wwGrammatical Evolution

Michael O’Neill', Anthony Brabazon?, Miguel Nicolau', Sean Mc Garraghy?,
and Peter Keenan?

! Biocomputing and Developmental Systems Group
University of Limerick, Ireland
{Michael.0ONeill, Miguel.Nicolau}@ul.ie
2 University College Dublin, Ireland
{Anthony.Brabazon, john.mcgarraghy, Peter.Keenan}Qucd.ie

Abstract. mGrammatical Evolution is presented and its performance
on four benchmark problems is reported. 7#Grammatical Evolution is a
position-independent variation on Grammatical Evolution’s genotype-
phenotype mapping process where the order of derivation sequence steps
are no longer applied to nonterminals in a predefined fashion from left to
right on the developing program. Instead the genome is used to specify
which nonterminal will be developed next, in addition to specifying the
rule that will be applied to that nonterminal. Results suggest that the
adoption of a more flexible mapping process where the order of non-
terminal expansion is not determined a-priori, but instead itself evolved,
is beneficial for Grammatical Evolution.

1 Introduction

In standard Grammatical Evolution (GE) [1], the practical effect of the appli-
cation of each rule to the non-terminals of the developing program is dependent
upon all previous rule applications. As we successfully choose rules to apply to
the developing program, given the tight coupling of the dependency from left to
right, the greater the probability of choosing an inappropriate rule at some point
during the creation of the program. Therefore, as programs become bigger the
harder it will be to find the target solution due to the increased likelihood of pick-
ing sub-optimal rules. In other words, in GE, it is hard to identify clear building
blocks apart from the extremely fine-grained individual production rules, al-
though analysis of GE’s ripple crossover has provided some evidence to support
the useful exchange of derivation subsequences during crossover events [2]. In
terms of schema theory this has serious implications for the faithful propaga-
tion of these coarse-grained building blocks, and the propagation of the more
fine-grained production rule building blocks does not facilitate the creation of
hierarchical structures to any great degree. It must be stressed, however, that
the GE representation has been shown to be extremely robust and productive
at producing solutions on a broad range of problems, seemingly exploiting the
tight dependencies that exist within the representation. A representation that
exploited these dependencies on a smaller scale, allowing derivation subsequences
to act as building blocks, may provide more productive evolutionary search by

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 617-B29] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

618 M. O’Neill et al.

providing better building blocks to achieve a hierarchical solution construction. It
is through GE’s feature of intrinsic polymorphism that derivation subsequences
can be exchanged to different locations with sometimes the same or indeed dif-
ferent contexts.

The main idea behind position independent GE, WGEﬂ, is to break the depen-
dency chain into smaller fragments that can be exchanged between appropriate
contexts through a specific position independent mechanism open to evolution-
ary search. This should facilitate the creation of smaller, functional, building
blocks, similar to sub-trees in GP, which may be easier to preserve and thus
should enhance the scalability of GE to harder problem domains. Given the po-
sition independent nature of the representation it means that as long as a rule,
whether structural or terminal, is present, its context can then be adapted to
solve the problem at hand. In addition, it is unclear what effect the depth first
non-terminal expansion adopted in the standard GE mapping process has on
performance. To this end, this study compares the performance of the standard
mapping ordering to 7GE’s mapping where the order of non-terminal expansion
is explicitly evolved.

The remainder of the paper is structured as follows. The next section provides a
brief background on Grammatical Evolution, with Section Bl introducing 7GE.
The problem domains tackled, experimental setup, and results are provided in
Section[4, followed by conclusions and future work (Section [{).

