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Abstract. The design of a robust control system for a specified second
order plant is considered using three different approaches. Initially, a con-
trol system evolved by a genetic programming algorithm is reproduced
and analysed in order to identify its advantages and drawbacks. The au-
tomatic design technique is compared to a traditional one through the
analysis of the constraints and performance indices obtained by simula-
tion. A set of unspecified control constraints explored by the GP search
process is found to be the cause of a better performance. Hence, giving a
better constraints specification, a genetic algorithm is used to evolve an
alternative controller. A PID structure is used by the GA to produce and
tune the controller. Simulations show a significant gain in performance
thanks to a more aggressive and complete exploration of the search space
within the constraints. The effectiveness of the two methods compared to
the traditional approach is discussed with regard to performance, com-
plexity of design and computational viability.

1 Introduction

In recent years, evolutionary computation has been applied to several control
engineering problems. While weaknesses and strengths of traditional approaches
of control system design are well known to experts in the field, evolutionary
computation offers a designing and tuning tool that is not well investigated with
regard to reliability, effectiveness and usability.

The new evolution based methods proposed by several scientists [4] are still
not fully considered by the traditional control field. The proposed methods often
lack mathematical proofs of stability, guarantees of reliability and applicability of
the results. A better knowledge of the characteristics of evolutionary algorithms
in control engineering could help the synthesis of more usable and feasible control
systems and allow evolutionary computation to gain the status of an effective
tool in control system design.

There are several weaknesses and difficulties in the design of a suitable evo-
lutionary algorithm for control synthesis. The determination of a unique fitness

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 174–185, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



A Comparison of Genetic Programming and Genetic Algorithms 175

value is typically a multi-objective optimization problem [13] and requires partic-
ular attention during the setting of initial parameters: a wrong choice can result
in poor outcomes or failure of the search. The fidelity in the simulation of the
plant is also a key factor, often affected by unknown parameters, unknown plant
dynamics or noise. The difference between the real plant and the simulated plant
is reflected in the evolved controller that loses reliability and performance once
implemented. Therefore, the identification of constraints and characteristics of
the desired controller is a decisive factor for a good design.

In this paper, the characteristics of different control systems for a robust1,
linear SISO2 control problem are discussed. The control problem is presented in a
textbook of control engineering [3, pages 697-700] and it is used as a bench mark
for the analysed controllers. Initially, a GP-evolved control system presented in
[11,12] is reproduced, analysed and simulated in order to highlight its advantages
and flaws. A comparison is carried out with respect to the traditional design pro-
posed in [3]. The unspecified limit of the derivative of the control variable and
an unlimited bandwidth from the feedback signal to the output result in very
high load disturbance suppression. The GP controller gives better performance
also using a more intense control action that results in saturated control. Thus,
the comparison is not relevant. An alternative controller for the same problem
was evolved using a genetic algorithm. The controller structure utilizes a pre-
filter, a PID core and filters on the feedback and on the derivative. The high
gain in performance shown by the GA controller is justified by the use of satu-
rated, bang-bang control. The GA computation explored the search space more
effectively and produced a controller that brings to the limit all the constraints.
The GA approach is also found less computationally expensive and able to cover
different control problems.

2 Methods

2.1 Representation of Controllers and Plant

The results presented in this paper are obtained by the simulation of the con-
trolled systems implemented using Matlab, the Matlab Control System Toolbox
and Simulink. The choice of the MathWorks Inc. software is due to the complete-
ness of the available tools for control system engineering. The block diagram of
a general controlled system is shown in figure 1.

A controller can be described as the compound of linear and nonlinear compo-
nents. Linear components can be expressed by transfer functions [3,21]. The de-
sign of linear control benefits of well known mathematical theories and method-
ologies [3,20,21,24,25] . Nonlinear components such as saturation or rate limiter
have to be expressed by special blocks or functions. They increase the complexity
of the design and justify the use of simulation and evolutionary algorithms.
1 The parameters of the plant are supposed to be time-varying between certain ranges

to guarantee stability and steady performances.
2 Single Input, Single Output.
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Fig. 1. General model of a controlled system

The plant to be controlled is expressed by the transfer function

G(s) =
K

(τs + 1)2
, (1)

where K and τ are considered varying between the values 1 ≤ K ≤ 2 and
0.5 ≤ τ ≤ 1 to obtain robust control. The simulation of the controlled systems
is carried out for the four states corresponding to the four combinations of the
values K = 1, 2 and τ = 0.5, 1. The measurements were obtained applying a step
reference signal from 0 to 1 Volts.
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2.2 Constraints and Performance Indices for a Control System

The distinction between constraints and performance indices is often blurred.
Generally, a constraint is a characteristic of the controlled system that should
be kept within specified boundaries. A performance index is a characteristic of
the controlled system that should be minimized or maximized. The indices and
constraints used in this paper are listed here with a brief description.

