of )(1 xfMaximization of )(1 xf

M
ax

im
iz

at
io

n 
of

)
( 2
x

f
M

ax
im

iz
at

io
n 

of
)

( 2
x

f
)

( 2
x

f

Pareto Front

         (a) Current population and Pareto front.                             (b) Desired evolution.

Fig. 2. Search directions for increasing the diversity of solutions (i.e., Arrows D) and for
improving the convergence speed to the Pareto front (i.e., Arrow C).
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 (a) First-convergence-then-diversity strategy.        (b) First-diversity-then-convergence

strategy.

Fig. 3. Two search strategies. Emphasis is first placed on the convergence then on the diversity
in (a) while emphasis is first placed on the diversity then on the convergence in (b).
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3  Similarity-Based Mating Scheme

We explain the extended similarity-based mating scheme using the following n-
objective optimization problem:

Optimize ))(...,),(),(()( 21 xxxxf nfff=  subject to Xx ∈ ,  (1)

where )(xf  is the objective vector, )(xif  is the i-th objective to be minimized or
maximized, x is the decision vector, and X is the feasible region in the decision space.
The distance between two solutions x and y is measured in the objective space by the
Euclidean distance between )(xf  and )(yf .

As shown in the left-hand side of Fig. 1, the standard fitness-based binary
tournament selection with replacement is iterated α  times for choosing α  candidates
(say 1x , 2x , ..., αx ) among which the first parent (i.e., Parent A in Fig. 1) is
selected. Then the average solution of the α  candidates is calculated in the objective
space as

))(...,),(),(()( 21 xxxxf nfff= ,  (2)

where

∑
=

=
α

α 1
)(

1
)(

j
jii ff xx   for  ni ,...,2,1= .  (3)

Finally the most similar or dissimilar candidate to the average solution is selected as
Parent A. The similarity is measured by the Euclidean distance to the average solution

)(xf  in the objective space. When the value of α  is specified as =α 1, the choice of
the first parent is the same as the standard fitness-based binary tournament selection.
The case of =α 2 is also actually the same as the case of =α 1 because two
candidates always have the same distance from their average solution. In this case,
one candidate is randomly chosen (i.e., random tiebreak). The selection probability of
the first parent is biased toward extreme solutions or center solutions only when

≥α 3.
On the other hand, the standard fitness-based binary tournament selection with

replacement is iterated β  times for choosing β  candidates of the second parent (i.e.,
Parent B) as shown in the right-hand side of Fig. 1. Then the most similar or
dissimilar candidate to the first parent (i.e., Parent A in Fig. 1) is chosen as Parent B.
In this manner, similar or dissimilar parents are recombined in our mating scheme.

As shown in Table 1, our mating scheme is divided into nine (i.e., 33× )
operation modes depending on the strategies to choose Parent A and Parent B. The
first operation mode with 1=α  and 1=β  is the same as the standard fitness-based
binary tournament selection. The first three operation modes were examined in [9]
and [11] while the eighth operation mode was recommended in [12]. In those studies,
the values of α  and β  were fixed throughout the execution of EMO algorithms. In
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this paper, we examine all the nine operation modes where the values of α  and β
are not fixed but variable. Moreover our mating scheme can move from one operation
mode to another during the execution of EMO algorithms.

Table 1. Nine operation modes of our mating scheme.

Operation
mode

Selection of Parent A Selection of Parent B

1 No bias: 1=α No bias: 1=β
2 No bias: 1=α Similar solution ( 2≥β )
3 No bias: 1=α Dissimilar solution ( 2≥β )
4 Center solution: Similar ( 3≥α ) No bias: 1=β
5 Center solution: Similar ( 3≥α ) Similar solution ( 2≥β )
6 Center solution: Similar ( 3≥α ) Dissimilar solution ( 2≥β )
7 Extreme solution: Dissimilar

( 3≥α )
No bias: 1=β

8 Extreme solution: Dissimilar
( 3≥α )

Similar solution ( 2≥β )

9 Extreme solution: Dissimilar
( 3≥α )

Dissimilar solution ( 2≥β )

4  Computational Experiments

4.1  Conditions of Computational Experiments

We combined our mating scheme with the NSGA-II [3], which was used for choosing
candidate parents in our mating scheme. First we examined 4977 =×  combinations
of constant values of α  and β : =α 1, =α 3, 5, 9 (similar), =α 3, 5, 9 (dissimilar)
and =β 1, =β 3, 5, 9 (similar), =β 3, 5, 9 (dissimilar). Then we examined the effect
of changing the values of α  and β  during the execution of the NSGA-II.

