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Abstract. The need for effective testing techniques for architectural level de-
scriptions is widely recognised. However, due to the variety of domain-specific
architectural description languages, there remains a lack of practical techniques
in many application domains. We present a simulation-based testing framework
that applies optimisation-based search to achieve high-performance testing for a
type of architectural model. The search based automatic test-data generation
technique forms the core of the framework. Matlab/Simulink is popularly used
in embedded systems engineering as an architectural-level design notation. Our
prototype framework is built on Matlab for testing Simulink models. The tech-
nology involved should apply to the other architectural notations provided that
the notation supports execution or simulation.

1 Automatic Testing at the Architecture Level

Software testing is an expensive procedure. It typically consumes more than 50% of
the total development budget [1]. Failure to detect errors can result in significant
financial loss or even disaster in the case of safety critical systems. Complete testing
is impossible due to the huge input spaces involved. It is desirable, therefore, to seek
techniques that will achieve testing rigour (i.e. be effective) at an acceptable cost (i.e.
be efficient).

Test-data generation is one of the most tedious tasks in the software testing proc-
ess. As system size grows, manual test-data generation places a great strain on re-
sources (both mental resources and budget). This problem becomes especially serious
when developers want to achieve sufficient confidence in system rigour. Automated
test-data generation is one way forward to solve this problem and to increase testing
efficiency. Automation lies at the heart of our proposed research.

The modern aim of ‘testing’ is to discover faults at the earliest possible stage be-
cause the cost of fixing an error increases with the time between its introduction and
detection. Thus high-level models have become the focus of much modern-day veri-
fication effort and research. Matlab/Simulink is a widely used notation in dynamic
systems development industry that allows models to be created and exercised. Mat-
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lab/Simulink models can be architectural level designs of software systems. The
simulation facilities allow such models to be executed and observed. This property of
Simulink turns out to be an advantage for effective dynamic testing. We are aware
that Matlab itself provides a ‘Simulink Performance Tool Set’, which aids auto test-
ing. However it’s functionality is restricted to only measuring test completeness. In
this work, we focus on automatically generating effective test-data for testing Mat-
lab/Simulink models. Other authors have recognized the practical significance of such
modeling and the need to provide assurance information automatically, e.g. the worst
case execution times for such models [11].

An adequacy criterion is a criterion that defines what constitutes an adequate test-
set [5]; it provides a measure of how effective a given test-set is. The ability to com-
pare test-sets allows the tester to identify how to add tests to an existing set to im-
prove effectiveness of the overall set. (Additional tests should lead to an improvement
in the measure of effectiveness.) [5] introduced different types of test adequacy crite-
ria; these can be generally categorized as: structural-based, fault-based and error-
based. Some types of adequacy criteria are more suitable than others on particular
problems. Generally, different adequacy criteria are complementary and are often
combined in practice.

Code level coverage criteria are explained in [5]. However, these can be adapted to
specification and architecture level testing too. Our work is concerned with interpre-
tations of widely used structural coverage criteria. We implemented an automatic test-
data generation tool to cover particular paths of Simulink models. Combined with
random test generation, this tool enables efficient automation of structural coverage
test-data generation. The construction of the structural coverage test generation tool is
detailed in the next section.

2 Search Based Automatic Test-Data Generation

Test data generation has been a very successful branch of search based software
engineering. Most work however, has been at the code level (e.g. [2,6,8.9,
11,12,13,14]). The reader is referred to the authoritative survey [18] for a thorough
overview of the field. Below we explain how we implemented the automatic
structural coverage test-data generation tool for testing Simulink models. First, we
give some background on Simulink and then describe our strategies for applying the
test-data generation technique.

Simulink Introduction. Simulink ' is a software package for modelling, simulating,
and analysing system-level designs of dynamic systems. Simulink models/systems are
made up of blocks connected by lines. Each block implements some function on its
inputs and outputs the results. Outputs of blocks form inputs to other blocks (repre-
sented by lines joining the relevant input/output ports). Models can be hierarchical.