– Overshoot: is the amount the system output response proceeds beyond the
desired value when applying a step to the reference signal.

– Rise time: is the time taken by the output to rise from 10% to 90% of the
input amplitude.

– Settling time: is the time required for the system output to settle within a
certain percentage of the input amplitude.

– Maximum u(t): is the maximum value reachable by the control variable.
– Maximum u̇(t): is the maximum derivative reachable by the control variable.
– Bandwidth: is a frequency domain index that describes the reactivity of the

system in following the reference signal and the sensitivity to feedback high
frequency noise.

– ITAE: is the Integral of Time-weighted Absolute Error between the plant-
output and the reference signal. It is the main performance index used in
this experiment.

– Load disturbance deviation: is the maximum deviation of the plant-output
from the reference signal when a disturbance is applied to the plant-input.

For the control problem examined, an overshoot less than 2% was considered.
In [11,12] a saturation limit was imposed to 40 Volts. The derivative of the control
variable was unlimited for the GP controller and limited to 10.000 Volts/sec for
the GA controller.

2.3 Design Methods

The controllers presented and compared in this paper are designed using three
different approaches.

The genetic programming approach has been used in [11,12] to design from
scratch a controller for the the plant of equation (1). Several constraints and
performance indices were used to build a fitness function. The genotype was a
tree-coded controller mapped into a SPICE code for the simulation of the electric
circuit. The controller proposed in [11,12] has been reproduced and simulated in
this experiment.

The traditional design method is proposed in [3] and makes use of a PID con-
troller with pre-filter to minimize the ITAE index. The design uses a parameter
ω to set the intensity of the control variable and achieve optimum non-saturated
control with respect to the ITAE index.

The genetic algorithm approach, implemented as part of the experiment pre-
sented in this paper, uses a PID controller with 11 parameters for tuning a
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pre-filter, the PID parameters, a filter on the derivative and a filter on the feed-
back signal. Figure 2 shows the Simulink model used by the genetic algorithm to
optimize the parameters. The figure shows also the position of the 11 parameters
with the exception of IntLim which is embedded in the integrator block.

In spite of the proposed fixed structure, the number of parameters and the
different values that they can assume allow the evolutionary computation to
accentuate or disable parts of the controller. Thanks to this characteristic, the
method goes beyond the tuning of the three PID parameters.
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Fig. 3. Plant-outputs (left) and control variables (right) for the PID and GP con-
trollers, plant parameters: K = 1,τ = 1

3 Results

3.1 Simulation Results of the GP and PID Controllers

The simulation of the GP controller, compared to the standard PID, shows that
the GP controller uses the control variable in a more intensive way than the
PID. It makes use of saturated control and higher varying rate of the control
variable. Figure 3 shows the output variable and the control variable for both
the controllers. It is evident that use of nonlinear saturated control helps the
GP controller to achieve better performance. Besides, the GP controller uses a
second derivative that produces an infinite bandwidth from the feedback signal
to the output. This fact, with the unlimited derivative of the control variable,
gives a potential infinite load disturbance suppression but is not applicable to
real systems. For the simulation, the derivative was implemented with an em-
bedded low-pass filter, the same shown in figure 2, in order to obtain a finite
bandwidth. From the analysis, it is evident that the controller presented in [11,
12] has substantially different characteristics from the PID and is therefore not
comparable.

In a second simulation, the standard PID controller was tuned for a stronger
control action, setting a tuning parameter ω to 16 instead of 8 as described in
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[3, pages 697-700]; additionally, a limit on the integral was imposed to 8 Volts
and a gain of 3 was added to the feedback signal. The gain on the feedback
was added to increase the bandwidth of the system and obtain a better load
disturbance suppression for a unitary step at the plant input. The roughly tuned
controller, compared to the GP controller, obtained better performance under
all the considered indices. Table 1 shows the simulation results for K = 1 and
τ = 0.5.

Table 1. Simulation results for the PID, GP and new PID controllers for K = 1, τ = 0.5

(PID) (GP) (new PID) Characteristic
Overshoot 0.3% 0.4% 1% limited
Rise time (ms) 391 239 210 to minimize
Settling time (ms) 629 417 326 to minimize
ITAE (mV olts · sec2) 49.0 19.8 13.5 to minimize
Load disturbance deviation (mV olts) 6.0 0.64 0.42 to minimize
Maximum u(t) (V olts) 8.6 19.4 36.0 limited
Maximum u̇(t) (V olts/sec) 460 1927 8761 unspecified/free
Bandwidth Y/Yfil (rad/sec) 57.6 3070 435 unspecified/free

