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Abstract. This paper analyzes the relative advantages between
crossover and mutation on a class of deterministic and stochastic ad-
ditively separable problems. This study assumes that the recombination
and mutation operators have the knowledge of the building blocks (BBs)
and effectively exchange or search among competing BBs. Facetwise
models of convergence time and population sizing have been used to
determine the scalability of each algorithm. The analysis shows that for
additively separable deterministic problems, the BB-wise mutation is
more efficient than crossover, while the crossover outperforms the muta-
tion on additively separable problems perturbed with additive Gaussian
noise. The results show that the speed-up of using BB-wise mutation
on deterministic problems is O(

√
k log m), where k is the BB size, and

m is the number of BBs. Likewise, the speed-up of using crossover on
stochastic problems with fixed noise variance is O(m

√
k/ log m).

1 Introduction

Great debate between crossover and mutation has consumed much ink and many
trees over the years. When mutation works it is lightening quick and uses small or
non-extent populations. Crossover when it works, seems to be able to tackle more
complex problems, but getting the population size and other parameters set is a
challenge. Comparisons between the two are usually written by a researcher with
an axe to grind. Comparisons are usually empirical, the basis for comparison is
implicitly or explicitly unfair, and theory is non-existent. Wouldn’t it be nice to
compare our two favorite genetic operators on a fair basis in an interesting class
of problems and let them slug it out head to head.

That’s what we do here. Assuming that both the recombination and muta-
tion operators possess linkage (or neighborhood) knowledge, we pit them against
each other for solving boundedly difficult additively separable problems with
and without the presence of additive exogenous noise. We use a recombination
operator that exchanges building blocks (BBs) without disrupting them and a
mutation operator that performs local search among competing building-block
neighborhoods. The motivation for this study also comes from recent local-search
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literature, where authors have highlighted the importance of using a good neigh-
borhood operator [1,2]. However, a systematic method of designing a good neigh-
borhood operator for a class of search problems is still an open question. We in-
vestigate whether using a neighborhood operator that searches among competing
BBs of a problem would be advantageous and if so under what circumstances.

This paper is organized as follows. The next section gives a brief review of
related literature. We provide an outline of the crossover-based and mutation-
based genetic algorithms (GAs) in Section 3. Facetwise models are developed to
determine the scalability of the crossover and the BB-wise mutation-based GAs
for deterministic fitness functions in Section 4 and for noisy fitness functions in
Section 5. Finally, we discuss future research directions followed by conclusions.

2 Literature Review

Over the last few decades many researchers have empirically and theoretically
studied where GAs excel. An exhaustive literature review is out of the scope of
this paper, and therefore we present a brief review of related theoretical studies.

Several authors have analyzed the scalability of a mutation based hillclimber
and compared it to scalability of different forms of genetic algorithms, such as
breeder genetic algorithm [3,4], an ideal genetic algorithm [5], and a genetic al-
gorithm with culling [6]. Spears [7] compared uniform crossover and bit-wise
mutation in terms of schemata disruption and construction probabilities. He
suggested that crossover had higher probability of maintaining and creating
higher-order schemata than mutation. Goldberg [8] gave a theoretical analy-
sis of deciding between a single run with a large population GA and multiple
runs with several small population GAs, under the constraint of fixed computa-
tional cost. He showed that for uniformly-scaled problems a single run of large
population GA was advantageous, while for exponentially-scaled problems small
population GAs with multiple restarts were better. Srivastava and Goldberg [9,
10] empirically verified and analytically enhanced the time-continuation theory
put forth by Goldberg [8]. Recently, Cantú-Paz and Goldberg [11] investigated
scenarios under which multiple runs of a GA are better than a single GA run.
For an exhaustive review of studies on the advantages/disadvantages of multiple
populations both under serial and parallel GAs over a single large-population
GA, the reader is referred elsewhere [10,12,13,14] and to the references therein.

