
Computational Complexity

and

Evolutionary Computation

Ingo Wegener, Univ. Dortmund, Germany

1

More precisely:

How to apply methods from

complexity theory

and

classical algorithm analysis

to evolutionary computation

2

Aims: The EC community should know:

there are powerful methods from complexity theory

and analysis of (randomized) algorithms

which can be applied to

evolutionary computation

3

But why?

These methods lead to

– theorems without any assumptions

– theorems on the algorithm and

not on a model of the algorithm

– theorems for arbitrary problem dimension

4

1. Introduction (survey later)

We discuss search heuristics

(= randomized algorithms)

including EA, ES, GA, GP, Sim. Ann., tabu search

for some kind of optimization

−→ Restriction: discrete search spaces

5

Different types of problems:

one-shot scenario: one function −→ no theory

problem-specific scenario: TSP, scheduling, . . .

structural scenario: pseudo-boolean polynomials

degree ≤ d, ≤ N terms,

positive weights, . . .

6

The scenario

Problem: Class of functions

– all linear functions f : {0,1}n→ R

– all TSP-functions

fD(π) = cost of tour π

w.r.t. distance matrix D

Instance: one specific of these functions

7

instance is known (cost matrix for TSP)
and can be used by the algorithm

↗
Important

↘
instance is not known

(black-box optimization)

trivial problem
↗

Needle in the haystack
↘

difficult problem

8

Given a problem and an algorithm –

what do we want to know?

The probability distribution of the “state”

of the algorithm depending on t and the instance

−→ impossible in non-trivial situations

9

−→ expected time until good event

(optimum found) happens

variance, moments, . . .

success probabilities

−→ only good estimates are possible

DON’T TRY TO BE TOO EXACT!

YOU WILL FAIL

10

Typical EA-theory approaches:

→ reasonable model, calculation in the model,

experiments to ”verify” the model

→ no result for large problem dimension n

→ infinite populations

→ how to control the error?

11

→ studying the dynamics of the stochastic process

→ what is the meaning of the results?

→ studying the one-step behavior

(schema theory, quality gain, progress rate, . . .)

→ what happens in many steps?

12

→ building block hypothesis

→ just a nice hypothesis (royal roads)

→ convergence results

→ I do not have enough time!

DON’T TRY TO BE TOO GENERAL!

RESULTS ARE NECESSARILY BAD

13

Methods from complexity theory and

classical algorithm analysis:

– no assumptions

– results about the algorithm

– only (good) estimates

– error can be controlled

(upper and lower bounds)

14

−→ theorems (!), mathematically proven, for all

problem dimensions n and instances

−→ useful in 10 or 100 years

−→ no verification by experiments

−→ experiments are useful: what happens between the

lower and the upper bound?

15

2. Survey on the rest of the talk

I Complexity Theory

3. NFL scenario vs. realistic scenarios

4. Yao’s minimax principle –

lower bounds in the black-box scenario

16

II Algorithm analysis (with concrete examples)

5. The coupon collector’s theorem

6. Chernoff bounds

7. Random walks on plateaus

8. Potential functions

9. Typical runs

17

III Applications to classical problems

10. Sorting

11. Shortest paths

12. Minimum spanning trees

13. Maximum matchings

IV

14. Conclusions

18

3. The NFL scenario vs. realistic scenarios

NFL-Theorem: A, B finite. Each randomized search strategy sampling

no point twice has on the average of all f : A → B the same behavior

(expected optimization time, success probability, . . .)