! Developed by the MathWorks Inc: http://www.mathworks.com.
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Each block can be a subsystem comprising other blocks and lines. Fig. 1 is a simple
Simulink model.

Simulink models have their special way of forming branches compared to pro-
grams. Basically Simulink uses the ‘Switch’ block or its derivatives, like the ‘Mul-
tiport Switch’ block, to form branches. A ‘Switch’ block has three ‘in’ ports, one
‘out’ port and there is a threshold value associated with the block. When the value of
the second ‘in’ port is greater than or equal to the threshold parameter, the output will
equal to the value carried on the first ‘in’ port, otherwise the value carried on the third
‘in” port will be channelled through to the output. Therefore a ‘Switch’ block can map
to an ‘if ... then ... else’ branching structure in code.

Simulink models execute (calculate the outputs of) all branches of the models,
whether the branches are selected or not, while for programs, only the selected
branches are executed. For example, the following code matches the model in Fig. 1.
In the Simulink model, both ‘x—y’ and ‘y—x’ are calculated although only one of these
results is channelled through to the output by the ‘Switch’ block. However, in the
code, only one of them will be executed depending on the evaluation of the predicate

(x>=y).

program calculation;
input x,v;
output z;

begin
if x>=y
z = X-Yy;
else
zZ = y-X;
end;

> =
n=
) sH
Relationa
Operatar

Sinitch

2

o <1
—b._

Fig. 1. An example of a Simulink model

Simulink is generally used for designing embedded systems — of which a signifi-
cant feature is that they maintain state. The systems have continuous inputs and out-
puts and the execution step is controlled by some timer trigger, e.g. a step size can be



1416 Y. Zhan and J. Clark

1 millisecond. Therefore, for the model in Fig. 1, the input to the system over n time
steps should be a sequence < (x, y,), (x, ¥,), ... (x,, ¥,) >, and the corresponding out-
put should also be a sequence < z,, z,, ... z, >.

Interpreting a Test-Data Generation Problem as a Search Problem. In the pro-
totype tool implementation we consider only models whose branching blocks are
‘Switch’ blocks. A requirement for the generation of a particular structural coverage
test input comprises specifying a subset of all ‘Switch’ blocks involved together with
the required condition values (satisfied or unsatisfied). We can consider such a re-
quirement as the equivalent of a ‘sub-path’ coverage requirement in programs. A
single test-data generation requirement for the model in Fig. 22 might be: Switch2 =
satisfied, Switch3 = unsatisfied (which means the outcome of block ‘Productl’ is
channelled through ‘Switch2’, and the outcome of block ‘Switch2’ is channelled
through ‘Switch3’ to the final output). Some combinations of ‘Switch’ conditions
may be over-restrictive, e.g. in Fig. 2, if we require that ‘Switch3’ predicate is to be
satisfied, which means the first (top) input of it is put through to the output, it is over-
restrictive to specify weather block ‘Switch2’ is to be satisfied or not because the
outcome of ‘Switch2’ would not affect the model outcome anyway. Over-restrictive
combinations may also be infeasible.

Fulfilment of structural adequacy criteria will require a test-set to exercise identi-
fied combinations of ‘Switch’ predicates. We may impose a simple ‘branch coverage’
criterion (each branch of a ‘Switch’ must be exercised by at least one test input vec-
tor) through to ‘exhaustive coverage’ of each possible combination of ‘Switch’ predi-
cates (we shall term this all-paths-coverage).

