
High Classification Accuracy Does Not Imply
Effective Genetic Search

Tim Kovacs1 and Manfred Kerber2

1 University of Bristol, Bristol BS8 1UB, U.K.
kovacs@cs.bris.ac.uk

http://www.cs.bris.ac.uk/˜kovacs
2 University of Birmingham, Birmingham B15 2TT, U.K.

M.Kerber@cs.bham.ac.uk
http://www.cs.bham.ac.uk/˜mmk

Abstract. Learning classifier systems, their parameterisation, and their
rule discovery systems have often been evaluated by measuring classifi-
cation accuracy on small Boolean functions. We demonstrate that by re-
stricting the rule set to the initial random population high classification
accuracy can still be achieved, and that relatively small functions require
few rules. We argue this demonstrates that high classification accuracy
on small functions is not evidence of effective rule discovery. However,
we argue that small functions can nonetheless be used to evaluate rule
discovery when a certain more powerful type of metric is used.

1 Introduction

Much research on Learning Classifier Systems (LCS) has made use of small ar-
tificial data sets to evaluate alternative systems, mechanisms, and parameter
settings. Of these data sets, the venerable 6 multiplexer (a 6-bit Boolean func-
tion) is the most widely used test in the LCS literature [36,33,37,6,13,5,35,25,
11,14,15,10,39,16,18,19,40,9,20,3,8,21]. It has also been used with other machine
learning systems including neural networks [4,2,17,38,5,34], decision trees [30,29],
and the GPAC algorithm [28]. See [25] for a review of some of the earlier work
using the multiplexer. A number of studies have looked at larger multiplexer
functions, e.g. [39,40,22], up to the 70-bit multiplexer [7].

Although some authors have referred to the 6 multiplexer as a difficult task,
section 3 demonstrates that the XCS classifier system with a fixed set of random
rules, of the same number as standardly used by the XCS for this task, reliably
achieves 100% classification accuracy. That is, we discontinue genetic search in
XCS (except for covering) after the initial random rule population has been gen-
erated. We refer to this algorithm as XCS-NGA (XCS-No Genetic Algorithm).
This result clearly demonstrates that good classification accuracy on this task is
not evidence of the efficacy of genetic search. (We note that rule parameters such
as fitness and prediction are updated as usual by the credit assignment system,
and that we are thus dealing with fixed randomly defined regions of the input
space rather than random classification of inputs.)

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 785–796, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

786 T. Kovacs and M. Kerber

The same holds for other small data sets. We demonstrate 98% classification
accuracy with XCS-NGA on the 11-bit multiplexer, although this requires four
times as many rules as normally used by XCS. We suggest any degree of accuracy
can be achieved on any task, given sufficient random rules. We do not suggest this
is a practical approach as the number of rules required scales poorly. However,
we do suggest that this is a useful measure of the difficulty of a given task, and
one which can potentially demonstrate the invalidity of conclusions drawn from
experiments with smaller tasks, for example those with the 6 multiplexer.

Despite this criticism of the use of small tasks, we argue that many con-
clusions drawn from them are valid. For example, comparisons based on small
tasks can demonstrate performance differences between alternative mechanisms
and parameterisations. We demonstrate this in section 3.3 by comparing the
performance of XCS with and without initial populations on the 6 multiplexer.

We further demonstrate in section 4 that an alternative measure of adap-
tation can distinguish between XCS and XCS-NGA on the 6 multiplexer, and
argue that the use of this metric increases the utility of small tests.

2 Method

2.1 XCS

For our experiments we will use XCS [39], which is currently the most widely
used classifier system, and which has shown good results on data mining tasks
(e.g. [31,12]). XCS introduced a number of innovations, foremost among them
its accuracy-based fitness under which rule fitness is related to its classification
accuracy and not the magnitude of the reward it receives as in earlier systems.
For lack of space we do not include the details of the XCS updates, but suffice it
to say that XCS evaluates the prediction and fitness of each rule. Prediction is, for
concept learning tasks such as those we study here, an estimate of the proportion
of inputs matched by the rule which belong to the positive class. Prediction is
used in conflict resolution, when matching rules perform a weighted vote on
the classification of a data point. Accuracy is a measure of the consistency of
prediction. Rules with prediction near the maximum or minimum have high
fitness. Higher fitness rules are allocated more reproductive opportunities by the
genetic algorithm in XCS, and fitness is also factored into the classification vote.