Many of the related studies [3,4,5,6,7,8,9,10,11] assumed fixed genetic oper-
ators, with no knowledge of building-block structure. Furthermore, some of the
aforementioned studies also considered problems where building-block identifi-
cation and mixing are not critical for obtaining the optimal solution. In this
paper, we assume that the recombination and mutation operators have linkage
(or neighborhood) knowledge and consider test problems where building-block
identification and exchange are critical to GA success. While the linkage in-
formation is usually unknown for a given search problem, a variety of linkage
identification methods can be used to design the operators (see Goldberg [15],
Sastry and Goldberg [16], and references therein).
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3 Preliminaries

The objective of this paper is to predict the relative computational costs of a
crossover and an ideal-mutation based algorithm for additively separable prob-
lems with and without additive Gaussian noise. Before developing models for
estimating the computational costs, we briefly describe the algorithms and the
assumptions used in the paper.

3.1 Selectorecombinative Genetic Algorithms

We consider a generationwise selectorecombinative GA with non-overlapping
populations of fixed size [17,18]. We apply crossover with a probability of 1.0
and do not use any mutation. We assume binary strings of fixed length as the
chromosomes. To ease the analytical burden, the selection mechanism assumed
throughout the analysis is binary tournament selection [19]. However, the results
can be extended to other tournament sizes and other selection methods in a
straightforward manner. The recombination method used in the analysis is a
uniform building-block-wise crossover [20]. In uniform BB-wise crossover, two
parents are randomly selected from the mating pool and their building blocks
in each partition are exchanged with a probability of 0.5. Therefore, none of
the building blocks are disrupted during a recombination event. The offspring
created through crossover entirely replace the parental individuals.

3.2 Building-Block-Wise Mutation Algorithm (BBMA)

In this paper, we consider an enumerative BB-wise mutation operator, in which
we start with a random individual and evaluate all possible schemas in a given
partition. That is, for a building-block of size k, we evaluate all 2k individuals.
The best out of 2k individuals is chosen as a candidate for mutating BBs of
other partitions. In other words, the BBs in different partitions are mutated in
a sequential manner. For a problem with m BBs of size k each, the BBMA can
be described as follows:

1. Start with a random individual and evaluate it.
2. Consider the first non-mutated BB. Here the BB order is chosen arbitrarily

from left-to-right, however, different schemes can be—or may required to
be—chosen to decide the order of BBs.

3. Create 2k − 1 unique individuals with all possible schemata in the chosen
BB partition. Note that the schemata in other partitions are the same as the
original individual (from step 2).

4. Evaluate all 2k − 1 individuals and retain the best for mutation of BBs in
other partitions.

5. Repeat steps 2–4 till BBs of all the partitions have been mutated.

We use an enumerative BB-wise mutation for simplifying the analysis. A greedy
BB-wise method can improve the performance of the mutation-based algorithm.



Let’s Get Ready to Rumble: Crossover Versus Mutation Head to Head 129

A straightforward Markov process analysis—along the lines of [3,4]—of a greedy
BB-wise mutation algorithm indeed shows that the greedy method is on an av-
erage better than the enumerative one. However, the analysis also shows that
differences between the greedy and enumerative BB-wise mutation approaches
are little, especially for moderate-to-large problems. Moreover, the computa-
tional costs of an enumerative BB-wise mutation bounds the costs of a greedy
BB-wise mutation.

4 Crossover vs. Mutation: Deterministic Fitness
Functions

In this section, we analyze the relative computational costs of using a selec-
torecombinative GA or a BB-wise mutation algorithm for successfully solving
deterministic problems of bounded difficulty. The objective of the analysis is
to answer whether a population-based selectorecombinative GA is computation-
ally advantageous over a BB-wise-mutation based algorithm. If one algorithm is
better than the other, we are also interested in estimating the savings in compu-
tational time. Note that unlike earlier studies, we assume that the building-block
structure is known to both the crossover and mutation operators.

We begin our analysis with the scalability of selectorecombinative genetic
algorithms followed by the scalability of the BB-wise mutation algorithm.

4.1 Scalability of Selectorecombinative GA

Two key factors for predicting the scalability and estimating the computational
costs of a genetic algorithm are the convergence time and population sizing.
Therefore, in the following subsections we present facetwise models of conver-
gence time and population sizing.