The automatic test-data generation for satisfying each path coverage requirement is
fairly straightforward. Firstly, we need to locate the ‘Switch’ blocks listed by the
coverage requirement in the model and insert probes into the second input signal/line
of those ‘Switch’ blocks. (The purpose of inserting probes is to view the runtime
values of those points and use the information collected to direct moves of the test-
data search. Therefore the probes are inserted by connecting the signal to an ‘Outport’
block for observation.) The second step is to design the cost-function to evaluate the
quality of an input test-datum according to three types of information: path require-
ment (satisfiability of ‘Switch’ blocks), threshold parameter value for each ‘Switch’
block, and values observed by probes. Detailed cost function construction will be
described in the next sub-section. Then we need to apply dynamic search procedure
to search for desired test-data. The search will be based on the simulation of models
with candidate test-data as inputs. Each simulation provides information about how
good the current candidate test-datum is. The usage of the optimisation search tech-
niques will be detailed in sub-section after the next.

2 The ‘Threshold’” parameter of all three ‘Switch’ blocks in the figure has value ‘0.
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Fig. 2. Simulink model branching structure

Cost Function Design. We wish to guide the search towards test-data that causes
identified ‘Switch’ block branches to be taken. With each ‘Switch’ block we call the
‘Threshold’ parameter ‘para’. If the run-time value ‘Vp’ of the second input port
(whose value our probe monitors) of the ‘Switch’ block satifies ‘Vp = para’ then
input port 1 is selected for output. If “Vp < para’ then input port 3 is selected. For any
such identified condition, we can associate a cost indicating how far the current data
is from satsifying the condition. Thus, if we require ‘Vp=>20’, say, then a ‘Vp’ value
of 0 should have greater cost than a “Vp’ value of 19, since the latter ‘nearly’ causes
the required predicate to be true, and the former clearly does not. The cost function
encoding scheme we apply for such relational predicates is illustrated in Table 1.
Similar approaches have been used by Korel [9], Tracey et al. [6], Wegener et al.
[11], Jones et al. [8] etc. But cost function encoding for logical operations also needs
to be defined because when combining all the branching requirements together, we
need to calculate the cost of a conjunction of various relational predicates. In general
(with models that maintain state) a test-datum will comprise a sequence of consecu-
tive test inputs <77,,..., TI > over k time steps. We will need to evaluate this sequence
based on the degree of achievement of goals at each step. We need our goal (predi-
cate) to be met at any step and so need to evaluate the cost of a disjunction of predi-
cates. Bottaci [2] suggested a set of cost function encodings for logical operations that
can be more accurate in reflecting the fitness of test-data compared to that of other
researchers. We adapt his idea for our application as shown in Table 1.
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Table 1. Cost function encoding method

Predicate Value of Cost Function F
Boolean if TRUE then 0, else maxcost
E <E, if E,—E,<OthenO,else E,—E, +3
E <E, if E,—E,<0then0,else E, - E,
E >E, if E,—E,<OthenO,else E,—E, +9
E 2E, if E,—E <0thenO,else E,-E,
if Abs(E, — E,) = 0 then 0, else Abs(E
El — E2 1 2 _E) 1
2
E #E, if Abs(E, — E,) # 0 then 0, else K
E, v E, (E, unsatisfied, E, unsatisfied) (cost (£,) x COSE éb;z)))/(COSt (E)) + cost
2
E, v E, (E, unsatisfied, E, satisfied) 0
E, v E, (E, satisfied, E, unsatisfied) 0
E, v E, (E, satisfied, E, satisfied) 0
E, A E, (E, unsatisfied, E, unsatisfied) cost (E,) + cost (E))
E, A E, (E, unsatisfied, E, satisfied) cost (E)
E A E, (E, satisfied, E, unsatisfied) cost (E,)
E, A E, (E, satisfied, E, satisfied) 0

Here is an example of using the above encoding scheme (see the model in Fig-
ure 3):

Assume that:

The testing requirements are: Switchl to be unsatisfied, Switch2 to be satisfied;

Threshold parameters are: Switchlpara = 100, Switch2para = 50;

Input: stepl: Inl =5, In2 = 10; step2: Inl = 10, In2 = 100; step3: Inl = (-10), In2
=50.