For our experiments we use if-then rules whose conditions are terms in Dis-
junctive Normal Form. Specifically, we use the ternary representation widely
used with classifier systems, in which rule conditions are drawn from {0, 1, #}
and rule actions (classifications) are drawn from {0, 1}. Inputs to the system are
also drawn from {0, 1}. A rule’s condition c matches an environmental input m if
for each character mi the character in the corresponding position ci is identical
or the wildcard (#). For example, the condition 00# matches two inputs: 000
and 001. The wildcard is the means by which rules generalise over environmen-
tal states; the more #s a rule contains the more general it is. Overgeneral rules
are those which misclassify some of the inputs they match. Since actions do not
contain wildcards the system cannot generalise over them.

High Classification Accuracy Does Not Imply Effective Genetic Search 787

If no rule matches the current input, XCS’s covering mechanism is triggered.
This mechanism takes the current input and with probability P# for each bit
flips it to a #, and uses this as the condition for a new rule with a random
classification. XCS may or may not use an initial population of random rules
whose conditions are generated with P# and equiprobable 0s and 1s. The cover-
ing mechanism is used regardless of whether an initial population is used, but,
when P# is not very close to 0, covering is triggered only sparingly and typically
only at the outset of the experiment, even in the absence of an initial population.

2.2 XCS-NGA

Our procedure for learning with random rules, XCS-NGA, uses XCS modified so
that genetic search does not operate on the initial rule population. In all other
respects, XCS-NGA functions as XCS. The adaptive power of this approach lies
in the XCS updates which estimate the prediction and fitness of rules, and weight
classification votes on these two values. In section 3.1 we give some intuition as
to why this approach can be effective.

We could attempt to improve XCS-NGA by restricting the generality of rules
found to be overgeneral, or simply deleting them. However, our aim is not to
propose a practical learning technique but rather to provide a baseline against
which to evaluate other methods.

We note that in experimental results presented later we will quote a certain
number of random rules having been used. In some experiments, some additional
rules will have been generated by covering. In these cases, the same number of
initial random rules will have been removed from the population in order to
make room for the rules generated by covering. In most experiments covering
does not occur, and when it does (typically when the rule set is small) it is not
triggered many times.

2.3 The Multiplexer Tests

The 6 multiplexer is one of a family of Boolean multiplexer functions defined
for strings of length L = k + 2k where k is an integer > 0. The series begins
L = 3, 6, 11, 20, 37, 70, 135, 264, 521 The first k bits are used to encode an
address into the remaining 2k bits, and the value of the function is the value of
the addressed bit. In the 6 multiplexer (k = 2, L = 6), the input to the system
consists of a string of six binary digits, of which the first k = 2 bits (the address)
represent an index into the remaining 2k = 4 bits (the data). For example, the
value of 101101 is 0 as the first two bits 10 represent the index 2 (in base ten)
which is the third bit following the address. Similarly, the value of 001000 is 1
as the 0th bit after the address is indexed.

To use the 6 multiplexer as a test, on each time step we generate a random
binary string of 6 digits which we present as input to the LCS. The LCS responds
with either a 0 or 1, and receives a high reward (1000) if its output is that of
the multiplexer function on the same string, and a low reward (0) otherwise.

788 T. Kovacs and M. Kerber

2.4 Statistics

Classification Accuracy. We make use of Wilson’s explore/exploit framework
[39], in which training and testing interleave, so the learner is evaluated as it is
learning, rather than after it has been trained. Specifically, on each time step we
alternate between explore and exploit modes. In the former we select an action
at random from among those advocated by the set of matching rules. In the
latter we select the action most strongly advocated by the matching rules. We
record statistics only on those time steps in which we exploit (exploit trials).

Wilson defines a measure of performance which he refers to simply as “per-
formance” [39]. Performance is defined as a moving average of the proportion
of the last n trials in which the system has responded with the correct action,
where n is customarily 50. That is, on each time step, we determine the propor-
tion of the last n time steps on which the LCS has taken the correct action. The
performance curve is scaled so that when the system has acted correctly on all
of the last 50 time steps it reaches the top of the figure, and when it has acted
incorrectly on all these time steps it reaches the bottom of the figure.