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in any language [T2[84J5], and can be considered a form of
grammar-based genetic programming. Rather than representing the programs
as parse trees, as in GP [6/7|8/910], a linear genome representation is used. A
genotype-phenotype mapping is employed such that each individual’s variable
length binary string, contains in its codons (groups of 8 bits) the information to
select production rules from a Backus Naur Form (BNF) grammar. The grammar
allows the generation of programs in an arbitrary language that are guaranteed
to be syntactically correct, and as such it is used as a generative grammar, as
opposed to the classical use of grammars in compilers to check syntactic correct-
ness of sentences. The user can tailor the grammar to produce solutions that are
purely syntactically constrained, or they may incorporate domain knowledge by
biasing the grammar to produce very specific forms of sentences.

BNF is a notation that represents a language in the form of production rules.
It is comprised of a set of non-terminals that can be mapped to elements of the
set of terminals (the primitive symbols that can be used to construct the output
program or sentence(s)), according to the production rules. A simple example
BNF grammar is given below, where <expr> is the start symbol from which all
programs are generated. The grammar states that <expr> can be replaced with

! The name 7GE is inspired by Life of Pi by Yann Martel in which a young boy
Piscine Patel embarrassed by his name decides to rename himself 7.

7wGrammatical Evolution 619

either <expr><op><expr> or <var>. An <op> can become either +, -, or *, and
a <var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + 0

| - €D)

| * (2)

<var> ::= X 0
|y 1

The grammar is used in a developmental process to construct a program by
applying production rules, selected by the genome, beginning from the start
symbol of the grammar. In order to select a production rule in GE, the next
codon value on the genome is read, interpreted, and placed in the following
formula:

Rule = Codon Value % Num. Rules

where % represents the modulus operator.

[220 240 220[203 [101] 53 [202 203 102] 55 [221] znz}—‘
\—v{ 241]133] 30 [74 [204] 140] 39 [202] 203] 102]

Fig. 1. An example GE individual’s genome represented as integers for ease of reading.

Given the example individual’s genome (where each 8-bit codon has been rep-
resented as an integer for ease of reading) in Fig[ll the first codon integer value
is 220, and given that we have 2 rules to select from for <expr> as in the
above example, we get 220 % 2 = 0. <expr> will therefore be replaced with
<expr><op><expr>.

Beginning from the left hand side of the genome codon integer values are gen-
erated and used to select appropriate rules for the left-most non-terminal in the
developing program from the BNF grammar, until one of the following situa-
tions arise: (a) A complete program is generated. This occurs when all the non-
terminals in the expression being mapped are transformed into elements from
the terminal set of the BNF grammar. (b) The end of the genome is reached,
in which case the wrapping operator is invoked. This results in the return of the
genome reading frame to the left hand side of the genome once again. The reading
of codons will then continue unless an upper threshold representing the maxi-
mum number of wrapping events has occurred during this individual’s mapping
process. (c¢) In the event that a threshold on the number of wrapping events has
occurred and the individual is still incompletely mapped, the mapping process
is halted, and the individual assigned the lowest possible fitness value. Return-
ing to the example individual, the left-most <expr> in <expr><op><expr> is
mapped by reading the next codon integer value 240 and used in 240 % 2 = 0
to become another <expr><op><expr>. The developing program now looks like

620 M. O’Neill et al.

<expr><op><expr><op><expr>. Continuing to read subsequent codons and al-
ways mapping the left-most non-terminal the individual finally generates the
expression y*x-x-x+x, leaving a number of unused codons at the end of the in-
dividual, which are deemed to be introns and simply ignored. A full description
of GE can be found in [I].

3 wGrammatical Evolution

In the first derivation step of the example mapping presented earlier, <expr> is
replaced with <expr><op><expr>. Then in the standard GE genotype-phenotype
mapping process, the left-most non-terminal (the first <expr>) in the developing
program is always expanded first. The 7GE mapping process differs in an in-
dividual’s ability to determine and adapt the order in which non-terminals will
be expanded. To this end, a 7GE codon corresponds to the pair (nont,rule),
where nont and rule are represented by N bits each (N=8 in this study), and a
chromosome, then, consists of a vector of these pairs.

