# Computational Complexity

and

## **Evolutionary Computation**

Ingo Wegener, Univ. Dortmund, Germany

## More precisely:

How to apply methods from

complexity theory

and

classical algorithm analysis

to evolutionary computation

Aims: The EC community should know:

there are powerful methods from complexity theory

and analysis of (randomized) algorithms

which can be applied to

evolutionary computation

## But why?

### These methods lead to

- theorems without any assumptions
- theorems on the algorithm and
   not on a model of the algorithm
- theorems for arbitrary problem dimension

## 1. Introduction (survey later)

We discuss search heuristics

(= randomized algorithms)

including EA, ES, GA, GP, Sim. Ann., tabu search

for some kind of optimization

→ Restriction: discrete search spaces

## Different types of problems:

one-shot scenario: one function  $\longrightarrow$  no theory

problem-specific scenario: TSP, scheduling, ...

structural scenario: pseudo-boolean polynomials

degree  $\leq d$ ,  $\leq N$  terms,

positive weights, ...

#### The scenario

Problem: Class of functions

- all linear functions  $f \colon \{0,1\}^n \to \mathbb{R}$
- all TSP-functions

$$f_D(\pi) = \text{cost of tour } \pi$$

w.r.t. distance matrix D

**Instance:** one specific of these functions

```
instance is known (cost matrix for TSP)
                and can be used by the algorithm
Important
               instance is not known
                    (black-box optimization)
                            trivial problem
Needle in the haystack
                            difficult problem
```

Given a problem and an algorithm -

what do we want to know?

The probability distribution of the "state"

of the algorithm depending on t and the instance

→ impossible in non-trivial situations

expected time until good event
 (optimum found) happens
 variance, moments, ...
 success probabilities

— only good estimates are possible

## DON'T TRY TO BE TOO EXACT!

YOU WILL FAIL

## Typical EA-theory approaches:

- → reasonable model, calculation in the model, experiments to "verify" the model
  - ightarrow no result for large problem dimension n
- $\rightarrow$  infinite populations
  - → how to control the error?

- → studying the dynamics of the stochastic process
  - → what is the meaning of the results?
- → studying the one-step behavior (schema theory, quality gain, progress rate, . . . )
  - → what happens in many steps?

- → building block hypothesis
  - → just a nice hypothesis (royal roads)
- → convergence results
  - → I do not have enough time!

DON'T TRY TO BE TOO GENERAL!

RESULTS ARE NECESSARILY BAD

## Methods from complexity theory and

## classical algorithm analysis:

- no assumptions
- results about the algorithm
- only (good) estimates
- error can be controlled

(upper and lower bounds)

- $\longrightarrow$  theorems (!), mathematically proven, for all problem dimensions n and instances
- $\longrightarrow$  useful in 10 or 100 years
- → no verification by experiments
- experiments are useful: what happens between the lower and the upper bound?

## 2. Survey on the rest of the talk

## I Complexity Theory

- 3. NFL scenario vs. realistic scenarios
- 4. Yao's minimax principle -

lower bounds in the black-box scenario

## II Algorithm analysis (with concrete examples)

- 5. The coupon collector's theorem
- 6. Chernoff bounds
- 7. Random walks on plateaus
- 8. Potential functions
- 9. Typical runs

## III Applications to classical problems

- 10. Sorting
- 11. Shortest paths
- 12. Minimum spanning trees
- 13. Maximum matchings

## IV

14. Conclusions

## 3. The NFL scenario vs. realistic scenarios

**NFL-Theorem:** A, B finite. Each randomized search strategy sampling no point twice has on the average of all  $f: A \to B$  the same behavior (expected optimization time, success probability, . . . )

Holds iff class of functions is closed under permutations

The proof is simple – the result is fundamental

- the scenario is not realistic

We never optimize a function without

- a polynomial-time evaluation algorithm  $(a, f) \rightarrow f(a)$
- a short description
- structure on the search space

E.g., 
$$A = \{0, 1\}^{100}$$
 and  $B = \{1, ..., 10000\}$ 

$$\#\{f \mid f \colon A \to B\} = 10000^{2^{100}}$$

Almost all f have a shortest description length of  $\geq 2^{100} \log 10000 - 100$ 