Macroclassifiers. In addition to performance, on each exploit trial we monitor
the number of macroclassifiers in the population. These are rules with a numeros-
ity parameter indicating the number of identical virtual rules represented by the
macroclassifier. The macroclassifier curves gives us an indication of the diversity
in the rule population and the extent to which it has found and converged on
useful general rules and hence a compact representation of the solution. When
an initial population is used the macroclassifier curve starts a little below the
specified population size limit since a few duplicate rules are likely to have been
generated. This curve can at most reach the population size limit, which would
occur when each rule in the population has a unique condition/action pair. In
the figures shown later, the number of macroclassifiers is divided by 1000 in
order to display it simultaneously with other curves.

2.5 Parameter Settings

For the 6 multiplexer the standard XCS parameter settings from [39] were used:
subsumption threshold θsub = 20, Genetic Algorithm (GA) threshold θGA = 25,
covering threshold θmna = 1, low-fitness deletion threshold δ = 0.1, population
size limit N = 400, learning rate β = 0.2, accuracy falloff rate α = 0.1, accuracy
criterion εo = 0.01, crossover rate χ = 0.8, mutation rate µ = 0.04. Hash proba-
bility P# = 0.3 rather than the standard 0.33 as a study of different values (not
shown) was performed with hash probabilities at regular intervals, and the re-
sults shown are a subset of this study. GA subsumption was used but not action
set subsumption. The original accuracy calculation was used [39]. Rules were
deleted as in [20] with a delay of θdel = 25, and mutated bits had equiprobable
outcomes. Initial random populations were used except as noted.

Parameter settings for the 11 multiplexer differed only in having a population
size of 800 and hash probability of 0.4, to compensate for the larger search space.

High Classification Accuracy Does Not Imply Effective Genetic Search 789

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

f.
an

d
po

p.
 s

iz
e/

10
00

Exploit Trials

1
2

1

2

1 - XCS-NGA
2 - XCS

Fig. 1. XCS and XCS-NGA compared on the 6 multiplexer. The upper two curves
show performance and the lower two show the population size in macroclassifiers.

3 The Difficulty of Small Boolean Functions

In this section we evaluate XCS and XCS-NGA empirically on the 6 and 11-bit
multiplexer functions and discuss implications of our findings. Fig. 1 compares
XCS and XCS-NGA on the 6 multiplexer. Curves are averages of 100 runs. The
upper two curves show performance and the lower two show the population size
in macroclassifiers (divided by 1000). Although 400 initial rules were generated
for each system, both population size curves start somewhat below this as the
curves show macroclassifiers, and some duplicate rules were generated. Both
systems reach 100% performance, and, perhaps surprisingly, XCS-NGA does so
first. We note that random guessing of class has an expected performance of 50%
on multiplexer tasks, and, given the even class distribution, guessing the majority
class of previously seen inputs will perform somewhat worse than random [32].

Fig. 2 repeats the comparison using the 11 multiplexer. Curves are an average
of 50 runs. XCS-NGA was evaluated with 800 and 3200 rules. In both cases XCS-
NGA initially outperformed XCS. XCS-NGA with 800 random rules ultimately
achieve approximately 86% classification accuracy and with 3200 rules reached
approximately 98%, while XCS eventually reaches 100%. (A larger number of
random rules should do even better, but in a sense 98% is high enough: using
a method with disjoint training and testing data sets, overfitting will occur on
many data sets by the time 98% performance is reached.)

3.1 How XCS-NGA Achieves High Accuracy

Suppose we have a space of data points to be categorised. XCS uses a generate-
and-test approach to classification, which entails two problems: i) rule discovery

790 T. Kovacs and M. Kerber

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4000 8000 12000 16000 20000

P
er

f.
an

d
po

p.
 s

iz
e/

10
00

Exploit Trials

1 3

XCS population size

1 - XCS-NGA 3200 rules
2 - XCS-NGA 800 rules
3 - XCS 800 rules

2

Fig. 2. XCS and XCS-NGA compared on the 11 multiplexer.

and ii) credit assignment. Specifically, XCS addresses problem i) using a GA to
generate fitter rules (regions in the data space), each with an associated class
label. Problem ii) is that of evaluating rule fitness such that more general rules
and rules with higher classification accuracy are fitter. Essentially, rules must be
found which capture many positive data points and few negative ones (or vice
versa). XCS classifies data points by a vote among the rules which match it,
with each vote weighted both by the rule’s fitness. In this way, a point matched
by a low-accuracy rule and a high-accuracy rule is given the classification of the
high-accuracy rule.