In 7#GE, we analyse the state of the developing program before each derivation
step, counting the number of non-terminals present. If there is more than one
non-terminal present in the developing program the next codons nont value is
read to pick which non-terminal will be mapped next according to the following
mapping function, where NT means non-terminal:

NT = Codon nont Value % Num. NT's.

In the above example, there are 3 non-terminals (<expr>g<op>;<expr>sy) after
application of the first production rule. To decide which non-terminal will be
expanded next we use NT =9 % 3 = 0, i.e., <expr>g is expanded (see second
codon (9,102) left-hand side of Fig.). The mapping rule for selecting the ap-
propriate rule to apply to the current non-terminal is given in the normal GE
fashion:

Rule = Codon rule Value % Num. Rules.

In this approach, evolution can result in a derivation subsequence being moved
to a different context as when counting the number of non-terminals present we
do not pay attention to the type of non-terminals (e.g. <expr> versus <op>).
An alternative approach to 7GE is to respect non-terminal types and only allow
choices to be made between non-terminals of the same type, thus preserving
the semantics of the following derivation subsequence, and simply changing the
position in which it appears in the developing program. An example of this
occurring can be seen in Fig.

One could consider 7GE to be similar in approach to the position independent
GAuGE system [11] and related through its positional independence nature to
Chorus [12]. However, aside from the motivational differences (i.e, to facilitate
the evolution of derivation sub-sequence building blocks), there are a number
of distinguishing characteristics arising from the type of position independence

<expr>
a
<expr> <op> <expr>
b

<expr> <op> <expr>

c e f
<var> ® <var>

d g

X X

(23, 88), (9, 102), (20, 11), (5, 18), (16, 6), (27, 3), (12, 4)........

a b c d e f g

<expr>

7wGrammatical Evolution 621

<expr>
a
<op> <expr>
b,
<expr> <op> <expr>
c e f
<var> * <var>
d g
X X

l

(23, 88), (11, 102), (20, 11), (5, 18), (16, 6), (27, 3), (12, 4)........

a

b c d e f g

Fig. 2. On the bottom left an example 7GE individuals’ genome, with the 2 part 8-bit
codons represented as integers for ease of reading, and its corresponding derivation tree
(top left) can be seen. The right side of this figure illustrates the effect of an example
mutation to the nont value of the second codon on the resulting derivation tree, where
the subtree from the left-most <expr> has moved to the right-most non-terminal, also
an <expr> in this case.

Mean Best Fitness (30 Runs)

Fig. 3. Plot of the mean best and mean average fitness on

Position Independent Grammatical Evolution - SantaFe
55 T T

20 |

15 L L L

0 5 10 15
Generation

problem instance.

20

Mean Average Fitness (30 Runs)

Position Independent Grammatical Evolution - SantaFe

5 10 15 20
Generation

the Santa Fe Ant Trail

622 M. O’Neill et al.

Position Independent Grammatical Evolution - Santa Fe Ant Trail
4 T T T

35 ;r’ 4

25 i]

Cumulative Frequency of Success (30 Runs)
o
T
L

05 | i

0 * sk I
0 5 10 15 20
Generation

Fig.4. Plot of cumulative frequency of success on the Santa Fe Ant Trail problem
instance.

introduced. For example, the application of position independence to the order
in which GE’s mapping process occurs, as opposed to the order of bits in a phe-
notype; in the variable-length chromosomes due to the nature of the mapping
process; and, in the constantly fluctuating ordering choices over the lifetime of
the mapping process. Instead of making choices between a fixed number of ho-
mologous positions on a linear solution vector as in GAuGE, mGE makes choices
between the variable-number of heterogeneous non-terminals that may exist in a
developing program at any one point in the derivation sequence. The number of
position choices available is no longer constant, instead depending on the state
of the derivation sequence, with the number of available positions increasing as
well as decreasing over time. Unlike in Chorus, where each gene’s (referred to
as codons in GE) meaning is fixed (i.e. the same gene corresponds to a spe-
cific grammar production rule irrespective of its location on the chromosomes),
mGE maintains the intrinsic polymorphism property characteristic of the GE
genotype-phenotype mapping. That is, a codon’s meaning adapts to its context.