It was observed from the simulations that both the GP controller and the
new PID bring the control variable to saturation when K = 1 and τ = 1. That
is when the plant has the lowest gain (K) and the longest time constant (τ)
and needs the strongest control action. For the other three combinations of the
parameters, the system response does not change significantly and the control
variable remains under the saturation limit: the controllers use saturated control
only in one fourth of cases. Figure 4 shows the plant-output and the control
variable of the GP controlled system for the states (K = 1, τ = 0.5), (K = 2,
τ = 1) and (K = 2, τ = 0.5) .
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Table 2. Best individual of the GA controller for noise-free system

Param. Value Function Param. Value Function
N1 195.96 Pre-Filter numerator Kf 3.2033 Feedback gain
D1 0.1744 Pre-Filter denominator 1 IntLim 4.7595 Limit on the integral
D2 7.7851 Pre-Filter denominator 2 DerFac 1613.8 Pole for the derivative filter
Kp 273.78 PID proportional action p1 978.97 Pole 1 for the feedback filter
Ki 999.21 PID integral action p2 1543.9 Pole 2 for the feedback filter
Kd 16.988 PID derivative action

3.2 Simulation Results of the GA Controller

The GA controller was produced in several similar versions by different runs of
the algorithm. Preliminary runs during the development of the application were
used to identify good settings of the GA parameters. Given the stochastic nature
of GAs, the final experiment was carried out by running the program 50 times.
To evolve the controller, the GA computation took an average of 34 generations.
The first generation took approximately 50 seconds to be evaluated.

The process ran on a laptop with processor AMD Athlon 2400+, 512Mb
RAM and Windows XP as operating system.

In a first run the system was simulated without load and feedback distur-
bances. The population was randomly initialized and seeded with the parameters
of the PID controller.

Preliminary experiments proved that the algorithm was able to reach, in a
longer time, equivalent solutions without seeding the initial population. However,
the quality of the seeds and their initial distribution strongly affect the number
of generations required to reach the solution.

The fitness function was composed by a sum of the ITAEs of the four system
responses, a penalty for overshoots greater than 2% and a penalty for a spiked
or oscillating control variable to reduce the influence of feedback noise and in-
stability. The additional constraint of 10.000 Volts/sec for the derivative of the
control variable was added to make the controller applicable to real control prob-
lems. The population was composed of 300 individuals. Selection was based on a
tournament within groups of 10 individuals. Two degrees of uniform distributed
mutation were applied to both accelerate the initial search and finely tune the
parameters. Mutation was applied to 30% of the population. A vector of likely
fitness improvement was applied to one third of mutated individuals: the vector
was calculated taking the difference of two individuals’ genotypes where the first
one had better fitness than the second one, repeating the operation all over the
population and computing the average. This vector provided an indication of a
likely fitness improvement and increased the speed of the search by 2 to 5 times3.
Crossover was applied to 60% of individuals, combining random parameters of
3 The increase in speed is strongly dependent on the initial conditions given by the

quality of the seeds and their distribution in the search space. This data obtained
by preliminary runs could be the central issue of a further study regarding the
effectiveness of the method.
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two individuals chosen from two different groups. Elitism was applied by copying
the best individual of each group into the next generation. The best individual
of the run is characterized by the values in table 2.

Table 3. Best individual of the GA controller for a system with noise on the feedback

Param. Value Function Param. Value Function
N1 119.8 Pre-Filter numerator Kf 0.95 Feedback gain
D1 0.076 Pre-Filter denominator 1 IntLim 1.29 Limit on the integral
D2 4.59 Pre-Filter denominator 2 DerFac 90.02 Pole for the derivative filter
Kp 112.6 PID proportional action p1 786.3 Pole 1 for the feedback filter
Ki 11.75 PID integral action p2 295.3 Pole 2 for the feedback filter
Kd 13.55 PID derivative action

During the computation, some initial parameters were adapted to adjust and
direct the multi-objective search. In particular, the weights of the ITAE values,
initially set to 1, appeared to be unbalanced as soon as the computation reached
saturated control, giving better performance for the plants with higher gain
and lower time constant. The nonlinearity in the controlled system was being
used by the genetic algorithm to increase the performance using the maximum
control action allowed by rate limit and saturation. Hence, the system response
gets faster as the system gets more reactive. The results are shown in figure
5. The control variable shows that the computation reached a complete bang-
bang control, where the upper and lower saturation limits are reached using the
maximum varying rate in order to obtain the fastest plant response. Bang-bang
control provided minimum ITAE, settling time and rise time and was chosen as
manual termination criterion.
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Fig. 5. Plant-outputs (left) and control variables (right) for the GA controller. In
the left graph, the fastest response corresponds to K = 2,τ = 0.5, the slowest to
K = 1,τ = 1
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Fig. 6. Control variables at the first (left) and last (right) generation for the run with
noise

In a second run, a disturbance to the feedback signal was applied. The dis-
turbance was generated by the white band-limited noise block of the Simulink
library with power 0.1nW and sampling time 1ms. Randomized seeds of the
best individual of the first run and the original PID controller were chosen to
initialize the population. The control variable at the first generation undergoes
extreme variations due to the sensitivity to the noise added to the feedback sig-
nal. This behaviour of the control variable might damage the plant or cause fast
wear and tear of the mechanical part of the actuator. Hence, the first target is
to make the control variable as smooth as possible.