Holds iff class of functions is closed under permutations

19

The proof is simple – the result is fundamental

– the scenario is not realistic

We never optimize a function without

– a polynomial-time evaluation algorithm (a, f)→ f(a)

– a short description

– structure on the search space

20

E.g., A = {0,1}100 and B = {1, . . . ,10000}

#{f | f : A→ B} = 100002100

Almost all f have a shortest description length of ≥ 2100 log10000− 100

(Kolmogorov complexity → all types of description)

→ almost all functions will never be considered

(the same for permutations on A)

21

Realistic scenarios are resource bounded

→ no NFL theorem (DJW GECCO’99)

Almost NFL theorem (DJW TCS’02)

Each rand. search heuristic efficient on f (easy to describe)

is bad for many g which are easy to describe and closely

related to f

22

The NFL theorem is fundamental

and everything has been said on it

Essential arguments were known before in complexity theory

It is time to stop the discussion on NFL

23

Lessons learned

Each rand. search heuristic realizes a certain idea

about the structure of the considered problem type and fails

if the problem does not have this structure

Knowing f(a1), . . . , f(at) (t not too large)

has to imply some knowledge where to look for good search points

24

4. Yao’s minimax principle –
lower bounds in the black-box scenario

The black-box scenario:

Given a class of functions F ⊆ {f : A→ B}.

The function f ∈ F to be optimized is unknown

(is chosen by an adversary or ”the real world”)

→ Search by sampling

25

Step t:

we know a1, f(a1), . . . , at−1, f(at−1),

we choose at (the prob. distribution to choose at)

→ we obtain f(at)

Note that

EA, ES, GA, Sim Ann, . . . fit into this scenario

26

– We can analyse what is not possible in this setting

– Lower bounds show the limits of all randomized search heuristics

– How can we obtain such lower bounds?

27

Yao’s Minimax Principle (1978)

(Andy Yao, Turing Award Winner 2001)

Consider black-box optimization as zero-sum game between

Player 1: the algorithm designer

Player 2: the adversary choosing the instance f

Player 1 has to pay 1 $ for each f-evaluation

28

Condition

– Number of problem instances is finite

– Number of deterministic search strategies

is finite (forget repeated tests)

The miracle:

Lower bounds for deterministic algorithms

imply lower bounds for randomized algorithms

29

Theorem

The minimal (w.r.t. randomized algorithms A)

maximal or worst-case (w.r.t. problem instances f)

expected optimization time T (A, f))

≥ maximal (w.r.t. prob. dist. p on instances f)

minimal (w.r.t. deterministic algorithms A)

average optimization time Tp(A, f)

≥ min
A

E(Tp(A, f)) for each p

30

This theorem for two-persons zero-sum games

is 50 years old (von Neumann)

The new idea is to consider algorithm

design as such a game

Note: We can choose p and have to

investigate deterministic algorithms only

31

Deterministic search strategies are decision trees.

a1

a2 a3 a4

b1 b3 possible answers

first query

second query

b2

for each f :

optimization time = # nodes on query path
until query point is optimal.

32

Applications (DJTW – FOGA ’02) and new

Needle in the haystack

all fa(x) =











1 x = a

uniform distribution

0 otherwise

33

a1

a2

0 1

STOP

STOP

0

black box complexity 2n−1 + 1
2

EAs are efficient,

they are slow but close to

lower bound

34

Trap

all fa(x) =

{

2n x = a

ONEMAX(x) otherwise

lower bound: 2n−1 + 1
2

random search: 2n−1 + 1
2 ← optimal

typical EAs: Θ(nn) = Θ(2n logn) ← inefficient

35

Unimodal functions

f : {0,1}n→ R is unimodal iff for all a:

a is optimal or has a better Hamming neighbor

Easy: Im(f) image set ⇒

expected optimization time of (1 + 1)EA: O(n · |Im(f)|)

(common belief: unimodal ⇒ easy for EAs)

36

But:

Each randomized search heuristic needs for many

unimodal functions on average

Ω(|Im(f)|/nε) steps, ε > 0.

The result ist counterintuitive!?

No, the common belief is based on a too

general statement.

37

Consider randomized long path functions:

– p0 = 1n

– pi random Hamming neighbor of pi−1

– eliminate loops

−→ fP(a) =

{

n + i a = pi

ONEMAX(a)

p0, . . . , pi and some points outside P known:

no chance to guess pi+j for some j not too small

38

Now: Algorithm analysis

5. The Coupon Collector’s Theorem

The best-known analysis of an EA:

expected optimization time of (1 + 1)EA on ONEMAX:

Θ(n logn)

Can we break the n logn barrier

(for functions with a unique global optimum)?