4 Experiments and Results

A variety of benchmark problems are tackled to demonstrate the feasibility of
7wGE, namely, the Santa Fe ant trail, a symbolic regression instance, mastermind,
and a multiplexer instance. By feasibility of TGE, we mean that we wish to test

7wGrammatical Evolution 623

Position Independent Grammatical Evolution - Quartic Symbolic Regression Position Independent Grammatical Evolution - Quartic Symbolic Regression
07 T T T T T T T T T 0.14 T T T T T T T

0.6

0.5

0.4

0.3

Mean Best Fitness (30 Runs)
Mean Average Fitness (30 Runs)

0.2

0.1

0 5 10 15 20 25 30 35 40 45 50 [5 10 15 20 25 30 35 40 45 50
Generation Generation

Fig.5. Plot of the mean best and mean average fitness on the quartic symbolic re-
gression problem instance.

if the standard depth first expansion of non-terminal symbols in a developing
program can be improved upon by allowing the order of non-terminal expansion
to be evolved. Performance is compared to GE on the same problem set. A
random initialisation procedure is adopted that selects the number of codons in
each individual to be in the range 1 to 20 codons. Wrapping is allowed with an
upper limit of 10 events, and only mutation (probability of 0.01 per bit) and one-
point crossover (probability of 0.9) are adopted, along with roulette selection,
and a steady state replacement.

4.1 Santa Fe Ant Trail

The Santa Fe ant trail is a standard problem in the area of GP and can be
considered a deceptive planning problem with many local and global optima [T3].
The objective is to find a computer program to control an artificial ant so that it
can find all 89 pieces of food located on a non-continuous trail within a specified
number of time steps, the trail being located on a 32 by 32 toroidal grid. The
ant can only turn left, right, move one square forward, and may also look ahead
one square in the direction it is facing to determine if that square contains a
piece of food. All actions, with the exception of looking ahead for food, take
one time step to execute. The ant starts in the top left-hand corner of the grid
facing the first piece of food on the trail. The grammar used in this problem

624 M. O’Neill et al.

Position Independent Grammatical Evolution - Quartic Symbolic Regression

18 T T T T T T T T T
16 4
14 - 4
z
]
o 12 iGE —+—
8 GE -
P
]
3
8
s> 10 X
(7] 7
K]
> *
3
2 /
g J
z 8r x>
o !
[/
° XX
2 !
s
S L | i
g ° i
3 i
© X
4 >’<—><><><’ B
¥
2| ook]
KRNk
0 oL 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Generation

Fig. 6. Plot of cumulative frequency of success on the quartic symbolic regression
problem instance.

is different to the ones used later for symbolic regression, mastermind, and the
multiplexer problems in that we wish to produce a multi-line function in this
case, as opposed to a single line expression. The grammar for the Santa Fe ant
trail problem is given below.

<code> ::= <line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= if(food_ahead()) { <line> } else { <line> }
<op> ::= left(); | right(); | move();

Figures [3] and [shows the performance of TGE and GE on the Santa Fe ant
trail problem using population sizes of 500 for 20 generations, with GE finding
the greater number of correct solutions. Interestingly, #GE appears to achieve
higher fitness levels earlier on in the run compared to GE.