Population-Sizing Model. Goldberg, Deb, & Clark [21] proposed population-
sizing models for correctly deciding between competing BBs. They incorporated
noise arising from other partitions into their model. However, they assumed
that if wrong BBs were chosen in the first generation, the GAs would be unable
to recover from the error. Harik, Cantú-Paz, Goldberg, and Miller [22] refined
the above model by incorporating cumulative effects of decision making over
time rather than in first generation only. Harik et al. [22] modeled the decision
making between competing BBs as a gambler’s ruin problem. Here we use an
approximate form of the gambler’s ruin population-sizing model [22]:

n =
√

π

2
σBB

d
2k

√
m log m, (1)

where k is the BB size, m is the number of BBs, d is the size signal between the
competing BBs, and σBB is the fitness variance of a building block. The above
equation assumes a failure probability (per BB), α = 1/m.
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Convergence-Time Model. Mühlenbein and Schlierkamp-Voosen [23] de-
rived a convergence-time model for the breeder GA using the notion of se-
lection intensity [24] from population genetics. Thierens and Goldberg [20]
derived convergence-time models for different selections schemes including bi-
nary tournament selection. Bäck [25] derived estimates of selection intensity
for s-wise tournament and (µ, λ) selection. Miller and Goldberg [26] developed
convergence-time models for s-wise tournament selection and incorporated the
effects of external noise. Bäck [27] developed convergence-time models for (µ, λ)
selection. Even though the selection-intensity-based convergence-time models
were developed for the OneMax problem, Miller and Goldberg [28] observed that
they are generally applicable to additively decomposable problems of bounded
order. Here, we use the convergence-time model of Miller and Goldberg [26]:

tc =
π

2I

√
�, (2)

where I is the selection intensity, and � = mk is the string length. For binary
tournament selection, I = 1/

√
π.

Using equations 1 and 2, we can now predict the scalability, or the number
of function evaluations required for successful convergence, of GAs as follows:

nfe,GA = n · tc =
π2

4
σBB

d

√
k log m · 2k · m. (3)

4.2 Scalability of BB-Wise Mutation Algorithm

Since the initial point is evaluated once and after that for each of the m BBs,
2k−1 individuals are evaluated, the total number of function evaluations required
for the BBMA is

nfe,BBMA =
(
2k − 1

)
m + 1. (4)

The results from the above subsections (Equations 3 and 4) indicate that
while the scalability of a selectorecombinative GA is O (2km log m

)
, the scala-

bility of the BBMA is O (2km
)
. This is in contrast to a random-walk mutation

algorithm with no BB knowledge which scales as O (mk log m
)

[4]. By searching
among building-block neighborhoods, the selectomutative algorithm scales-up
significantly better than a mutation operator with no linkage information and
provides a savings of O(

√
k log m) evaluations over the GA. The savings comes

from the extra evaluation required for the convergence and decision-making in
the selectorecombinative GAs.

The speed-up—which is defined as the ratio of number of function evaluations
required by a GA to that required by BBMA—obtained by using a BB-wise
mutation algorithm over a selectorecombinative GA is given by

η =
nfe,GA

nfe,BBMA
= O

(√
k log m

)
. (5)

In particular, the speed-up for the OneMax problem (k = 1) is given by

ηOneMax =
π2

4 m log m

m + 1
≈ π2

4
log m, (6)
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Fig. 1. Empirical verification of the speed-up predicted for using BB-wise mutation over
a selectorecombinative GA by Equations 6 and 7. The empirical results are averaged
over 900 independent runs. The results show that the speed-up obtained by BB-wise
mutation algorithm over a GA is O(

√
k log m).

and for the GA-hard m k-Trap function [29], the speed-up is given by

ηTrap =
π2

4
σBB

d

√
k2km log m

(2k − 1)m + 1
≈ π2

4
σBB

d

√
k log m. (7)

The speed-up predicted by Equations 6 and 7 are verified with empirical
results in Figures 1(a) and 1(b), respectively. The results are averaged over 900
independent runs. The results show that there is a good agreement between
the predicted and observed speed-up. The results show that for deterministic
additively separable problems, a BB-wise mutation algorithm is about O(

√
km)

times faster than a selectorecombinative genetic algorithm.