Therefore, the probes observed for the three steps should be:

Stepl: Switchlprobe = 15, Switch2probe = 15;

Step2: Switchlprobe = 110, Switch2probe = (-90);

Step3: Switchlprobe = 40, Switch2probe = 40.

o [N m—
—-—
In1
Switch1
< -
W+
- Out1
Switch2
Z
In2 -
s
L

Fig. 3. Simulink model for cost function encoding scheme demonstration
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The total cost of this test case will be:

cost(((15<100)A(15>=50)) v ((110<100)A(-90>=50)) v ((40<100)A(40>=50)))

C,=cost((15<100)A(15>=50))=35;

C,=cost((110<100)A(-90>=50))=(10+140)=150;

C,=cost ((40<100)A(40>=50))=10;

Cost=(C, C,C)/(C,C+C,C+C,C,)=7.39%4.

We have carried out multi-step evaluation for illustration only. (The system obvi-
ously has no feedback within it, so a sequence of length 1 would be entirely appropri-
ate in practice). As a result of such cost function encoding scheme, the test-data gen-
eration problem can be interpreted as a search for a test-datum that can minimize the
underlying cost function. The target is zero. Next we provide a brief outline of the
optimization technique we used — simulated annealing, and its application details.

Optimization Techniques. In this framework, we have used the well-established
technique of simulated annealing [7] to search for the desired test-data. Simulated
annealing is a global optimization heuristic that is based on the local descent search
strategy. The annealing algorithm we apply is shown below.

Select an initial solution festData,;
Select an initial temperature #,>0;
Select a temperature reduction function o(=0.9 here);
Repeat
Repeat
Generate a move festData € N(testData,);
0= fltestData) — f(testData,);
If 6 <0
Then testData, = testData;
Else
Generate random x uniformly in the range (0, 1);
If x < exp(-0/1) then testData, = testData;
Until innerLpCount = maxInnerLpNo or f(testData)satisfies the requirement;
Sett= a(?);
Until outerLpCount = maxQOuterLpNo or nonAcceptCount = maxNonAcceptNo or
fltestData,) satisfies the requirement.
testData,is the desired test-data if f(testData,) satisfies the requirement.

The initial solution is usually randomly generated. Then the search keeps generat-
ing, considering and possibly moving to local neighborhood solutions of the current
solution. A move is accepted if it improves the evaluation of the cost function. A
worsening move may also be accepted probabilistically in a way that depends on the
temperature ¢ in the search. The higher the temperature is, the easier a worsening
solution can be accepted. Initially the temperature is high and a lot of worsening so-
lutions may be accepted. As the time passes by, the temperature drops and eventually
it ‘freezes’ and therefore no worsening solutions can be accepted. A number of moves
are considered at each temperature. If no move has been accepted for some time then
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the search halts. For a problem that does not require reaching global optima, the
search procedure halts at any time when a satisfactory solution is found.

Interested readers are referred to [15], [7] and [10] for more details about the anneal-
ing algorithm. In our application a move effectively perturbs the value of one of the
inputs in the current test sequence by a value less than or equal to 1 percent of the
range of the input. We applied a geometric cooling rate of 0.9. The number of at-
tempted moves at each temperature was 500, with a maximum of 100 iterations (tem-
perature reductions) and a maximum number of 30 consecutive unproductive itera-
tions (i.e. with no move being accepted). These parameters may be thought to be on
the ‘small’ side, but the computational expense of simulation requires us to make
pragmatic choices.

