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More precisely:

How to apply methods from

complexity theory

and

classical algorithm analysis

to evolutionary computation

2



Aims: The EC community should know:

there are powerful methods from complexity theory

and analysis of (randomized) algorithms

which can be applied to

evolutionary computation
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But why?

These methods lead to

– theorems without any assumptions

– theorems on the algorithm and

not on a model of the algorithm

– theorems for arbitrary problem dimension
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1. Introduction (survey later)

We discuss search heuristics

(= randomized algorithms)

including EA, ES, GA, GP, Sim. Ann., tabu search

for some kind of optimization

−→ Restriction: discrete search spaces
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Different types of problems:

one-shot scenario: one function −→ no theory

problem-specific scenario: TSP, scheduling, . . .

structural scenario: pseudo-boolean polynomials

degree ≤ d, ≤ N terms,

positive weights, . . .
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The scenario

Problem: Class of functions

– all linear functions f : {0,1}n→ R

– all TSP-functions

fD(π) = cost of tour π

w.r.t. distance matrix D

Instance: one specific of these functions
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instance is known (cost matrix for TSP)
and can be used by the algorithm

↗
Important

↘
instance is not known

(black-box optimization)

trivial problem
↗

Needle in the haystack
↘

difficult problem
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Given a problem and an algorithm –

what do we want to know?

The probability distribution of the “state”

of the algorithm depending on t and the instance

−→ impossible in non-trivial situations
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−→ expected time until good event

(optimum found) happens

variance, moments, . . .

success probabilities

−→ only good estimates are possible

DON’T TRY TO BE TOO EXACT!

YOU WILL FAIL
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Typical EA-theory approaches:

→ reasonable model, calculation in the model,

experiments to ”verify” the model

→ no result for large problem dimension n

→ infinite populations

→ how to control the error?
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→ studying the dynamics of the stochastic process

→ what is the meaning of the results?

→ studying the one-step behavior

(schema theory, quality gain, progress rate, . . . )

→ what happens in many steps?
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→ building block hypothesis

→ just a nice hypothesis (royal roads)

→ convergence results

→ I do not have enough time!

DON’T TRY TO BE TOO GENERAL!

RESULTS ARE NECESSARILY BAD
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Methods from complexity theory and

classical algorithm analysis:

– no assumptions

– results about the algorithm

– only (good) estimates

– error can be controlled

(upper and lower bounds)
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−→ theorems (!), mathematically proven, for all

problem dimensions n and instances

−→ useful in 10 or 100 years

−→ no verification by experiments

−→ experiments are useful: what happens between the

lower and the upper bound?
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2. Survey on the rest of the talk

I Complexity Theory

3. NFL scenario vs. realistic scenarios

4. Yao’s minimax principle –

lower bounds in the black-box scenario
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II Algorithm analysis (with concrete examples)

5. The coupon collector’s theorem

6. Chernoff bounds

7. Random walks on plateaus

8. Potential functions

9. Typical runs
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III Applications to classical problems

10. Sorting

11. Shortest paths

12. Minimum spanning trees

13. Maximum matchings

IV

14. Conclusions
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3. The NFL scenario vs. realistic scenarios

NFL-Theorem: A, B finite. Each randomized search strategy sampling

no point twice has on the average of all f : A → B the same behavior

(expected optimization time, success probability, . . . )

Holds iff class of functions is closed under permutations
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The proof is simple – the result is fundamental

– the scenario is not realistic

We never optimize a function without

– a polynomial-time evaluation algorithm (a, f)→ f(a)

– a short description

– structure on the search space
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E.g., A = {0,1}100 and B = {1, . . . ,10000}

#{f | f : A→ B} = 100002100

Almost all f have a shortest description length of ≥ 2100 log10000− 100

(Kolmogorov complexity → all types of description)

→ almost all functions will never be considered

(the same for permutations on A)
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Realistic scenarios are resource bounded

→ no NFL theorem (DJW GECCO’99)