(Kolmogorov complexity → all types of description)

→ almost all functions will never be considered

(the same for permutations on A)

Realistic scenarios are resource bounded

→ no NFL theorem (DJW GECCO'99)

Almost NFL theorem (DJW TCS'02)

Each rand. search heuristic efficient on f (easy to describe) is bad for many g which are easy to describe and closely related to f

The NFL theorem is fundamental and everything has been said on it

Essential arguments were known before in complexity theory

It is time to stop the discussion on NFL

#### Lessons learned

Each rand. search heuristic realizes a certain idea about the structure of the considered problem type and fails if the problem does not have this structure

Knowing  $f(a_1), \ldots, f(a_t)$  (t not too large) has to imply some knowledge where to look for good search points

# 4. Yao's minimax principle — lower bounds in the black-box scenario

The black-box scenario:

Given a class of functions  $F \subseteq \{f : A \to B\}$ .

The function  $f \in F$  to be optimized is unknown

(is chosen by an adversary or "the real world")

→ Search by sampling

```
Step t:

we know a_1, f(a_1), \ldots, a_{t-1}, f(a_{t-1}),

we choose a_t (the prob. distribution to choose a_t)

\rightarrow we obtain f(a_t)

Note that

EA, ES, GA, Sim Ann, ... fit into this scenario
```

We can analyse what is not possible in this setting

- Lower bounds show the limits of all randomized search heuristics

– How can we obtain such lower bounds?

## Yao's Minimax Principle (1978)

(Andy Yao, Turing Award Winner 2001)

Consider black-box optimization as zero-sum game between

Player 1: the algorithm designer

Player 2: the adversary choosing the instance f

Player 1 has to pay 1 \$ for each f-evaluation

#### Condition

- Number of problem instances is finite

Number of deterministic search strategies

is finite (forget repeated tests)

#### The miracle:

Lower bounds for deterministic algorithms imply lower bounds for randomized algorithms

#### **Theorem**

```
The minimal (w.r.t. randomized algorithms A)

maximal or worst-case (w.r.t. problem instances f)

expected optimization time T(A, f))

\geq maximal (w.r.t. prob. dist. p on instances f)

minimal (w.r.t. deterministic algorithms A)

average optimization time T_p(A, f)

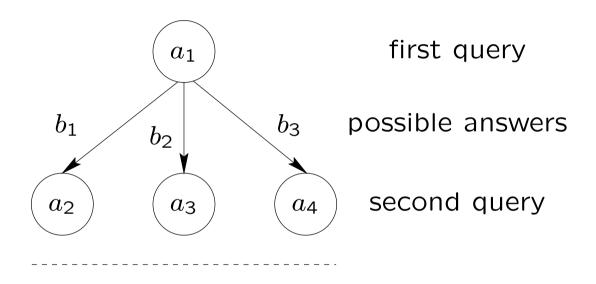
\geq min E(T_p(A, f)) for each p
```

This theorem for two-persons zero-sum games is 50 years old (von Neumann)

The new idea is to consider algorithm design as such a game

Note: We can choose p and have to investigate deterministic algorithms only

Deterministic search strategies are decision trees.



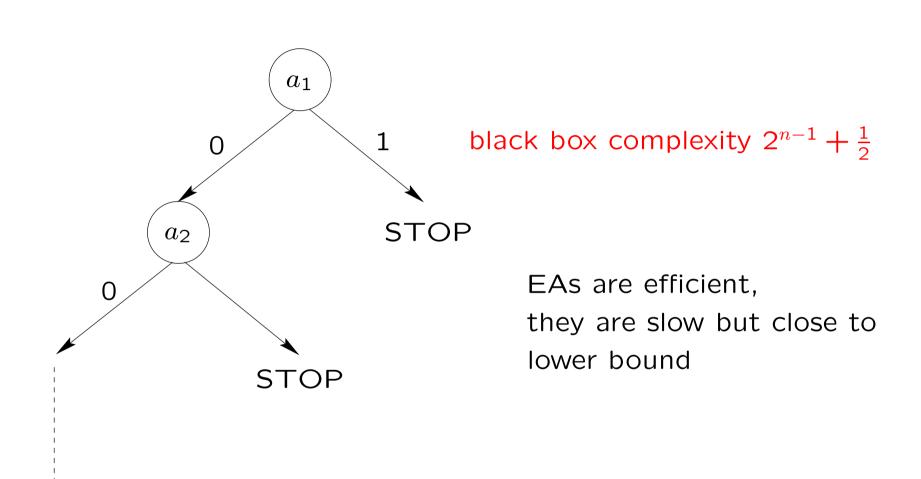
for each f:

optimization time = # nodes on query path until query point is optimal.

Applications (DJTW – FOGA '02) and new

Needle in the haystack

all 
$$f_a(x) = \begin{cases} 1 & x = a \\ 0 & \text{otherwise} \end{cases}$$
 uniform distribution



## Trap

all 
$$f_a(x) = \begin{cases} 2n & x = a \\ \text{ONEMAX}(x) & \text{otherwise} \end{cases}$$

lower bound:  $2^{n-1} + \frac{1}{2}$ 

random search:  $2^{n-1} + \frac{1}{2} \leftarrow \text{optimal}$ 

typical EAs:  $\Theta(n^n) = \Theta(2^{n \log n}) \leftarrow \text{inefficient}$ 

#### Unimodal functions

```
f: \{0,1\}^n \to \mathbb{R} is unimodal iff for all a:
 a is optimal or has a better Hamming neighbor
```

```
Easy: Im(f) image set \Rightarrow expected optimization time of (1+1)EA: O(n \cdot |Im(f)|)
```

(common belief: unimodal  $\Rightarrow$  easy for EAs)

#### But:

Each randomized search heuristic needs for many unimodal functions on average

$$\Omega(|\mathrm{Im}(f)|/n^{\varepsilon})$$
 steps,  $\varepsilon > 0$ .

#### The result ist counterintuitive!?

No, the common belief is based on a too general statement.

Consider randomized long path functions:

$$- p_0 = 1^n$$

- $p_i$  random Hamming neighbor of  $p_{i-1}$
- eliminate loops

$$\longrightarrow f_P(a) = \begin{cases} n+i & a=p_i \\ \text{ONEMAX}(a) \end{cases}$$

 $p_0, \ldots, p_i$  and some points outside P known: no chance to guess  $p_{i+j}$  for some j not too small Now: Algorithm analysis

# 5. The Coupon Collector's Theorem

The best-known analysis of an EA: expected optimization time of (1+1)EA on ONEMAX:  $\Theta(n \log n)$ 

Can we break the  $n \log n$  barrier (for functions with a unique global optimum)?

#### Children's problem:

With each bar of chocolat you get a picture of one of 20 players of one of 18 teams.

How many bars do you expect to buy until you have a complete collection of pictures?

Expected value

$$360\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{360}\right)\approx 2300$$

Better: swap pictures with your friends

In general

$$n\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\approx n\ln n+0.58\ldots n$$

The Coupon Collector's Theorem says this is a sharp threshold result, i.e.,

prob. that  $(1-\varepsilon)n\ln n$  pictures are enough  $\to 0$  exponentially fast prob. that  $(1+\varepsilon)n\ln n$  pictures are not enough  $\to 0$  exponentially fast

expected value is close to be correct (almost always)

Pick the incorrect bits of a random search point  $(\sim n/2)$ , mutation probability 1/n

 $\rightarrow$  time  $n \ln n \pm \Theta(n)$  until all wrong bits have flipped once

One-point crossover:

If you need a crossover at  $\varepsilon n$  given positions:

- ightarrow time  $n \ln n \pm \Theta(n)$  until this has happened
- $\rightarrow$  there is an  $n \log n$  barrier

### 6. Chernoff bounds

```
X_1,\ldots,X_n independent 0-1 random variables X=X_1+\cdots+X_n (number of successes) Prob(X_i=1)=p_i for some 0< p_i<1 \Rightarrow E(X)=p_1+\cdots+p_n 0<\delta<1: Prob (X\leq (1-\delta)\cdot E(X))\leq \mathrm{e}^{-E(X)\delta^2/2}
```