3 Automating Structural Coverage Test Generation

In terms of structural coverage, we evaluate test-sets by assessing the percentage of
paths being covered by the tests. As has been explained in section 2, in Simulink, the
branches are typically caused by ‘Switch’ blocks. (We exclude the usage of the other
branching blocks in this prototype framework.) Therefore the all-paths-coverage can
be defined as having all combinations of the ‘Switch’ block satisfaction conditions
being covered. For example, in Fig. , there are altogether four full paths®. They are:

1) ‘Switch1’=satisfied and ‘Switch2’=satisfied;

2) ‘Switch1’=satisfied and ‘Switch2’=unsatisfied;

3) ‘Switch1’=unsatisfied and ‘Switch2’=satisfied;

4) ‘Switch1’=unsatisfied and ‘Switch2’=unsatisfied.

A test-set having 10 test cases but covering only path 1) and 3) would be evaluated
as having 50% path coverage. By this means, we can evaluate the structural coverage
capability of test-sets by running all the test cases within the underlying test-set
against the model under test and recording the paths being covered by those test
cases. The more paths can be covered, the better the test-set is.

There are usually multiple test cases executing the same path in a random test-set.
For the sake of efficiency, we may want to remove the test cases that can not increase
the structural coverage of the test-set. For our all-paths-coverage testing, each test
case covers one and only one full path. So the redundant test case removal is straight-
forward. For less stringent sub-path coverage requirements (e.g. the equivalent of
‘branch coverage’) test-set reduction may be more sophisticated.

To efficiently automate the structural coverage test data generation, we propose to
combine the random test-data generation and our targeted test-data generation to-
gether, which means we generate a moderate sized random test-set and check the
coverage capability of it first, then use our automatic targeted test-data generation
tool to generate test-data that can cover those paths which were not covered by the

3 A full path specifies the branching preference of all ‘Switch’ blocks, while a sub-path speci-
fies the branching preference of only a subset of the ‘Switch’ blocks in the model. A sub-
path coverage test requirement is less stringent than a full path coverage requirement.
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initial random set. We use random testing because it generally can achieve a certain
amount of coverage at a very low cost (cheaper than applying the optimization based
search technique). For those paths that are difficult to be covered by the random test-
set, we use our instrumented test-data generation tool, expecting to find the desired
test-data quicker than random search.

Since our test-data generation tool is geared towards the ‘hard’* targeted testing
aims, To demonstrate its effectiveness and efficiency, we compare it with random
test-data generation in both the coverage capability and the number of test cases tried
during the searching of test-data.

In the experiment, we automatically generate a random test-set of the size’ that
doubles the path number first. E.g. for a model that has 3 ‘Switch’ blocks, and there-
fore has 8 full paths, we generate a random test set of the size of 16. Then we mark
the paths that the random set can cover. For those paths that are not covered by the
random test-set under evaluation, we use our automatic test-data generation tool to
generate test-data to cover them and increase the structural coverage of our test-set.

Therefore we compare both the coverage capability and the number of test cases
tried during the searching of test-data. The comparison results are recorded in Table
2. We tried both approaches (random test generation and simulated annealing search
based test generation) on 4 models: ‘SmplSw’, ‘Quadratic’, ‘RandMdl’, and ‘Com-
bine’. All the models used are hand-crafted and designed for providing hardness in
generating test-data for covering some paths. In the table, for model ‘Quadratic’, we
generate a random test set with 16 test cases, and it covered 3 paths. For the remain-
ing 5 paths, we use both simulated annealing approach and random approach to gen-
erate test data that can cover them, attempting each path execution aim in turn.
Simulated annealing on its own used 1,641 cases and random approach tried 25,377
cases. Both approaches reached a full coverage eventually. Therefore the total test
case number used by each of them are 1,657 and 25,393 respectively (16 cases from
the initial random set).

For each path execution aim up to 50,000 tests were allowed (both for annealing
and for random generation). Therefore there are some paths that cannot be reached
within our effort allowance for model ‘RandMdl’ and ‘Combine’.