Almost NFL theorem (DJW TCS’02)

Each rand. search heuristic efficient on f (easy to describe)

is bad for many g which are easy to describe and closely

related to f
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The NFL theorem is fundamental

and everything has been said on it

Essential arguments were known before in complexity theory

It is time to stop the discussion on NFL
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Lessons learned

Each rand. search heuristic realizes a certain idea

about the structure of the considered problem type and fails

if the problem does not have this structure

Knowing f(a1), . . . , f(at) (t not too large)

has to imply some knowledge where to look for good search points
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4. Yao’s minimax principle –
lower bounds in the black-box scenario

The black-box scenario:

Given a class of functions F ⊆ {f : A→ B}.

The function f ∈ F to be optimized is unknown

(is chosen by an adversary or ”the real world”)

→ Search by sampling
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Step t:

we know a1, f(a1), . . . , at−1, f(at−1),

we choose at (the prob. distribution to choose at)

→ we obtain f(at)

Note that

EA, ES, GA, Sim Ann, . . . fit into this scenario
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– We can analyse what is not possible in this setting

– Lower bounds show the limits of all randomized search heuristics

– How can we obtain such lower bounds?

27



Yao’s Minimax Principle (1978)

(Andy Yao, Turing Award Winner 2001)

Consider black-box optimization as zero-sum game between

Player 1: the algorithm designer

Player 2: the adversary choosing the instance f

Player 1 has to pay 1 $ for each f-evaluation
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Condition

– Number of problem instances is finite

– Number of deterministic search strategies

is finite (forget repeated tests)

The miracle:

Lower bounds for deterministic algorithms

imply lower bounds for randomized algorithms
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Theorem

The minimal (w.r.t. randomized algorithms A)

maximal or worst-case (w.r.t. problem instances f)

expected optimization time T (A, f))

≥ maximal (w.r.t. prob. dist. p on instances f)

minimal (w.r.t. deterministic algorithms A)

average optimization time Tp(A, f)

≥ min
A

E(Tp(A, f)) for each p
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This theorem for two-persons zero-sum games

is 50 years old (von Neumann)

The new idea is to consider algorithm

design as such a game

Note: We can choose p and have to

investigate deterministic algorithms only
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Deterministic search strategies are decision trees.

a1

a2 a3 a4

b1 b3 possible answers

first query

second query

b2

for each f :

optimization time = # nodes on query path
until query point is optimal.
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Applications (DJTW – FOGA ’02) and new

Needle in the haystack

all fa(x) =











1 x = a

uniform distribution

0 otherwise
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a1

a2

0 1

STOP

STOP

0

black box complexity 2n−1 + 1
2

EAs are efficient,

they are slow but close to

lower bound
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Trap

all fa(x) =

{

2n x = a

ONEMAX(x) otherwise

lower bound: 2n−1 + 1
2

random search: 2n−1 + 1
2 ← optimal

typical EAs: Θ(nn) = Θ(2n logn) ← inefficient
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Unimodal functions

f : {0,1}n→ R is unimodal iff for all a:

a is optimal or has a better Hamming neighbor

Easy: Im(f) image set ⇒

expected optimization time of (1 + 1)EA: O(n · |Im(f)|)

(common belief: unimodal ⇒ easy for EAs)
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But:

Each randomized search heuristic needs for many

unimodal functions on average

Ω(|Im(f)|/nε) steps, ε > 0.

The result ist counterintuitive!?

No, the common belief is based on a too

general statement.
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Consider randomized long path functions:

– p0 = 1n

– pi random Hamming neighbor of pi−1

– eliminate loops

−→ fP(a) =

{

n + i a = pi

ONEMAX(a)

p0, . . . , pi and some points outside P known:

no chance to guess pi+j for some j not too small
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Now: Algorithm analysis

5. The Coupon Collector’s Theorem

The best-known analysis of an EA:

expected optimization time of (1 + 1)EA on ONEMAX:

Θ(n logn)

Can we break the n logn barrier

(for functions with a unique global optimum)?
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Children’s problem:

With each bar of chocolat you get a picture

of one of 20 players of one of 18 teams.