5 Crossover vs. Mutation: Noisy Fitness Functions

In the previous section, we observed that BB-wise mutation scales-up better
than a crossover on deterministic additively separable problems. Furthermore,
a selectomutative algorithm was able to overcome deception, one of the key fac-
tors influencing problem difficulty, using linkage (neighborhood) information and
enumeration within the neighborhood. In this section, we introduce another di-
mension of problem difficulty in extra-BB noise [15] and analyze if the BB-wise
mutation maintains its edge over crossover. That is, we analyze whether a selec-
torecombinative or a selectomutative GA works better on additively separable
problems with additive external Gaussian noise.

We follow the same approach outlined in the previous section and consider
the scalability of crossover and mutation.
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5.1 Scalability of Selectorecombinative GAs

Again we use the convergence-time and population-sizing models to determine
the scalability of GAs under the presence of unbiased Gaussian noise. We use
an approximate form of the gambler’s ruin population-sizing model for noisy
environments:

n =
√

π

2
σBB

d
2k

√
m log m

√√
√
√
(

1 +
σ2

N

σ2
f

)

, (8)

where σ2
N is the variance of the noise, and σ2

f = mσ2
BB is the fitness variance.

We use an approximate form of Miller and Goldberg’s [26] convergence-time
model:

tc =
π

2I

√
m

√

1 +
σ2

N

σ2
f

. (9)

A detailed derivation of the above equation and other approximations are given
elsewhere [15,30].

The population-sizing and convergence-time models indicate that the exoge-
nous noise increases the population size and elongates the convergence time.
Using equations 1 and 2, we can now predict the scalability, or the number of
function evaluations required for successful convergence, of GAs as follows:

nfe,GA =
π2

4
σBB

d

√
k log m ·

(

1 +
σ2

N

σ2
f

)

· 2k · m. (10)

5.2 Scalability of BB-Wise Mutation Algorithm

Unlike the deterministic case where a BB was perturbed and evaluated once,
in the presence of exogenous noise we cannot rely on only a single evaluation.
In other words, in the presence of noise, an average of multiple samples of the
fitness should be used in deciding between competing building blocks. Now the
question remains as to exactly how many samples have to be considered. This
issue of exact samples of fitness required to correctly decide between competing
building blocks in the presence of noise has been addressed elsewhere [21]:

ns = 2cσ2
N , (11)

where ns is the number of independent fitness samples, and c is the square
of the ordinate of a one-sided standard Gaussian deviate at a specified error
probability α. For low error values, c can be obtained by the usual approximation
for the tail of a Gaussian distribution: α ≈ exp(−c/2)/(

√
2c). In this paper, we

have used α = 1/m. Equation 11 is empirically verified for the Noisy-OneMax
problem in Figure 2. The results show a good agreement between the model and
experiments.
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Fig. 2. Comparison of the number of samples of fitness evaluations per individual
required to correctly decide between competing building blocks as predicted by Equa-
tion 11 with empirical results.

Since the initial point is evaluated ns times and after that for each of the
m BBs, 2k − 1 individuals are evaluated ns times, the total number of function
evaluations required for the BBMA for noisy fitness functions is given by

nfe,BBMA = ns

[(
2k − 1

)
m + 1

]
,

=

(

2c
σ2

N

σ2
f

· mσBB

)
[(

2k − 1
)
m + 1

]
. (12)

The results from the above subsections (Equations 10 and 12) indicate that
under the presence of exogenous noise, a selectorecombinative GA scales as
O
(
2km log m(1 + σ2

N/σ2
f )
)
. On the other hand, the BB-wise mutation scales

as O
(
2km2(σ2

N/σ2
f )
)
. Therefore, for constant values of σ2

N/σ2
f , a selectorecom-

binative GA is O(
√

km/ log m) times faster than the BB-wise mutation. By
implicitly averaging out the exogenous noise, crossover is able to overcome the
extra effort needed for the convergence and decision-making. On the other hand
the explicit averaging via multiple fitness samples by the BB-wise mutation leads
to quadratic scale-up—in terms of number of building blocks—in the number of
function evaluations.