4.2 Quartic Symbolic Regression

An instance of a benchmark symbolic regression problem is tackled in order to
further verify that it is possible to generate programs using mGE. The target
function is f(a) = a + a® + a3 + a*, and 100 randomly generated input vectors
are created for each call to the target function, with values for the input variable
drawn from the range [0,1]. The fitness for this problem is given by the recip-
rocal of the sum, taken over the 100 fitness cases, of the absolute value of the

7wGrammatical Evolution 625

Position Independent i ion - ind (4 colours, 8 pins) Position Independent ion - ind (4 colours, 8 pins)
1 - - - T - 14 T - " T
PiGE (best) —+— pPiIGE —+—
GE (best) ---x--- GE -

piGE (avg) ---%--
GE (avg) -8

0.9

0.8

0.7
! sl i

0.6 ¥ q

pe

L 4 1 i
0.5 ! 6 FOOGOEOOOONK

xx
04 ! — /

Mean Fitness (100 Runs)
=,
Cumulative Frequency of Success (100 Runs)

4+ ook i
“ o0
2+ oot p

02 - E_j q

)| FHRHHXHRK

0.1 S S S S 0 el
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Generation Generation

Fig.7. Plot of the mean best and mean average fitness (left) and the cumulative
frequency of success (right) on the Mastermind problem instance using 8 pins and 4
colours.

error between the evolved and target functions. The grammar adopted for this
problems is as follows:

<expr> ::= <expr> <op> <expr> | <var>
<op> ::= + | - | x|/
<var> ::= a

Results are presented for population sizes of 500 running for 50 generations in
Fig’s. Bl and [6, where it can be seen clearly that 7GE outperforms GE.

4.3 Mastermind

In this problem the code breaker attempts to guess the correct combination of
coloured pins in a solution. When an evolved solution to this problem (i.e. a
combination of pins) is to be evaluated, it receives one point for each pin that
has the correct colour, regardless of its position. If all pins are in the correct
order than an additional point is awarded to that solution. This means that
ordering information is only presented when the correct order has been found
for the whole string of pins. A solution, therefore, is in a local optimum if it
has all the correct colours, but in the wrong positions. The difficulty of this
problem is controlled by the number of pins and the number of colours in the
target combination. The instance tackled here uses 4 colours and 8 pins with the
following values 3 2 1 3 1 3 2 0. The grammar adopted is as follows.

M. O’Neill et al.

Position Independent Grammatical Evolution - 3 Multiplexer

Position Independent Grammatical Evolution - 3 Multiplexer
0.96 T T T T 0.9 T T T T
0.94 q
0.8
0.92 4
0.9 x>é . 07
@
= =
T =
=] YoexX o
e 088 P
@ / @
2 FIOBOCEBRINK 3
4] £
£ F0 L 06
T Y0000 °
= o
8 086 ! PIGE —+——| g
s3] / s 2
< / 3
3 R <
= 00l s
084 ¥ p Z 05 |
X
X
¥
0.82 : q
| 04 F E
¥
0.8 { 4
K
B
0.78 I I I 0.3 I I I I I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Generation Generation
Position Independent Grammatical Evolution - 3 Multiplexer
20 T T T T T T
15

Cumulative Frequency of Success (30 Runs)
>
T

20 25 30 35 40 45 50

Generation

Fig. 8. Plot of the mean best and mean average fitness (top) and cumulative frequency
of success (bottom) on the 3 Multiplexer problem instance.

7wGrammatical Evolution 627

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

Runs are conducted for 50 generations with population sizes of 500, and the
results are provided in Fig. [7]

4.4 3 Multiplexer

The aim with this problem is to discover a boolean expression that behaves as a
3 Multiplexer. There are 8 fitness cases for this instance, representing all possible
input-output pairs. Fitness is the number of input cases for which the evolved
expression returns the correct output. The grammar adopted is given below,
and results are presented in Fig. Bl using a population size of 1000 running for
50 generations, where it can be seen clearly that 7GE outperforms GE.

<mult> ::= guess = <bexpr> ;

<bexpr> ::= (<bexpr><bilop><bexpr>) | <ulop>(<bexpr>) | <input>
<bilop> ::= and | or

<ulop> ::= not

<input> ::= inputO | inputl | input2

Table 1. A comparison of the results obtained for GE and 7GE across all the problems
analysed.