To follow the optima in the dynamic fitness landscape that changes when
introducing noise, the heuristic given by the vector of likely fitness improvement
provided a high percentage of best individuals.

A final solution found in the second run is reported in table 3. Figure 6 shows
the control variable at the first and last generation.

The GP controller was designed only for noise-free signals. The GA controller
has approximately the same performance as the GP controller for K = 1, τ = 1.
For K = 2, τ = 0.5, however, the GA controller showed considerable improve-
ments. Figure 7 shows a comparison between the responses of two controllers for
K = 2, τ = 0.5. The rise time of 243 ms using the GP controller decreased to
75 ms using the GA controller; the settling time decreased from 419 ms to 128
ms. Finally, the ITAE recorded by the GA controller is 2.8 mV olts · sec2 versus
19.9 mV olts · sec2 of the GP controller. Table 4 reports the performance of the
GA controller.

4 Discussion

The analysis and simulation of the GP and PID controllers outlined several
different characteristics of the two controllers. The use of saturated control, not
specified as a constraint in [11,12], allowed the evolutionary computation to



A Comparison of Genetic Programming and Genetic Algorithms 183

Table 4. Simulation results of the GA controller for the system without noise

(K = 2,τ = 0.5) (K = 1,τ = 1) Characteristic
Overshoot 2% 1.9% limited
Rise time (ms) 75 181 to minimize
Settling time (ms) 128 298 to minimize
ITAE (mV olts · sec2) 2.8 17.2 to minimize
Load disturbance deviation (mV olts) 2.8 2.6 to minimize
Maximum u(t) (V olts) 40 40 limited
Maximum u̇(t) (V olts/sec) 10000 10000 limited
Bandwidth Y/Yfil (rad/sec) 430 77.8 unspecified/free

improve the performance of the standard PID. However, saturated control can
be used only in particular control problems. The nonlinearity and the heavy use
of the actuator make the controller unsuitable for most industrial applications.

The tuning of a new PID and the synthesis of the GA controller were done
considering a reduction of the set of control problems to the one where saturated
control is applicable.
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Fig. 7. Comparison of plant-outputs for the GP and GA controllers

The design cost is a decisive factor. The PID tuning requires few manual
calculations as explained in [3, pages 697-700]. The GP controller was synthe-
sized by a parallel computer architecture of sixty six 533MHz elements that
took 44.5 hours [11,12]. Besides, the setting of suitable initial parameters of the
evolutionary computation and the design of an effective fitness calculation re-
quire additional time and skill. The choice of wrong parameters can lead to poor
results or failure [4]. On the other hand, the automatic synthesis for the GP
controller, as stated in [12], does not require knowledge in control theory and it
is free to evolve a different structure for each kind of control problem. However,
lack of knowledge in control theory favors the production of inapplicable con-
trollers because of simulation flaws like unspecified constraints, easily identified
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by an experienced control engineer but greedily explored by the evolutionary
computation.

The synthesis of a GA controller requires knowledge in control theory in order
to set the proper controller architecture. However the GA computation does not
only tune parameters but has some freedom to utilize particular elements in the
architecture only when they are needed. This fact suggests the possibility of using
a more complex structure, without limiting to PID control, and allowing the GA
to shape the optimal sub-structure that better fits the present control problem.
In the first run, when the system was simulated without disturbances, the low-
pass filters were automatically disabled by placing poles at high frequencies.
Conversely, when feedback disturbance was applied, the filters were tuned to
play an important role in filtering high frequency noise. The feedback gain was
also automatically lowered.

The automatically driven search forward area of likely good fitness reflects
the human attitude to move in the direction that gives a likely improvement. It
can easily follow the movements of a dynamic fitness landscape and here it is
proven to be a decisive factor in speed and effectiveness.

From the simulation results, the dramatic improvements recorded by the GA
approach qualify the method to optimise solutions for control problems with
high performance requirements.

The computational aspect makes the GA approach feasible. The time of
the magnitude of one or a few hours on a single machine, depending on the
complexity of the fitness calculation and availability of good seeds, makes the
method attractive for several applications. With an increment of computational
power and a plant with a long time constant, it would be possible to apply the
method to online optimisation or synthesis of adaptive control systems.
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