The speed-up—which is defined as the ratio of number of function evalua-
tions required by mutation to that required by crossover—obtained by using a
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Fig. 3. Empirical verification of the speed-up predicted for using BB-wise mutation over
a selectorecombinative GA by Equation 14 for the OneMax problem with exogenous
noise. The empirical results are averaged over 900 independent runs. The results show
that a selectorecombinative GA uses significantly less number of function evaluations
than the BB-wise mutation algorithm.

selectorecombinative over selectomutative GA is given by

ηNoise =
nfe,BBMA

nfe,GA
= O






√
k

m

log m






σ2
N

σ2
f

1 + σ2
N

σ2
f









 . (13)

In particular, the speed-up for the OneMax problem (k = 1) is given by

ηNoisy OneMax =
4c

π2

m

log m






σ2
N

σ2
f

1 + σ2
N

σ2
f




 . (14)

The speed-up predicted by Equation 14 is verified with empirical results in Fig-
ure 3. The results are averaged over 900 independent runs. The results show
that there is a good agreement between the predicted and observed speed-up.
The results show that for stochastic additively separable problems with constant
noise variance, a selectorecombinative GA is about O(

√
km/ log m) times faster

than the BB-wise mutation algorithm.

6 Future Work

The results of this paper indicate that there are significant advantages of using
a mutation operator that performs hillclimbing in the BB space and indicates
many avenues of future research some of which are listed in the following:
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Hybridization of crossover and BB-wise mutation: While this paper
consider a bounding case of crossover vs. mutation, it might be (more likely
it is) more effective to use an efficient hybrid of crossover and mutation.

Designing BB-wise Mutation: In this paper, we assumed that the BB in-
formation was known, which generally is not the case. Over the last few
years, effective recombination operators that adapt linkage have been de-
veloped in a systematic manner [15]. On the other hand, most mutation
operators, including adaptive ones, search in the local neighborhood of a
solution. Furthermore, there has been growing evidence of the importance
of using good neighborhood operators in determining the effectiveness of
local-search methods [1,2]. Despite the importance of having good neighbor-
hood information, a general methodology for designing operators with good
neighborhood information is non-existent. That is, little attention has been
paid to systematically design effective mutation operators that performs lo-
cal search in the building-block space [16]. The results of this paper indicate
that the dividends obtained by designing BB-wise mutation operators that
adaptively identify and utilize good neighborhood information can be signif-
icant.

Problems with overlapping building blocks: While this paper considered
problems with non-overlapping building blocks, many problems have differ-
ent building blocks that share common components. An analysis similar to
the one presented in this paper can be performed to predict which of the
two algorithms excel. However, since the effect of overlapping variable in-
teractions is similar to that of exogenous noise [15], based on the results of
this paper crossover is likely to be more useful than the mutation for solving
problems with overlapping building blocks.

Hierarchical problems: One of the important class of nearly decomposable
problems is hierarchical problems, in which the building-block interactions
are present at more than a single level. Further investigation is necessary to
analyze if BB-wise mutation can help speed-up the scalability of selectore-
combinative GAs.

7 Summary and Conclusions

In this paper, we have introduced a building-block-wise mutation operator which
efficiently searches among the competing building block (BB) neighborhood.
We also compared the computational costs BB-wise mutation algorithm with
a selectorecombinative genetic algorithm for both deterministic and stochastic
additively separable problems. Our results show that while the BB-wise mu-
tation provides significant advantage over crossover for deterministic problems,
crossover maintains significant edge over the BB-wise mutation on stochastic
problems. The results show that the speed-up of using BB-wise mutation on de-
terministic problems is O(

√
k log m), where k is the BB size, and m is the number

of BBs. Likewise, the speed-up of using crossover on stochastic problems with
fixed noise variance is O(m

√
k/ log m).
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