The bounds are close to optimal

Choose  $a \in \{0,1\}^n$  randomly

exp. number of ones: n/2 Prob(#ones  $\leq 0.4n$ ) expo. small Prob(#ones  $\leq n/2-n^{3/4}$ ) weakly expo. small Prob(#ones  $\leq n/2-n^{1/2}$ ) a positive constant

#### **Applications**

Probability of fitness increasing step  $\frac{1}{n}$ 

 $\rightarrow$  almost surely  $\Theta(n^2)$  steps to increase fitness n times

 $\longrightarrow$ 

DO NOT INVESTIGATE SINGLE STEPS –
INVESTIGATE PHASES OF MODERATE LENGTH

We can estimate the prob. of bad events

Mutation prob. 1/n, phase length  $n^2$ 

 $Prob(x_i \text{ has flipped less than } 0.9n \text{ times}$  or more than 1.1n times) = expo. small

$$\mathsf{Prob}(\exists x_i : x_i \dots) \leq n \cdot \mathsf{expo.} \; \mathsf{small} = \mathsf{expo.} \; \mathsf{small}$$

## 7. Random walks on plateaus

```
f:\{0,1\}^n \to \{0,1,\ldots,N\} n=100 N=10^6, 2^{100} search points \to many have the same fitness
```

Plateau 
$$i = \{a | f(a) = i\}$$

Populations sitting on a plateau search for the exit to a higher plateau

Such a search is a random walk – fitness gives no hints

Example 1 (JW - IEEE.Trans on EC, 2000)

$$f(a) = \begin{cases} 2n & a = 1^n \\ n & a = 0^i 1^{n-i} \\ n - \mathsf{ONEMAX}(a) & \mathsf{otherwise} \end{cases}$$

Plateau on level n: a path with n points

$$00000 - 00001 - 00011 - 00111 - 01111 11111$$

It is easy to find the path – then (1+1) EA with mutation probability 1/n:

prob(child on the path) =  $\Theta\left(\frac{1}{n}\right)$  (Chernoff  $\Rightarrow n \cdot \#$  successful steps)

Random walk needs n more steps in the good direction (if starting in  $0^n$ )

Steps of length  $\geq 2$  are "fair"

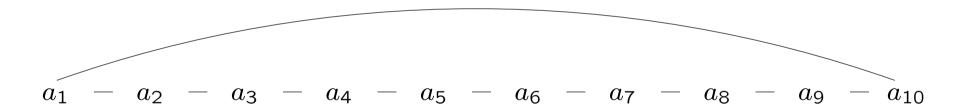
Prob(among  $cn^2$  steps of length 1 are  $\geq \frac{1}{2}cn^2 + \frac{1}{2}n$  in the good direction) =  $\delta > 0$ 

Expected number of phases  $\leq 1/\delta$ 

 $\rightarrow$  Expected optimization time:  $\Theta(n^3)$ 

Example 2 (FW - GECCO'2004)

Ising model (Naudts, von Hoyweghen, Goldberg, . . . difficult because of symmetry)



f(a) = n – number of 2-colored edges

Likely:  $0^i 1^j 0^{n-i-j}$ 

The 0-1-walls take a random walk – until they meet

GAs need niching

$$(1+1) EA O(n^3)$$

## 8. Potential functions

The selection steps of the EA are based on the fitness — may be difficult to analyse — in particular, if we analyse classes of functions, e.g., all linear functions

$$w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

Idea from classical algorithm analysis:

find artificial "fitness" (called potential)
 to measure the progress of the search
 according to the potential function
 (the EA uses still the real fitness)

Difficult: the right intuition to define a suitable potential function

First application in EC theory (DJW - WCCI'98, TCS'02)