In XCS, the rules (region shapes and sizes) are adapted by the genetic algo-
rithm. XCS-NGA lacks a GA and its region shapes and sizes do not change; only
the classification made through voting may change. XCS-NGA relies on there
being enough rules to adequately solve problem i) (rule discovery) by chance.
Of the randomly generated rules, those with low classification accuracy are as-
signed low weights and have less influence in the classification vote than higher
accuracy rules. Roughly speaking, XCS-NGA’s approach is to generate many
random rules and ignore those which happen to have low accuracy. The number
of random rules needed for high classification accuracy on small multiplexers is
low because there are relatively few data points and clustering them into regions
of the same class is easy (using our chosen language).

The difficulty of the rule discovery problem depends on the Kolmogorov
complexity1 of the data set. There is considerable variability in the Kolmogorov
complexity of functions of the same length and representation. For example, with
the language we have used the 6-bit parity functions are much more complex than
the 6 multiplexer, which in turn is considerably more complex than 6-bit constant
functions. Elsewhere, we have demonstrated a strong correlation between the size
1 In simple terms, the shortest possible representation in a given formalism [24].

High Classification Accuracy Does Not Imply Effective Genetic Search 791

of the minimal representation of these functions and their difficulty for XCS [23].
One consequence is that even successful solution by XCS of a large multiplexer,
such as the 70-bit multiplexer [7], does not mean that XCS can solve all 70-bit
functions with comparable effort; quite the opposite. We hypothesise that the
difficulty of a function for XCS-NGA will also correlate with the minimal number
of rules needed to represent the function in a particular language.

XCS-NGA is related to a number of other machine learning algorithms. For
example, CMAC function approximators [1] adapt the weight of each region
in each of multiple partitions of the input space. Partitions may be regular
or generated at random, and XCS-NGA differs essentially only in the details
of how regions are formed. XCS-NGA is also very similar to the Weighted-
Majority algorithm [27], which enumerates all possible concepts and weights
them according to their consistency with the training data. They differ in that
XCS-NGA generates only a random subset of possible concepts.

3.2 Why XCS-NGA Initially Outperforms XCS

It is not clear why XCS-NGA initially outperform XCS, but it may be that XCS
is deleting overgeneral rules which have some value; overgenerals can advocate
the correct action for the great majority of inputs they match. In both XCS and
XCS-NGA, overgeneral rules have low accuracy and hence low weight in action
selection, but nonetheless may have some effect. In XCS, however, low accuracy
results in low fitness and greater likelihood of deletion under the genetic algo-
rithm, and once deleted rules have no effect. Further study of this phenomenon
is warranted, and perhaps improved performance in XCS can be obtained by
allowing it to retain overgeneral rules when no accurate rule matches an input,
or by delaying the application of the GA to the initial population until it has
been better evaluated.

3.3 Implications of High Accuracy of XCS-NGA

Although XCS outperforms XCS-NGA on the 11 multiplexer, it seems likely
that XCS-NGA with a large enough set of random rules would also reach 100%
performance on this function, or indeed any function.

Although we have shown that good performance on the 6 multiplexer with
400 rules does not demonstrate effective genetic search in a classifier system, we
do not claim that the 6 multiplexer is without uses. For example, in section 2.1
we noted that XCS may either use an initial population of rules or rely entirely
on covering to generate rules. Fig. 3 compares XCS with and without an initial
population of 400 rules on the 6 multiplexer, and clearly shows the performance
advantage which occurs with an initial population. Consequently, we argue that
only those studies which claim effective genetic search based on results with
small functions are demonstrated invalid by our results with XCS-NGA.

