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Setting the Scene
1. Design Search, Exploration and Optimisation

2. SEO Spectrum across Conceptual,
Embodiment and Detailed Design

3. Design Attributes of EC

4. Search and Exploration during Conceptual
Design



Design Search

* Search across space of design solutions
i.e. across all possible variable combinations

* Driven by single criteria or by multiple criteria
(qualitative and quantitative) which may conflict

* Relatively fixed design space - variables,
constraints and objectives are pretty well defined

* Designer not necessarily interested in ‘best’
solution - wishes to better understand what solutions
are available and their characteristics.



Exploration

® Search moves outside initial variable bounds,
constraints soften, objective preferences change - any
combination of these actions.

i.e. Introduces change to design space and fitness
landscape

* Design exploration - seeking and selecting
solutions from new space evolved from initial
definition.

* Primarily takes place during conceptual stages of
design - leads to innovation and creativity?



Optimisation
¢ Attempted identification of highest performing
solution within a design space

or, more realistically, a better solution within a
restricted time period than those found before

* Very well-defined evaluation functions (FAE /
CFD?), fixed quantitative objectives and constraints

* Computationally expensive

* Exploration and search provide high performing
starting points for this final optimisation



Design

SEO Spectrum
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®* Degree / extent of exploration far greater where
subjective evaluation plays a major role

e.g. product design, architectural / structural

design

* Aesthetics must be taken into consideration -
largely explorative, innovative and creative.

* Satistying aesthetic considerations necessitates
engineering exploration

- innovative structural developments?

- innovative considerations for services etc?



Why Evolutionary Computing?

Common attributes of the techniques of particular
relevance to design SEO include:

® no requirement for apriori knowledge relating to
problem.

e Wide range of model type eg. discrete,
continuous, mixed-integer, quantitative,
qualitative, etc. can be utilised.

e excellent exploratory capabilities - diverse
sampling of design space continues throughout
search process



® ability to avoid local optima - continuing random
sampling prevents premature convergence.

e ability to handle high dimensionality.

® robustness across wide range of problem class -
can outperform deterministic optimisation
algorithms across wider range of problem classes
where high modality, high dimension, conflicting
criteria and heavy constraint are in evidence.

e provision of multiple good solutions - can
identify multiple high-performance solutions



e multi-objective approaches easily and successfully
integrated with various EC techniques;

® can locate region of global optimum - extensive
local search may be required to isolate the optimum.
Introduction of deterministic gradient-based
optimisers or local search techniques can be of
considerable utility.

e can be utilised in an interactive search and
exploration manner to capture user experiential
knowledge and intuition



Agent-based technologies can be easily integrated to
further support search and exploration, knowledge
extraction and visualisation.

Although all techniques offer utility individually
appropriate combinations of them can provide very
powerful complementary global and local design search,
exploration and optimisation capabilities



Evolutionary Search and Exploration
during Conceptual Design

* Tutorial concentrates upon integration during
early stages of design

* Early stages characterised by poor definition,
uncertainty, multiple qualitative and quantitative
objectives, problem reformulation and moving
goalposts.

* High degree of user involvement - varying
degrees of subjective solution evaluation.



*Evolutionary systems required that can capture
designer experiential knowledge and intuition

Primary area of my research since late 1980’s with
projects relating to:

* Design of novel pneumatic hydropower systems;

* Cluster-oriented GAs - integration with gas
turbine design, preliminary air-frame design, drug
design and discovery, ROV design;

* Whole system design - structured GA
representations for exploration of discrete/
continuous problem spaces;



* Various hybrid techniques for constraint
satisfaction in aerospace and power engineering
domains;

* Use of GP for systems identification - evolution
of approximate design representations to aid
search and exploration;

Further details of all these projects in

Evolutionary and Adaptive Computing in Engineering Design.
Parmee I. C., Springer Verlag, 2001.



More recent work concentrates upon
development of interactive evolutionary design
systems (IEDS) involving:

* Cluster-oriented GAs for high-performance
solution generation and extraction (both single
and multi-objective)

* Co-evolutionary multi-objective satisfaction;

* Fuzzy preferences techniques for objective /
constraint ranking;

* Software agent-based systems for data
processing and visualisation and objective /
constraint negotiation.



What is Interactive Evolutionary
Computing?

* Generally relates to partial or complete human
evaluation of fitness of solutions generated from
evolutionary search.

* Quantitative evaluation difficult if not impossible to
achieve. Examples of application:
Graphic arts and animation (Sims K ,1991);
Automotive design (Graf ]., Banzhaf W.,1995);
Food engineering (Herdy M., 1997.)
Database retrieval (Shiraki H., Saito H., 1996.)
All rely upon a human-centred, subjective evaluation
of the fitness of a particular design, image, taste etc



Partial human evaluation also in evidence, e.g.

* User interaction relating to an evolutionary nurse
scheduling system - schedule model provides
quantitative evaluation but model not adequate in
terms of changing requirements, qualitative aspects
etc. User must add new constraints to generate
satisfactory solutions (Inoue T., 1999).

* Design of biomolecular systems enhanced by
partial interactive evolution. Optimal bio-molecule
combinations improved by user-introduction of
new combinations into selected genetic algorithm
generations (Levine D. 1997).



Recent examples of IEC in engineering domains:

* (Carnahan and Dorris’s work [2003] graphical
design of industrial warning sign icons.

* Development of hearing-aid signal processing
capabilities - user’s evaluation of hearing utilised
during fitting process [Takagi et al, 1999].