Linear functions, w.l.o.g.  $w_1 \ge w_2 \ge \cdots \ge w_n > 0$ 

potential function  $2x_1 + \cdots + 2x_{n/2} + x_{n/2+1} + \cdots + x_n$ 

- $\rightarrow$  a drift analysis is possible
- $\rightarrow \Theta(n \log n)$

#### Also maximum matchings

$$G = (V, E)$$
 undirected graph

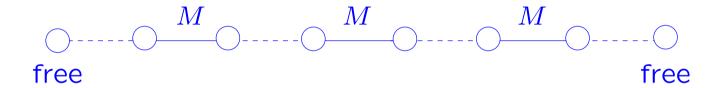
$$E' \subseteq E$$
 matching  $\Leftrightarrow$ 

edges in E' have no vertex in common

Fitness = 
$$\begin{cases} |E'| \text{ for matchings} \\ - \text{ number of forbidden edge pairs} \end{cases}$$

 $\rightarrow$  one of the classical optimization problems in P

#### Theory of augmenting paths



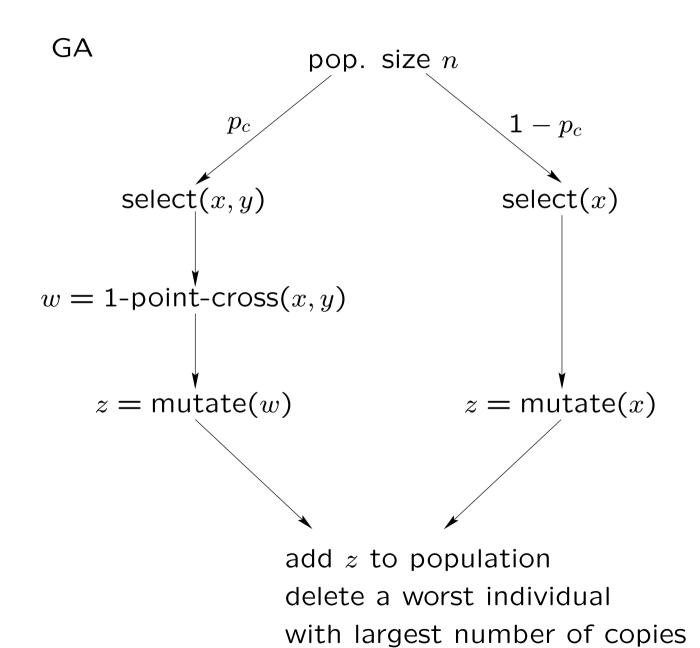
potential function =  $n \cdot \text{fitness} - \text{length of shortest augm. path}$  (results later)

# 9. The analysis of typical runs

Use intuition to describe what typically happens, define phases with well-defined subgoals, estimate the probability that something goes wrong

Example JW - GECCO'01

the first example where provably mutation-based EAs need exponential time and a generic steady-state GA has a polynomial expected optimization time



Condition:  $f(x) \ge f(y) \Rightarrow \text{Prob}(\text{select}(x)) \ge \text{Prob}(\text{select}(y))$ 

Real royal roads

block length 
$$b(a) = \text{length of longest 1-block}$$
 11000101111001  $\rightarrow b(a) = 4$ 

$$f(a) = \begin{cases} 2n^2 & a = 1^n \\ n \cdot \text{ONEMAX}(a) + b(a) & \text{ONEMAX}(a) \le (2/3)n \\ 0 & \text{otherwise} \end{cases}$$

#### Phase 1: all individuals have positive fitness

(Chernoff) 1 + o(1)

Phase 2: optimal individual or

all individuals have (2/3)n ones

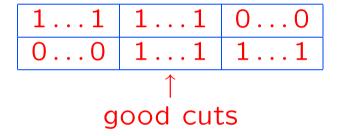
(success probability  $\geq \varepsilon$  for

potential # ones in population)  $O(n^2)$ 

# Phase 3: optimal individual or all individuals have block length (2/3)n (duplicates and 2-bit mutations help for potential sum of block lengths) $O(n^2 \log n)$

Phase 4: optimal individual or population contains all different second-best individuals (2-bit mutations and potential number of diff. second-best ind.)  $O(n^4)$ 

Phase 5: successful search



Choose these individuals for crossover, choose a good cut position and do not flip any bit afterwards  $O(n^2)$ 

## III Applications to classical problems

Does this all work only for toy examples?