792 T. Kovacs and M. Kerber

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

f.
an

d
po

p.
 s

iz
e/

10
00

Exploit Trials

1

2

1

2

1 - initial population
2 - no initial population

Fig. 3. XCS with and without an initial population on the 6 multiplexer.

4 A More Powerful Metric for Evaluating Genetic Search

High classification accuracy is usually regarded as the primary goal of a concept
learning system. (Another goal might be human readability.) However, from the
point of view of a researcher engaged in engineering better concept learning
systems, classification accuracy is not a goal in itself, but just an indication
of the relative merit of alternative mechanisms and parameterisations. In this
context, classifier systems researchers often interpret good classification accuracy
as an indication of effective genetic search for good classification rules. However,
our demonstration in section 3 of the high classification accuracy achievable
with XCS-NGA on the 6 and 11 multiplexers indicates that this interpretation
is not justified when the number of rules is high relative to the size of the
problem. This suggests that in order to evaluate the efficacy of genetic search
good classification performance is required with a small number of rules on a
large problem. Unfortunately, this approach requires evaluation of “large” and
“small” in the context of a particular learning system, and running experiments
on large problems is computationally expensive. In this section we demonstrate
use of a metric which provides an alternative to large problems. Experiments
with this metric clearly distinguish the efficacy of genetic search as opposed to
random rules on the 6 multiplexer.

Using the rule language of section 2.1 the most compact description of the 6
multiplexer is a set of 8 rules, each as general as it can be without being overgen-
eral. Because XCS assigns fitness based on rule accuracy it actually finds each
rule and its complement – the rule with the same condition but complementary
action. This forms a set of 16 rules referred to as the optimal solution due to the
optimal generality of each rule, and the minimality of the set.

High Classification Accuracy Does Not Imply Effective Genetic Search 793

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

P
er

f.
an

d
%

[O
]

Exploit Trials

XCS performance

XCS %[O]

XCS-NGA %[O]

Fig. 4. Proportion of the optimal solution on the 6 multiplexer.

The proportion of the optimal solution in the rule population on a given time
step, denoted %[O], has been used as a measure of the progress of genetic search.
In [20] it was shown to have greater discriminatory power than the performance
metric of section 2.4, and we will show that it can discriminate between XCS
and XCS-NGA on the 6 multiplexer. Fig. 4 shows the performance of XCS and
the %[O] of both XCS and XCS-NGA on this task. Curves are averages of 100
runs. While XCS-NGA contains a fixed proportion of approximately 20% of the
optimal population, the proportion of this set grows in XCS until it reaches 100%
(indicating all 16 rules occur in the population). Similarly, Fig. 5 compares %[O]
for XCS and XCS-NGA on the 11 multiplexer, averaged over 50 runs. The size
of the optimal solution for this function (including complementary rules) is 32.
In this case XCS-NGA contains a much smaller proportion of the optimal set
than in the 6 multiplexer because on the 11 multiplexer the optimal rules form
a smaller proportion of the set of all rules.

Clearly this metric is better able to discern the progress of genetic search than
the performance metric. We argue that using this metric extends the utility of
small tests. However, we note that, as discussed in [22], %[O] has disadvantages
including the need to compute the optimal solution in advance, the computa-
tional expense of evaluating it, and the complication that some functions have
multiple optimal solutions (alternative minimal solution sets). These features
make it difficult or impossible to apply %[O] to some tasks. In such cases mea-
suring the population size in macroclassifiers or plotting mean rule generality
can somewhat compensate for the lack of %[O], as decline of the former and rise
of the latter both imply effective genetic search. Finally, replacing the GA with
an iterative random rule generator would provide a baseline against which to
compare genetic search.

794 T. Kovacs and M. Kerber

20

40

60

80

100

0 4000 8000 12000 16000 20000

P
er

f.
an

d
%

[O
]

Exploit Trials

1

2 1 - XCS-NGA performance
2 - XCS performance

XCS %[O]

XCS-NGA %[O]

Fig. 5. Proportion of the optimal solution on the 11 multiplexer.