How many bars do you expect to buy until

you have a complete collection of pictures?
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Expected value

360
(

1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

360

)

≈ 2300

Better: swap pictures with your friends

In general

n
(

1 + 1
2 + · · ·+ 1

n

)

≈ n lnn + 0.58 . . . n
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The Coupon Collector’s Theorem says

this is a sharp threshold result, i.e.,

prob. that (1− ε)n lnn pictures are enough

→ 0 exponentially fast

prob. that (1 + ε)n lnn pictures are not enough

→ 0 exponentially fast

expected value is close to be correct (almost always)
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Pick the incorrect bits of a random search point

(∼ n/2), mutation probability 1/n

→ time n lnn±Θ(n) until all wrong bits

have flipped once

43



One-point crossover:

If you need a crossover at εn given

positions:

→ time n lnn±Θ(n) until this has

happened

→ there is an n logn barrier
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6. Chernoff bounds

X1, . . . , Xn independent 0− 1 random variables

X = X1 + · · ·+ Xn (number of successes)

Prob(Xi = 1) = pi for some 0 < pi < 1

⇒

E(X) = p1 + · · ·+ pn

0 < δ < 1 : Prob (X ≤ (1− δ) · E(X)) ≤ e−E(X)δ2/2
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The bounds are close to optimal

Choose a ∈ {0,1}n randomly

exp. number of ones: n/2
Prob(#ones ≤ 0.4n) expo. small

Prob(#ones ≤ n/2− n3/4) weakly expo. small

Prob(#ones ≤ n/2− n1/2) a positive constant
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Applications

Probability of fitness increasing step 1
n

→ almost surely Θ(n2) steps to increase

fitness n times

−→

DO NOT INVESTIGATE SINGLE STEPS –

INVESTIGATE PHASES OF MODERATE LENGTH
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We can estimate the prob. of bad events

Mutation prob. 1/n, phase length n2

Prob(xi has flipped less than 0.9n times

or more than 1.1n times) = expo. small

Prob(∃xi : xi . . .) ≤ n · expo. small
= expo. small
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7. Random walks on plateaus

f : {0,1}n→ {0,1, . . . , N}

n = 100 N = 106, 2100 search points →

many have the same fitness

Plateau i = {a|f(a) = i}

Populations sitting on a plateau search

for the exit to a higher plateau
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Such a search is a random walk –

fitness gives no hints

Example 1 (JW - IEEE.Trans on EC, 2000)

f(a) =







2n a = 1n

n a = 0i1n−i

n−ONEMAX(a) otherwise

Plateau on level n: a path with n points

00000 00 010 00011 00111 01 11 11 1111
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It is easy to find the path –

then (1 + 1) EA with mutation probability 1/n:

prob(child on the path) = Θ
(

1
n

)

(Chernoff ⇒ n ·# successful steps)

Random walk needs n more steps in the

good direction (if starting in 0n)
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Steps of length ≥ 2 are “fair”

Prob(among cn2 steps of length 1

are ≥ 1
2cn2 + 1

2n in the good direction) = δ > 0

Expected number of phases ≤ 1/δ

→ Expected optimization time: Θ(n3)
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Example 2 (FW - GECCO’2004)

Ising model (Naudts, von Hoyweghen, Goldberg, . . .

difficult because of symmetry)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

f(a) = n− number of 2-colored edges

Likely: 0i1j0n−i−j
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The 0-1-walls take a random walk

– until they meet

GAs need niching

(1 + 1) EA O(n3)
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8. Potential functions

The selection steps of the EA are based

on the fitness –

may be difficult to analyse –

in particular, if we analyse classes of functions,

e.g., all linear functions

w0 + w1x1 + w2x2 + · · ·+ wnxn
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Idea from classical algorithm analysis:

– find artificial “fitness” (called potential)

to measure the progress of the search

according to the potential function

(the EA uses still the real fitness)