No, we investigate well-known problems with polynomial-time problem-specific algorithms

# 10. Sorting (STW - PPSN '02 and new)

- Nobody tries to beat quicksort!
- Here sorting is the maximization of

sortedness in a sequence and

the scenario is the black-box scenario

Well-known measures of sortedness:

- INV( $\pi$ ) (inversions) = number of pairs in incorrect order  $\rightarrow$  minimization
- $\mathsf{HAM}(\pi)$  (Hamming distance) = number of objects at incorrect position  $\to$  minimization
- $RUN(\pi)$  (runs) = number of maximal sorted blocks  $\rightarrow$  minimization

- REM( $\pi$ ) (removals) = minimal number of removals to obtain a sorted subsequence 2 3 7 1 4 5 6 9 8  $\rightarrow$  REM=3
- $\mathsf{EXC}(\pi)$  (exchanges) = minimal number of exchanges to sort the sequence  $\rightarrow$  minimization
- → In black-box scenario five different problems

#### Mutation-based (1+1)EA

- s (Poisson distributed  $\lambda = 1$ )  $\rightarrow s$  local changes
- exchange (i,j)

6 4 1 2 8 7 5 3

jump (i, j)

6 4 8 2 7 5 3 1

INV 
$$O(n^2 \log n)$$
  $\Omega(n^2)$  exchanges, jumps

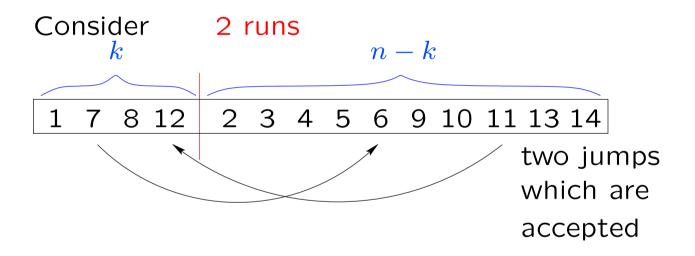
**REM** 
$$O(n^2 \log n)$$
  $\Omega(n^2 \log n)$  jumps

**HAM** 
$$O(n^2 \log n)$$
  $\Omega(n^2)$  exchanges

**EXC** 
$$O(n^2 \log n)$$
  $\Omega(n^2)$  exchanges

typical runs, subgoals, Chernoff bounds, ...

#### What about RUN?



We search on the plateau with fitness 2

Exchanges are almost useless

Jumps can change the lengths of the runs

$$k < n - k$$

k jumps shorten shorter run

n-k jumps lengthen shorter run

Random walk is "unfair" — exponential time

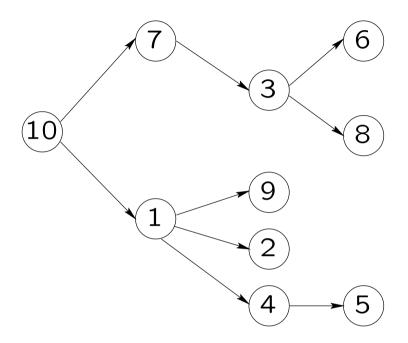
## 11. Shortest paths (STW - PPSN '02)

Single source shortest paths (Dijkstra problem)

Distance matrix

Shortest paths from s = n to all other places i —

how to encode the individuals?



(10, 1, 7, 1, 4, 3, 10, 3, 1) -

vector of direct predecessors

fitness = sum of path lengths

### Yao's minimax principle

 $\longrightarrow$ 

no polynomial-time black-box search heuristic

The problem is a multi-objective

optimization problem

fitness = vector of path lengths

search for Pareto optima w.r.t. to "\le "

$$(l_1, \ldots, l_{n-1}) \le (l'_1, \ldots, l'_{n-1})$$
 iff  $\forall i : l_i \le l'_i$ 

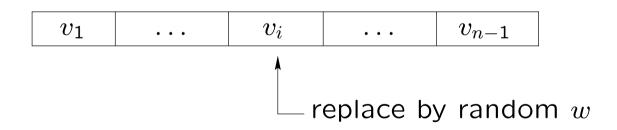
Pareto optimum is unique in this case

### Analysis of mutation-based EA

- again number of local changes s

where s is Poisson distributed  $\lambda = 1$ 

local change



 $\longrightarrow O(n^3)$  with our standard techniques

### 12. Minimum Spanning Trees

(NW - GECCO'2004)

Graphs G = (V, E) on n vertices with m edges.