39

Children’s problem:

With each bar of chocolat you get a picture

of one of 20 players of one of 18 teams.

How many bars do you expect to buy until

you have a complete collection of pictures?

40

Expected value

360
(

1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

360

)

≈ 2300

Better: swap pictures with your friends

In general

n
(

1 + 1
2 + · · ·+ 1

n

)

≈ n lnn + 0.58 . . . n

41

The Coupon Collector’s Theorem says

this is a sharp threshold result, i.e.,

prob. that (1− ε)n lnn pictures are enough

→ 0 exponentially fast

prob. that (1 + ε)n lnn pictures are not enough

→ 0 exponentially fast

expected value is close to be correct (almost always)

42

Pick the incorrect bits of a random search point

(∼ n/2), mutation probability 1/n

→ time n lnn±Θ(n) until all wrong bits

have flipped once

43

One-point crossover:

If you need a crossover at εn given

positions:

→ time n lnn±Θ(n) until this has

happened

→ there is an n logn barrier

44

6. Chernoff bounds

X1, . . . , Xn independent 0− 1 random variables

X = X1 + · · ·+ Xn (number of successes)

Prob(Xi = 1) = pi for some 0 < pi < 1

⇒

E(X) = p1 + · · ·+ pn

0 < δ < 1 : Prob (X ≤ (1− δ) · E(X)) ≤ e−E(X)δ2/2

45

The bounds are close to optimal

Choose a ∈ {0,1}n randomly

exp. number of ones: n/2
Prob(#ones ≤ 0.4n) expo. small

Prob(#ones ≤ n/2− n3/4) weakly expo. small

Prob(#ones ≤ n/2− n1/2) a positive constant

46

Applications

Probability of fitness increasing step 1
n

→ almost surely Θ(n2) steps to increase

fitness n times

−→

DO NOT INVESTIGATE SINGLE STEPS –

INVESTIGATE PHASES OF MODERATE LENGTH

47

We can estimate the prob. of bad events

Mutation prob. 1/n, phase length n2

Prob(xi has flipped less than 0.9n times

or more than 1.1n times) = expo. small

Prob(∃xi : xi . . .) ≤ n · expo. small
= expo. small

48

7. Random walks on plateaus

f : {0,1}n→ {0,1, . . . , N}

n = 100 N = 106, 2100 search points →

many have the same fitness

Plateau i = {a|f(a) = i}

Populations sitting on a plateau search

for the exit to a higher plateau

49

Such a search is a random walk –

fitness gives no hints

Example 1 (JW - IEEE.Trans on EC, 2000)

f(a) =







2n a = 1n

n a = 0i1n−i

n−ONEMAX(a) otherwise

Plateau on level n: a path with n points

00000 00 010 00011 00111 01 11 11 1111

50

It is easy to find the path –

then (1 + 1) EA with mutation probability 1/n:

prob(child on the path) = Θ
(

1
n

)

(Chernoff ⇒ n ·# successful steps)

Random walk needs n more steps in the

good direction (if starting in 0n)

51

Steps of length ≥ 2 are “fair”

Prob(among cn2 steps of length 1

are ≥ 1
2cn2 + 1

2n in the good direction) = δ > 0

Expected number of phases ≤ 1/δ

→ Expected optimization time: Θ(n3)

52

Example 2 (FW - GECCO’2004)

Ising model (Naudts, von Hoyweghen, Goldberg, . . .

difficult because of symmetry)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

f(a) = n− number of 2-colored edges

Likely: 0i1j0n−i−j

53

The 0-1-walls take a random walk

– until they meet

GAs need niching

(1 + 1) EA O(n3)

54

8. Potential functions

The selection steps of the EA are based

on the fitness –

may be difficult to analyse –

in particular, if we analyse classes of functions,

e.g., all linear functions

w0 + w1x1 + w2x2 + · · ·+ wnxn

55

Idea from classical algorithm analysis:

– find artificial “fitness” (called potential)

to measure the progress of the search

according to the potential function

(the EA uses still the real fitness)

Difficult: the right intuition to define a

suitable potential function

56

First application in EC theory (DJW - WCCI’98, TCS’02)

Linear functions, w.l.o.g. w1 ≥ w2 ≥ · · · ≥ wn > 0

potential function 2x1 + · · ·+ 2xn/2 + xn/2+1 + · · ·+ xn

→ a drift anaysis is possible

→ Θ(n logn)

57

Also maximum matchings

G = (V, E) undirected graph

E′ ⊆ E matching ⇔

edges in E′ have no vertex in common

Fitness =

{

|E′| for matchings
− number of forbidden edge pairs

→ one of the classical optimization

problems in P

58

Theory of augmenting paths

freefree

MM M

potential function =

n · fitness− length of shortest augm. path

(results later)

59

9. The analysis of typical runs

Use intuition to describe what

typically happens,

define phases with well-defined subgoals,

estimate the probability that something

goes wrong

60

Example JW - GECCO’01

the first example where provably

mutation-based EAs need exponential time

and a generic steady-state GA has a

polynomial expected optimization time

61

select(x, y) select(x)

pc 1− pc

z = mutate(w) z = mutate(x)

w = 1-point-cross(x, y)

GA

add z to population

delete a worst individual

with largest number of copies

pop. size n

62

Condition: f(x) ≥ f(y)⇒ Prob(select(x)) ≥ Prob(select(y))

Real royal roads

block length b(a) = length of longest 1-block

11000101111001 → b(a) = 4

f(a) =











2n2 a = 1n

n ·ONEMAX(a) + b(a) ONEMAX(a) ≤ (2/3)n

0 otherwise

63

Phase 1: all individuals have positive fitness

(Chernoff) 1 + o(1)

Phase 2: optimal individual or

all individuals have (2/3)n ones

(success probability ≥ ε for

potential # ones in population) O(n2)

64

Phase 3: optimal individual or all

individuals have block length (2/3)n

(duplicates and 2-bit mutations help

for potential sum of block lengths) O(n2 logn)

Phase 4: optimal individual or population

contains all different

second-best individuals

(2-bit mutations and potential

number of diff. second-best ind.) O(n4)

65

Phase 5: successful search

1 . . .1 1 . . .1 0 . . .0
0 . . .0 1 . . .1 1 . . .1

↑
good cuts

Choose these individuals for crossover,

choose a good cut position and do

not flip any bit afterwards O(n2)

66

III Applications to classical problems

Does this all work only for toy examples?

No,

we investigate well-known problems with

polynomial-time problem-specific algorithms

67

10. Sorting (STW – PPSN ’02 and new)

– Nobody tries to beat quicksort!

– Here sorting is the maximization of

sortedness in a sequence and

the scenario is the black-box scenario

– Well-known measures of sortedness:

68

– INV(π) (inversions) =

number of pairs in incorrect order → minimization

– HAM(π) (Hamming distance) =

number of objects at incorrect position → minimization

– RUN(π) (runs) =

number of maximal sorted blocks → minimization

69

– REM(π) (removals) =

minimal number of removals to obtain a sorted subsequence

2 3 7 1 4 5 6 9 8 → REM=3

– EXC(π) (exchanges) =

minimal number of exchanges to sort the sequence

→ minimization

−→ In black-box scenario five different problems

70

Mutation-based (1 + 1)EA

– s (Poisson distributed λ = 1)
→ s local changes

– exchange (i, j)

6 8 1 2 4 5 37

6 4 1 2 8 7 5 3

jump (i, j)

6 4 8 2 7 5 3 1

6 4 8 1 2 7 5 3

6 8 1 2 4 7 5 3

71

INV O(n2 logn) Ω(n2) exchanges, jumps

REM O(n2 logn) Ω(n2 logn) jumps

HAM O(n2 logn) Ω(n2) exchanges

EXC O(n2 logn) Ω(n2) exchanges

typical runs, subgoals, Chernoff bounds, . . .

72

What about RUN?