As test problems, we used four knapsack problems in Zitzler & Thiele [22]: 2-250
(i.e., two-objective 250-item), 2-500, 3-250 and 3-500 problems. Each solution for an
m-item problem was coded as a binary string of the length m. Each string was
evaluated in the same manner as in Zitzler & Thiele [22]. The NSGA-II algorithm
with our mating scheme was applied to the four knapsack problems under the
following parameter specifications: Crossover probability: 0.8, mutation probability:

m/1 , population size: 200, and stopping condition: 2000 generations.
Various performance measures have been proposed for evaluating a set of non-

dominated solutions in the literature. As explained in [15], [18], [23], no performance
measure can simultaneously evaluate various aspects of a solution set. In this paper,
we use three performance measures: the generational distance (GD), the RD1
measure, and a spread measure. The GD measure is the average distance from each
solution in the solution set to its nearest Pareto-optimal solution. This measure has
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been often used for evaluating the convergence to the Pareto front. On the other hand,
the RD1  measure is the average distance from each Pareto-optimal solution to its
nearest solution in the solution set. This measure has been used in some studies for
simultaneously evaluating both the convergence and the diversity. As a spread
measure of the solution set S, we use the sum of the width for each objective:

∑
= ∈∈

−=
n

i
i

S
i

S
ffSpread

1
)}]({min)}({max[ xx

xx
,  (4)

where n is the number of objectives.
The GD and RD1  measures need all Pareto-optimal solutions of each test

problem. For the 2-250 and 2-500 test problems, the Pareto-optimal solutions are
available from the homepage of the first author of [22]. For the 3-250 and 3-500 test
problems, we found near Pareto-optimal solutions using the SPEA [22], the NSGA-II
[3] and a single objective genetic algorithm using much longer CPU time and larger
memory storage (e.g., 30000 generations with the population size 400 for the NSGA-
II) than the other computational experiments.

4.2   Experimental Results with Constant Parameters

The NSGA-II algorithm with our mating scheme was applied to the four test problems
using the 77 ×  combinations of α  and β . For each combination, we performed ten
runs from different initial populations for each test problem.

Average results over ten runs for the 2-500 and 3-500 test problems are
summarized in Figs. 4-6 where smaller values (i.e., shorter bars) of the GD and RD1
measures mean better results in Fig. 4 and Fig. 5 while larger values (i.e., longer bars)
of the spread measure mean better results in Fig. 6. In each figure, the original
NSGA-II algorithm corresponds to the bar at the center with 1=α  and =β 1, which
is depicted by a white bar. The effect of the selection of the first parent (i.e., the
specification of α ) is clear in Fig. 6. That is, the bias toward extreme solutions (i.e.,
the use of a large value of α  (dissimilar)) increased the spread of solution sets. On
the other hand, the recombination of similar parents (i.e., the use of a large value of
β  (similar)) improved the convergence to the Pareto front as shown in Fig. 4 with
some exceptions in Fig. 4 (a). In the case of α  (similar) and β  (similar) in Fig. 4 (a),
too small diversity of solutions had a bad effect on the evolution of solutions (see Fig.
6 (a)). Experimental results on the 2-250 and 3-250 test problems were very similar to
those on the 2-500 and 3-500 test problems, respectively.
For visually demonstrating the effect of our mating scheme on the evolution of
solutions, we show some intermediate and final solution sets in Fig. 7 where each
solution set is a result of a single run on the 2-500 test problem using each
combination of α  and β . In Fig. 7, we also depict the true Pareto front for
comparison. From Fig. 7, we can see that the search ability of the original NSGA-II
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algorithm in Fig. 7 (a) was significantly improved by our mating scheme in terms of
the diversity of solutions. More specifically, we can see that the recombination of
dissimilar parents (i.e., the use of =β 9 (dissimilar)) increased the diversity of
solutions in Fig. 7 (b) if compared with Fig. 7 (a) obtained by the original NSGA-II
algorithm. The diversity of solutions was further increased in Fig. 7 (d) by the choice
of extreme solutions (i.e., the use of =α 9 (dissimilar)). It should be noted that the
convergence was not seriously deteriorated in Fig. 7 (d). This is because the
recombination of similar solutions (i.e., the use of =β 9 (similar)) improved the
convergence as shown in Fig. 4 when the selection probability of the first parent was
biased toward extreme solutions (i.e., when α  was specified as 3≥α (dissimilar)).
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Fig. 4. Average values of the GD measure.
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Fig. 5. Average values of the RD1  measure.
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Fig. 6. Average values of the spread measure.
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      (a) Original NSGA-II: =α 1 and =β 1.  (b) =α 1 and =β 9 (dissimilar parents).
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        (c) =α 1 and =β 9 (similar parents).    (d) =α 9 (dissimilar) and =β 9 (similar).