Our observation is that the first model ‘SmplSw’ is rather straightforward for lo-
cating test-data. All paths can be covered by the initial small random test set of 8 test
cases. And there was no need to use the our instrumented test generation tool. How-
ever the next three models present greater difficulty. Our instrumented test-data gen-
eration approach achieved greater coverage with fewer executions. We noticed that
for the ‘Combine’ model, there are a couple of paths that failed to be covered by our
search-based test-data generation in the batch run. For these two paths, we tried to run
our search-based test-data generation once again and found out that both desired

4 By ‘hard’ we mean those testing aims that are difficult to be covered by a random test-set.
> The optimal size of the initial random test-set varies from model to model. Research needs to
be done to investigate how to set this size.
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Table 2. Case study result for the automatic test-data generation tool

Model Model ‘Switch’ SimAnneal Random  SimAnneal = Random

Name Size Block No. Case No Case No Coverage  Coverage
SmplSw 8 blocks 2 8 8 4/4 4/4
Quadratic 15 blocks 3 1,657 25,393 8/8 8/8
RandMdl 14 blocks 4 38,161 347,605 16/16 10/16
Combine 29 blocks 7 1,062,993 3,907,080 126/128 52/128

test-data could be found by this technique within the lengths we allowed to try. The
simulated annealing approach may sometimes result in convergence of a local opti-
mum. In our test-data search, it may result in not being able to provide a satisfactory
solution. To overcome this problem, the approach of repeating the algorithm using
several different starting solutions is suggested.

4 Conclusions and Future Work

The basic aim of this work is to facilitate test automation at the architectural level. We
have adopted a two-pronged attack strategy. The major tool is the automated test
generation facility. This has been applied to generate the architectural equivalent of
structural coverage tests and is entirely automatic. We believe that this can easily be
extended to provide architectural analogues of the various code-level test applications
(e.g. the safety analysis, exception generation and falsification testing of Tracey et al.
[12,13,14]). For example, to carry out safety analysis, safety invariant checkers are
inserted into the model under test as probes. Therefore for different test inputs, we
may observe from the safety invariant checkers how close the test-data comes to
breaking the safety invariant. Such information can direct our optimisation heuristic
search for the test-data. This method can be used at the early stage of system safety
analysis; it may show cheaply (because it is fully automated) that some safety prop-
erty does not hold. However to show rigorously that some safety property holds, we
will have to rely on formal methods or other rigorous techniques.

The second avenue of attack is simply to observe that random test-sets are usually
cheap in achieving a moderate coverage but they contain significant redundancy. We
propose to combine the random test generation with our targeted test generation to
achieve high structural coverage with comparatively low cost. Meanwhile we remove
the redundant test cases from the random set. Currently our full path coverage test
requirement ensures such redundancy removal to be straightforward. As stated in the
text, less stringent requirements will make the redundancy removal a computationally
hard problem. We plan to use optimisation techniques to provide a subset extraction
facility later on. This approach requires only that you know what each test input actu-
ally achieves. The test-data could be generated by any method. Thus, this has the
benefit of being able to be directly applied in almost any industrial test process.
Similar ideas have been applied to regression test-sets [16].
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This framework is conceptually extensible. As has been mentioned in the text, we
intend extending the test-data generation tool to automatically generate test-data that
can detect particular faults. The conceptual framework should extend to other archi-
tectural notations provided that the notation selected supports execution or simula-
tion. Should there be any other advanced optimisation-based search technique or
constraint solving techniques proved to be superior for some problems, such emerg-
ing tools can be easily incorporated. Many interesting questions arise. Can the archi-
tectural level test-data be used for code testing? What kind of refinement needs to be
done? Can the refinement be done automatically? If so, there will be a large payback.
If the developers maintain a fairly straightforward mapping of inputs and outputs
when refining to code then the task is greatly facilitated.

Testing and analysis at the architectural level is now considered a crucial part of
effective software development. We believe that our emerging automated test-data
generation and test-set reduction techniques applied at the architectural level can form
a useful complement to other automated techniques such as model checking and
proofs of correctness.
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