Consider 2 runs

two jumps

which are

accepted

1 7 8 12 3 4 5 62 9

k

10 1311 14

n− k

We search on the plateau with fitness 2

73

Exchanges are almost useless

Jumps can change the lengths of the runs

k < n− k

k jumps shorten shorter run

n− k jumps lengthen shorter run

Random walk is “unfair” −→ exponential time

74

11. Shortest paths (STW – PPSN ’02)

Single source shortest paths (Dijkstra problem)

Distance matrix

Shortest paths from s = n to all other places i —

how to encode the individuals?

75

6

8

3

9

2

4 5

1

7

10

(10, 1, 7, 1, 4, 3, 10 , 3, 1) –

vector of direct predecessors

fitness = sum of path lengths

76

Yao’s minimax principle

−→

no polynomial-time black-box search heuristic

The problem is a multi-objective

optimization problem

77

fitness = vector of path lengths

search for Pareto optima w.r.t. to “≤”

(l1, . . . , ln−1) ≤ (l′1, . . . , l′n−1) iff ∀i : li ≤ l′i

Pareto optimum is unique in this case

78

Analysis of mutation-based EA

– again number of local changes s

where s is Poisson distributed λ = 1

– local change

v1 . . . vi . . . vn−1

replace by random w

−→ O(n3) with our standard techniques

79

12. Minimum Spanning Trees
(NW – GECCO’2004)

Graphs G = (V, E) on n vertices with m edges.

w : E → N weight function.

Find an edge set describing a minimum spanning tree.

80

Search space S = {0,1}m, i. e.,

x describes the choice of the edges ei where xi = 1.

f(x) := n ·number of connected components
+ weight of chosen edges.

81

Standard: O(m logn) until we have search points

describing connected graphs.

Edges in cycles can be eliminated.

Aim: Add a cheap edge which creates a cycle and

eliminate a more expensive edge from a cycle.

82

There can be many of these steps
leading to a small improvement

or

there can be few of these steps
leading to a large improvement.

→

83

A bound for the expected multiplicative weight decrease.

Time bound: O(n2m(logn + logwmax)).

This bound is best possible for the (1+1) EA.

84

This is much worse than Kruskal’s algorithm

– but polynomial.

However, the algorithm does not apply

any knowledge about the problem.

85

13. Maximum matchings
(GW – STACS ’03 and new)

A simple case – a path

optimal solution

MMMMM

perhaps algorithm finds a matching of size 4

86

freefree

M M M M

length of augmenting path: 5

2-bit mutations can shorten or lengthen the

augmenting path

almost fair random walk on a plateau: O(n4)

87

Two 2-bit mutations lengthen the augmenting path

One 2-bit mutation shortens the augmenting path

M

free

M

optimal

MM

M

MM

free

M

M

M

MMM

M

M

MM

MM

→ unfair random walk on a plateau

(analysed with potential function) → expo. time

88

However, the aim of search heuristics is

approximation and not exact optimization

For graphs on m edges, a mutation-based hill climber

finds a matching of size ≥ (1− ε) opt. size in

expected time O(m2/ε)

(polynomial-time randomized approximation scheme)

89

14. Conclusions

– EAs are algorithms and should be

analysed as other algorithms

– Algorithm analysis has a long history,

is a fundamental discipline of computer science,

deep results and clever methods are known

90

– The EA community has adopted methods

from physics, engineering, experimental disciplines

but not from theoretical computer science

– EAs are considered as black sheeps in the

family of algorithms if you ask the

algorithm community

91

– Results like those presented here have started
to change this

– Theoretical results on EAs should be published
also in journals / conferences of theoretical computer
science

– This happened:
Journals: TCS, Algorithmica, Journal of Discrete Algorithms,
Combinatorics, Probability and Computing,
Discrete Applied Mathematics
Conferences: ICALP, WG, MFCS, EMS (invited)

STACS, ESA

92

I hope that you and others from the

EA community will apply the strong

methods from classical algorithm analysis

(and sometimes also complexity theory)

from now on.

93