Difficult: the right intuition to define a

suitable potential function
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First application in EC theory (DJW - WCCI’98, TCS’02)

Linear functions, w.l.o.g. w1 ≥ w2 ≥ · · · ≥ wn > 0

potential function 2x1 + · · ·+ 2xn/2 + xn/2+1 + · · ·+ xn

→ a drift anaysis is possible

→ Θ(n logn)
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Also maximum matchings

G = (V, E) undirected graph

E′ ⊆ E matching ⇔

edges in E′ have no vertex in common

Fitness =

{

|E′| for matchings
− number of forbidden edge pairs

→ one of the classical optimization

problems in P
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Theory of augmenting paths

freefree

MM M

potential function =

n · fitness− length of shortest augm. path

(results later)
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9. The analysis of typical runs

Use intuition to describe what

typically happens,

define phases with well-defined subgoals,

estimate the probability that something

goes wrong
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Example JW - GECCO’01

the first example where provably

mutation-based EAs need exponential time

and a generic steady-state GA has a

polynomial expected optimization time
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select(x, y) select(x)

pc 1− pc

z = mutate(w) z = mutate(x)

w = 1-point-cross(x, y)

GA

add z to population

delete a worst individual

with largest number of copies

pop. size n
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Condition: f(x) ≥ f(y)⇒ Prob(select(x)) ≥ Prob(select(y))

Real royal roads

block length b(a) = length of longest 1-block

11000101111001 → b(a) = 4

f(a) =











2n2 a = 1n

n ·ONEMAX(a) + b(a) ONEMAX(a) ≤ (2/3)n

0 otherwise
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Phase 1: all individuals have positive fitness

(Chernoff) 1 + o(1)

Phase 2: optimal individual or

all individuals have (2/3)n ones

(success probability ≥ ε for

potential # ones in population) O(n2)
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Phase 3: optimal individual or all

individuals have block length (2/3)n

(duplicates and 2-bit mutations help

for potential sum of block lengths) O(n2 logn)

Phase 4: optimal individual or population

contains all different

second-best individuals

(2-bit mutations and potential

number of diff. second-best ind.) O(n4)
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Phase 5: successful search

1 . . .1 1 . . .1 0 . . .0
0 . . .0 1 . . .1 1 . . .1

↑
good cuts

Choose these individuals for crossover,

choose a good cut position and do

not flip any bit afterwards O(n2)
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III Applications to classical problems

Does this all work only for toy examples?

No,

we investigate well-known problems with

polynomial-time problem-specific algorithms
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10. Sorting (STW – PPSN ’02 and new)

– Nobody tries to beat quicksort!

– Here sorting is the maximization of

sortedness in a sequence and

the scenario is the black-box scenario

– Well-known measures of sortedness:

68



– INV(π) (inversions) =

number of pairs in incorrect order → minimization

– HAM(π) (Hamming distance) =

number of objects at incorrect position → minimization

– RUN(π) (runs) =

number of maximal sorted blocks → minimization
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– REM(π) (removals) =

minimal number of removals to obtain a sorted subsequence

2 3 7 1 4 5 6 9 8 → REM=3

– EXC(π) (exchanges) =

minimal number of exchanges to sort the sequence

→ minimization

−→ In black-box scenario five different problems
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Mutation-based (1 + 1)EA

– s (Poisson distributed λ = 1)
→ s local changes

– exchange (i, j)

6 8 1 2 4 5 37

6 4 1 2 8 7 5 3

jump (i, j)

6 4 8 2 7 5 3 1

6 4 8 1 2 7 5 3

6 8 1 2 4 7 5 3
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INV O(n2 logn) Ω(n2) exchanges, jumps

REM O(n2 logn) Ω(n2 logn) jumps

HAM O(n2 logn) Ω(n2) exchanges

EXC O(n2 logn) Ω(n2) exchanges

typical runs, subgoals, Chernoff bounds, . . .
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What about RUN?