Mean Best Mean Average Successful
Fitness (Std.Dev.) Fitness (Std.Dev.) Runs

Santa Fe ant

mGE 47.47 (10.98) 12.14 (0.44) 1
GE 53.37 (20.68) 12.57 (0.68) 4
Symbolic Regression

©GE .665 (0.42) .123 (0.07) 18

GE 444 (0.4) .076 (0.05) 10
Mastermind

©GE .905 (0.04) .89 (0.001) 14

GE .897 (0.02) .89 (0.003) 7
Multiplexer

mGE .958 (0.06) .861 (0.04) 20

GE .904 (0.05) .828 (0.05) 7

5 Conclusions and Future Work

This study demonstrates the feasibility of the generation of computer programs
using 7GE, and provides evidence to support positive effects on performance
using a position independent derivation sequence over the standard left to right
GE mapping. A comparison of the performance of TGE with GE across all the

628 M. O’Neill et al.

problems presented here can be seen in Table[[l With the exception of the Santa
Fe ant trail problem, 7GE outperforms GE.

The additional degree of freedom provided in evolving the choice of non-terminal
to which a production rule is applied has been demonstrated to have a positive
influence across the majority of problems analysed here.

Looking towards future research on mGE, we wish to analyse derivation sub-
sequence propagation, looking at mutation and crossover events to codon nont
values, and to undertake an analysis of the parallels between 7GE, GAuGE, and
Chorus. We wish to test the hypothesis that the position-independent nature
of the representation might allow the formation and propagation of more useful
derivation subtree building blocks as derivation subsequences can easily move
between non-terminal positions in the derivation sequence.

It would also be interesting to investigate variations on the position independent
mapping theme introduced by wGE, for example, to determine the effects of
restricting position choices to non-terminals of the same type. It is also our
intention to test the generality of the results across a number of additional
problems domains.

Acknowledgements. The authors would like to thank Conor Ryan and Atif
Azad for a discussion on this work.

References

1. O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Kluwer Academic Publishers.

2. O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines, Vol. 4 No. 1. Kluwer
Academic Publishers, 2003.

3. O’Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving
Programs in Grammatical Evolution. PhD thesis, University of Limerick, 2001.

4. O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolutionary
Computation. Vol. 5, No. 4, 2001.

5. Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. Proc. of the First European Workshop on GP,
LNCS 1391, Paris, France, pp. 83-95, Springer-Verlag.

6. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

7. Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press.

8. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Program-
ming — An Introduction; On the Automatic FEvolution of Computer Programs and
its Applications. Morgan Kaufmann.

9. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufmann.

10. Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003). Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers.

11.

12.

13.

7wGrammatical Evolution 629

Ryan, C., Nicolau, M., O’Neill, M. (2002). Genetic Algorithms Using Grammatical
Evolution. Proc. of the 4th Furopean Conference on Genetic Programming, FuroGP
2002, LNCS 2278, pp. 279-288. Springer-Verlag.

Ryan, C., Azad, A., Sheahan, A., O’Neill, M. (2002). No Coercion and No Prohibi-
tion, A Position Independent Encoding Scheme for Evolutionary Algorithms—The
Chorus System. Proc. of the 4th FEuropean Conference on Genetic Programming,
EuroGP 2002, LNCS 2278, pp. 132-142. Springer-Verlag.

Langdon, W.B., and Poli, R. (1998). Why Ants are Hard. In Genetic Programming
1998: Proc. of the Third Annual Conference, University of Wisconsin, Madison,
Wisconsin, USA, pp. 193-201, Morgan Kaufmann.

	Introduction
	Grammatical Evolution
	pi Grammatical Evolution
	Experiments and Results
	Santa Fe Ant Trail
	Quartic Symbolic Regression
	Mastermind
	3 Multiplexer

	Conclusions and Future Work