 $w \colon E \to \mathbb{N}$  weight function.

Find an edge set describing a minimum spanning tree.

```
Search space S = \{0, 1\}^m, i. e., x describes the choice of the edges e_i where x_i = 1.
```

 $f(x) := n \cdot \text{number of connected components} + \text{weight of chosen edges.}$ 

Standard:  $O(m \log n)$  until we have search points describing connected graphs.

Edges in cycles can be eliminated.

Aim: Add a cheap edge which creates a cycle and eliminate a more expensive edge from a cycle.

There can be many of these steps leading to a small improvement

or

there can be few of these steps leading to a large improvement.

A bound for the expected multiplicative weight decrease.

Time bound:  $O(n^2m(\log n + \log w_{\text{max}}))$ .

This bound is best possible for the (1+1) EA.

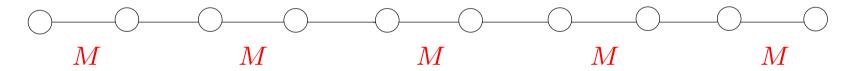
This is much worse than Kruskal's algorithm – but polynomial.

However, the algorithm does not apply any knowledge about the problem.

# 13. Maximum matchings

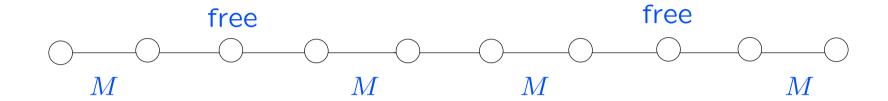
(GW - STACS '03 and new)

A simple case – a path



optimal solution

perhaps algorithm finds a matching of size 4

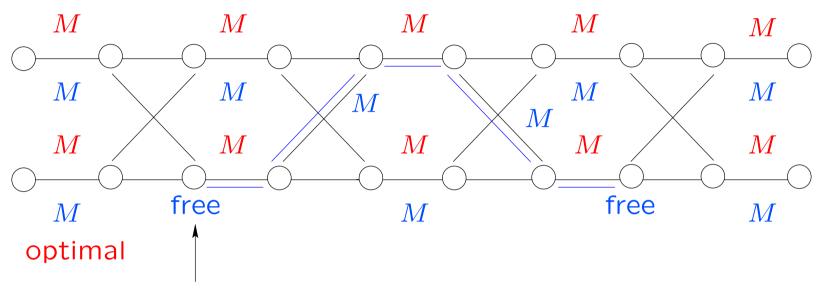


length of augmenting path: 5

2-bit mutations can shorten or lengthen the

augmenting path

almost fair random walk on a plateau:  $O(n^4)$ 



One 2-bit mutation shortens the augmenting path Two 2-bit mutations lengthen the augmenting path

→ unfair random walk on a plateau (analysed with potential function) → expo. time However, the aim of search heuristics is approximation and not exact optimization

For graphs on m edges, a mutation-based hill climber finds a matching of size  $\geq (1-\varepsilon)$  opt. size in expected time  $O(m^{2/\varepsilon})$ 

(polynomial-time randomized approximation scheme)

### 14. Conclusions

- EAs are algorithms and should be analysed as other algorithms
- Algorithm analysis has a long history,
   is a fundamental discipline of computer science,
   deep results and clever methods are known

- The EA community has adopted methods from physics, engineering, experimental disciplines but not from theoretical computer science
- EAs are considered as black sheeps in the family of algorithms if you ask the algorithm community

- Results like those presented here have started to change this
- Theoretical results on EAs should be published also in journals / conferences of theoretical computer science

I hope that you and others from the EA community will apply the strong methods from classical algorithm analysis (and sometimes also complexity theory) from now on.