5 Conclusion

With XCS-NGA we have demonstrated that adapting the prediction and fitness
of a fixed set of random rules reliably achieves 100% classification accuracy on
the 6 multiplexer even when we only use as many rules as are standardly used
to solve this task with XCS. This illustrates the danger of interpreting good
classification accuracy on small tasks as indicative of successful genetic search.
We have demonstrated the very high classification accuracy of XCS-NGA on the
11 multiplexer, and suggest that arbitrarily high accuracy can be achieved on
any concept learning task given enough random rules. Given these results, we
suggest that XCS-NGA can provide a useful baseline for classification accuracy.

We have demonstrated that, in contrast to performance, an alternative metric
based on the proportion of the optimal solution present in the rule population
clearly distinguishes the performance of fixed random rules and genetic search.

As a final point, we note that the use of small tasks is limited neither to
classifier systems nor to artificial data sets. Although most data sets in the
very widely used UCI repository of machine learning data sets [26] have larger
attribute spaces than the 11-multiplexer studied here, many have fewer data
points. Consequently a reasonable number of random rules seems likely to per-
form well on those data sets just as they do on those tested here.

References

1. J. S. Albus. A new approach to manipulator control: the cerebellar model articu-
lation controller (CMAC). Journal of dynamic systems, measurement and control,
97(3), 1975.

2. C. W. Anderson. Learning and Problem solving with multilayer connectionist sys-
tems. PhD thesis, University of Massachussetts, Amherst, MA, USA, 1986.

High Classification Accuracy Does Not Imply Effective Genetic Search 795

3. Alwyn Barry. XCS Performance and Population Structure within Multiple-Step
Environments. PhD thesis, Queens University Belfast, 2000.

4. A. G. Barto, P. Anandan, and C. W. Anderson. Cooperativity in networks of
pattern recognizing stochastic learning automata. In Proceedings of the Fourth
Yale Workshop on Applications of Adaptive Systems Theory, pages 85–90, 1985.

5. Pierre Bonelli, Alexandre Parodi, Sandip Sen, and Stewart Wilson. NEWBOOLE:
A Fast GBML System. In International Conference on Machine Learning, pages
153–159, San Mateo, California, 1990. Morgan Kaufmann.

6. Lashon B. Booker. Triggered rule discovery in classifier systems. In J. David
Schaffer, editor, Proc. 3rd International Conference on Genetic Algorithms (ICGA-
89), pages 265–274, George Mason University, June 1989. Morgan Kaufmann.

7. Martin Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson. Toward a
theory of generalization and learning in xcs. To appear in the IEEE Transactions
on Evolutionary Computation, 2004.

8. Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann. Investigating Gen-
eralization in the Anticipatory Classifier System. In Proceedings of Parallel Problem
Solving from Nature (PPSN VI), 2000. Also technical report 2000014 of the Illinois
Genetic Algorithms Laboratory.

9. Henry Brown Cribbs III and Robert E. Smith. What Can I do with a Learning
Classifier System? In C. Karr and L. M. Freeman, editors, Industrial Applications
of Genetic Algorithms, pages 299–320. CRC Press, 1998.

10. Bart de Boer. Classifier Systems: a useful approach to machine learning? Master’s
thesis, Leiden University, 1994.

11. Kenneth A. De Jong and Willliam M. Spears. Learning Concept Classification
Rules Using Genetic Algorithms. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 651–656, Sidney, Australia, 1991.

12. Phillip William Dixon, David W. Corne, and Martin John Oates. A preliminary
investigation of modified xcs as a generic data mining tool. In Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors, Advances in Learning Clas-
sifier Systems, volume 2321 of LNAI, pages 133–150. Springer-Verlag, Berlin, 2002.

13. David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

14. David Greene and Stephen Smith. COGIN: Symbolic induction using genetic algo-
rithms. In Proceedings 10th National Conference on Artificial Intelligence, pages
111–116. Morgan Kaufmann, 1992.

15. David Greene and Stephen Smith. Using Coverage as a Model Building Constraint
in Learning Classifier Systems. Evolutionary Computation, 2(1):67–91, 1994.

16. John H. Holmes. Evolution-Assisted Discovery of Sentinel Features in Epidemio-
logic Surveillance. PhD thesis, Drexel University, 1996.

17. R. A. Jacobs. Increased rates of convergence through learning rate adaptation.
Neural Networks, 1:295–307, 1988.

18. Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Master’s
thesis, University of Birmingham, 1996.

19. Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and
Minimal Representations for Boolean Functions. In Roy, Chawdhry, and Pant,
editors, Soft Computing in Engineering Design and Manufacturing, pages 59–68.
Springer–Verlag, London, 1997.

20. Tim Kovacs. Deletion schemes for classifier systems. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, GECCO-
99: Proceedings of the Genetic and Evolutionary Computation Conference, pages
329–336. Morgan Kaufmann, 1999.

796 T. Kovacs and M. Kerber

21. Tim Kovacs. What should a classifier system learn? In Proc. of the 2001 Congress
on Evolutionary Computation (CEC01), pages 775–782. IEEE Press, 2001.

22. Tim Kovacs. Strength or Accuracy: Credit Assignment in Learning Classifier Sys-
tems. Springer, 2004.

23. Tim Kovacs and Manfred Kerber. What makes a problem hard for XCS? In
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, Advances
in Learning Classifier Systems, LNAI 1996, pages 80–99. Springer–Verlag, 2001.

24. Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 1997.

25. Gunar E. Liepins and Lori A. Wang. Classifier System Learning of Boolean Con-
cepts. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms (ICGA-91), pages 318–323, San Mateo,
CA, 1991. Morgan Kaufmann Publishers.

26. Christopher Merz and P. M. Murphy. UCI Repository of Machine Learning
Databases. http://www.ics.uci.edu/˜mlearn/MLRepository.html Irvine, CA: Uni-
versity of California, Department of Information and Computer Science, 1997.

27. Tom M. Mitchell. Machine Learning. McGraw–Hill, 1997.
28. E. M. Oblow. Implementing Valiant’s Learnability Theory using Random Sets.

Technical Report ORNL/TM-11512R, Oak Ridge National Laboratory, 1990.
29. G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Ma-

chine Learning, 5(1):71–100, 1990.
30. J. R. Quinlan. An empirical comparison of genetic and decision-tree classifiers. In

Proc. of the Fifth Int. Machine Learning Conference, pages 135–141, 1988.
31. Shaun Saxon and Alwyn Barry. XCS and the Monk’s Problems. In Pier Luca

Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier
Systems. From Foundations to Applications, volume 1813 of LNAI, pages 223–242,
Berlin, 2000. Springer-Verlag.

32. Cullen Schaffer. A conservation law for generalization performance. In Haym Hirsh
and Willian W. Cohen, editors, Machine Learning: Proc. of the Eleventh Interna-
tional Conference, pages 259–265, San Francisco, CA, 1994. Morgan Kaufmann.

33. Sandip Sen. Classifier system learning of multiplexer function. The University of
Alabama, Tuscaloosa, Alabama. Class Project, 1988.

34. Robert E. Smith and H. Brown Cribbs. Is a Learning Classifier System a Type of
Neural Network? Evolutionary Computation, 2(1):19–36, 1994.

35. L. A. Wang. Classifier System Learning of the Boolean Multiplexer Function.
Master’s thesis, Computer Science Dept., University of Tennessee, Knoxville, 1990.

36. Stewart W. Wilson. Classifier Systems and the Animat Problem. Machine Learn-
ing, 2:199–228, 1987.

37. Stewart W. Wilson. Bid competition and specificity reconsidered. Complex Sys-
tems, 2:705–723, 1989.

38. Stewart W. Wilson. Perceptron Redux: Emergence of Structure. Physica D, pages
249–256, 1990.

39. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Compu-
tation, 3(2):149–175, 1995.

40. Stewart W. Wilson. Generalization in the XCS classifier system. In John Koza et
al., editors, Genetic Programming 1998: Proceedings of the Third Annual Confer-
ence, pages 665–674. Morgan Kaufmann, 1998.

	Introduction
	Method
	XCS
	XCS-NGA
	The Multiplexer Tests
	Statistics
	Parameter Settings

	The Difficulty of Small Boolean Functions
	How XCS-NGA Achieves High Accuracy
	Why XCS-NGA Initially Outperforms XCS
	Implications of High Accuracy of XCS-NGA

	A More Powerful Metric for Evaluating Genetic Search
	Conclusion