Consider 2 runs

two jumps

which are

accepted

1 7 8 12 3 4 5 62 9

k

10 1311 14

n− k

We search on the plateau with fitness 2
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Exchanges are almost useless

Jumps can change the lengths of the runs

k < n− k

k jumps shorten shorter run

n− k jumps lengthen shorter run

Random walk is “unfair” −→ exponential time
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11. Shortest paths (STW – PPSN ’02)

Single source shortest paths (Dijkstra problem)

Distance matrix

Shortest paths from s = n to all other places i —

how to encode the individuals?
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6

8

3

9

2

4 5

1

7

10

(10, 1, 7, 1, 4, 3, 10 , 3, 1) –

vector of direct predecessors

fitness = sum of path lengths
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Yao’s minimax principle

−→

no polynomial-time black-box search heuristic

The problem is a multi-objective

optimization problem
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fitness = vector of path lengths

search for Pareto optima w.r.t. to “≤”

(l1, . . . , ln−1) ≤ (l′1, . . . , l′n−1) iff ∀i : li ≤ l′i

Pareto optimum is unique in this case
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Analysis of mutation-based EA

– again number of local changes s

where s is Poisson distributed λ = 1

– local change

v1 . . . vi . . . vn−1

replace by random w

−→ O(n3) with our standard techniques
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12. Minimum Spanning Trees
(NW – GECCO’2004)

Graphs G = (V, E) on n vertices with m edges.

w : E → N weight function.

Find an edge set describing a minimum spanning tree.
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Search space S = {0,1}m, i. e.,

x describes the choice of the edges ei where xi = 1.

f(x) := n ·number of connected components
+ weight of chosen edges.
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Standard: O(m logn) until we have search points

describing connected graphs.

Edges in cycles can be eliminated.

Aim: Add a cheap edge which creates a cycle and

eliminate a more expensive edge from a cycle.
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There can be many of these steps
leading to a small improvement

or

there can be few of these steps
leading to a large improvement.

→
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A bound for the expected multiplicative weight decrease.

Time bound: O(n2m(logn + logwmax)).

This bound is best possible for the (1+1) EA.
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This is much worse than Kruskal’s algorithm

– but polynomial.

However, the algorithm does not apply

any knowledge about the problem.
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13. Maximum matchings
(GW – STACS ’03 and new)

A simple case – a path

optimal solution

MMMMM

perhaps algorithm finds a matching of size 4
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freefree

M M M M

length of augmenting path: 5

2-bit mutations can shorten or lengthen the

augmenting path

almost fair random walk on a plateau: O(n4)
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Two 2-bit mutations lengthen the augmenting path

One 2-bit mutation shortens the augmenting path

M

free

M

optimal

MM

M

MM

free

M

M

M

MMM

M

M

MM

MM

→ unfair random walk on a plateau

(analysed with potential function) → expo. time
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However, the aim of search heuristics is

approximation and not exact optimization

For graphs on m edges, a mutation-based hill climber

finds a matching of size ≥ (1− ε) opt. size in

expected time O(m2/ε)

(polynomial-time randomized approximation scheme)
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14. Conclusions

– EAs are algorithms and should be

analysed as other algorithms

– Algorithm analysis has a long history,

is a fundamental discipline of computer science,

deep results and clever methods are known
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– The EA community has adopted methods

from physics, engineering, experimental disciplines

but not from theoretical computer science

– EAs are considered as black sheeps in the

family of algorithms if you ask the

algorithm community
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– Results like those presented here have started
to change this

– Theoretical results on EAs should be published
also in journals / conferences of theoretical computer
science

– This happened:
Journals: TCS, Algorithmica, Journal of Discrete Algorithms,
Combinatorics, Probability and Computing,
Discrete Applied Mathematics
Conferences: ICALP, WG, MFCS, EMS (invited)

STACS, ESA
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I hope that you and others from the

EA community will apply the strong

methods from classical algorithm analysis

(and sometimes also complexity theory)

from now on.
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