Fig. 7. Solution set at each generation in a single run with each combination of α  and β .
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4.3  Experimental Results with Variable Parameters

We also performed the same computational experiments as in the previous subsection
using variable parameters. More specifically, we changed the values of α  and β
during the execution of the NSGA-II algorithm with our mating scheme. In this
subsection, we only report some illustrative cases.

In one case, the value of α  was changed from =α 1 to =α 9 (dissimilar) after the
1000th generation while the value of β  was fixed as 9=β  (similar). This change of
α  is for driving the population to the Pareto front in the first 1000 generations and
for increasing the diversity in the last 1000 generations. Using this change of α , we
intended to implement the first-convergence-then-diversity strategy in Fig. 3 (a).
Experimental results are shown in Fig. 8 (a). From this figure, we can see that our
intention was successfully implemented. That is, the diversity was increased in the
last 1000 generations while the population with small diversity was driven to the
Pareto front in the first 1000 generations. From the comparison between Fig. 7 (c) and
Fig. 8 (a), we can observe the effect of changing the value of α . It should be noted
that the first 1000 generations in Fig. 8 (a) are the same as Fig. 7 (c).

In another case, the value of α  was changed from =α 9 (dissimilar) to 1 after the
1000th generation while the value of β  was fixed as 9=β  (similar). This change of
α  is for increasing the diversity in the first 1000 generations and for driving the
population to the Pareto front in the last 1000 generations. Using this change of α ,
we intended to implement the first-diversity-then-convergence strategy in Fig. 3 (b).
Experimental results are shown in Fig. 8 (b). From the comparison between Fig. 7 (d)
and Fig. 8 (b), we can see that the convergence around the center of the Pareto front
was improved by the change of the value of α  from =α 9 (dissimilar) to 1. That is,
our intention to implement the first-diversity-then-convergence strategy was
successfully achieved. It should be noted that the first 1000 generations in Fig. 8 (b)
are the same as Fig. 7 (d).
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     (a) α : 1 to 9 (dissimilar), =β 9 (similar).          (b) α : 9 (dissimilar) to 1, =β 9 (similar).

Fig. 8. Experimental results using variable parameters.
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        (a) Average values of the GD measure.      (b) Average values of the spread measure.

Fig. 9. Average results over ten runs for each specification of α  and β  ( =β 9 (similar)).

We further examined the above-mentioned four cases of α  and β : those in Fig.
7 (c), (d) and Fig. 8 (a), (b). Using each specification, we applied the NSGA-II with
our mating scheme to the 2-500 test problem ten times. Then we calculated the
average values of the GD and spread measures over ten runs. Experimental results are
shown in Fig. 9. From the results depicted by white squares in Fig. 9 (a), we can see
that the change of α  from 9=α  (dissimilar) to 1=α  improved the convergence,
which corresponds to the improvement from Fig. 7 (d) to Fig. 8 (b). This
improvement was achieved at the cost of the decrease in the diversity as shown in Fig.
9 (b). We can also see from the results depicted by closed circles in Fig. 9 (b) that the
change of α  from 1=α  to 9=α  (dissimilar) improved the diversity.

5  Concluding Remarks

We proposed an idea of dynamically controlling the balance between the diversity of
solutions and the convergence to the Pareto front using a similarity-based mating
scheme. Through computational experiments on multiobjective knapsack problems,
we demonstrated that our mating scheme has the potential ability to dynamically
control the diversity-convergence balance. We also visually demonstrated that the
performance of the NSGA-II algorithm was improved in terms of the diversity of
solutions. Our mating scheme has two parameters α  and β , which are the number of
candidates from which two parents are selected. Since the interpretation of these
parameters is very easy, we can intuitively control the values of these parameters.

As we described using several figures, different specifications of the diversity-
convergence balance may be required in different stages of generation for each
multiobjective optimization problem. Thus an automated adaptation method of α  and
β  may be required in our mating scheme. This is left for future research.
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