* (Caleb-Solly and Smith (2002) - IEC identifies
regions of interest in sets of images during hot rolled
steel surface inspection - supports defect
classification

* Parmee (2001) - IEC provides information to user
which supports better understanding of design
domain and iterative improvement in problem
representation



Complete human evaluation could be viewed as
explicit interaction

Partial evaluation could be considered less
explicit interaction

Implicit interaction? -

Recent work: on-line assessment of student
navigation of web-based tutorial systems [Semet et
al 2003] - data then utilised to optimize web layout
to facilitate future student usage - Users unaware
of their role in the evolution of the system.



Spectrum of IEC approaches based upon explicit /implicit nature

[Parmee 2003] :

Implicit < Explicit
Process Problem Subjective Subjective
Evaluation Definition Evaluation Selection

I | | |
User unaware of Continuous Partial User 100% User
evaluation of interaction Solution Evaluation  Solution
their actions. Monitoring of Machine-based Evaluation
Machine-based solutions, objectives evaluation plus Art, Graphics,
monitoring of constraints and user evaluation. Music etc
user choices and problem structure.  Solution injection, e.g. Sim’s

evolution of
optimal paths /
options

e.g.

Semet’s web
based tutorials.

Problem reformul-  modification,
ation; knowledge  transformation
capture; evolution of g g. Levine’s
problem space biotechnology

e.g. Parmee’s application;
interactive Innoue’s nurse
evolutionary design scheduling system
systems

evolutionary
art;

Unemi’s
evolutionary
graphics;
Carnahan’s
hazard icons.



Significant utility to engineering / product /
industrial designer across this spectrum in terms of
direct utilization of IEC and in the integration of
various IEC elements within suites of computer-aided
design tools.

In this instance, we will concentrate upon interactive
/ user-centric aspects relating to:

* evolutionary design search and exploration;
* high-quality information generation;

* knowledge discovery;

* knowledge capture and integration;

* design space evolution.



Interactive Evolutionary Design

* Major potential - utilisation of EC algorithms as
gatherers of optimal / high-quality design

information

* Info can be collated and integrated with human-
based decision-making processes.

* Approach can capture designer experiential
knowledge and intuition within further evolutionary
search

* Supports exploration outside of initial constraint,
objective and variable parameter bounds



 Off-line analysis of search data supports iterative
designer/machine-based refinement of design

space [Parmee, 1.C., 1996].

* Immersive system? - designer part of iterative
loop

* Multi-disciplinary aspects considered at early
stage

* Global considerations represented simply as
objectives with associated preferences

* Effect upon emerging solutions identified during
iterative development of design space.



Generating Design Information - Initial IEDS

concept [Parmee, 1.C. et al, 2000] :

Rule-Based
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Initial IEDS Components

Information extraction:

COGAs rapidly identify high performance (HP)
design regions relating to single or multiple
objectives.

Good solution set cover of identified regions
supports extraction of relevant design information

Information mined, processed and presented to the
designer in succinct graphics .



Info relates to: Solution robustness, revision of variable
ranges, conversion from variable to fixed parameters,
degree of objective conflict, sensitivity of objectives to each
variable

Solutions describing HP regions can be projected onto any
2D variable hyperplane:
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ii)Rule-based preferences:

Designer utilizes rule-based preferences to vary
importance of constraints or objectives [Cvetkovic

D., Parmee 1. C., 2001]

Avoids setting of numeric weightings - Fodor and
Reubens” method of fuzzy preferences and induced
preference order

Designer inputs qualitative ratings e.g. * Objective
A is much more important than objective C;
Objective B is equally important as objective D etc’.
Machine-based maths transformation gives
appropriate numeric weightings.
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iii) Co-evolutionary Multi-objective convergence:

Co-evolutionary MO strategy developed where each
evolutionary process attempts to converge upon a
particular objective [Parmee I., Watson A., 1999]

Penalty functions penalize best solutions in each
process relative to Euclidean distance i.e. HP
solutions far apart design space have their fitness
reduced.

Results in all processes converging upon best
compromise regions in the design space i.e. regions
containing best solutions for all objectives.
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Approach operates in variable space

Graphical visualization of each process tracking
across approximate Pareto surface is generated

Direct mapping between solutions on the Pareto
surface and their location in variable space readily
available.

Integration of Preference component allows
designer to interact with the system and to
converge upon differing regions of Pareto surface
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iv) Software Agents:
Software agents monitor co-evolutionary processes

Recognise states relating to degree of convergence,
constraint satisfaction and multi-objective
satisfaction

Negotiating agent systems utilising Preference
module have been established

Identify solutions satisfying range of design
scenarios re multiple objectives and ideal variable
values [Cvetcovic D., Parmee 1. C., 2002] .



A Step Further: Data Mining COGA
Output

Recent research further concentrating upon info
generation / extraction

Focuses upon variable / objective space interaction

How can we support designer when concurrently
negotiating these two n-dimensional spaces?

Current COGA utilisation in combinatorial drug
design and in early design of underwater vehicles.

Results shown based upon previous IEDS design
domain:



Preliminary military airframe - BAE
Systems

* Characterised by uncertain requirements and
fuzzy objectives

* Long gestation periods between initial design
brief and realisation of product.

* Changes in operational requirements +
technological advances

* Demand for responsive, highly flexible strategy -
design change / compromise inherent features.



How do COGAs operate?

* Highly explorative GA / GAs

* Solutions extracted and passed through Adaptive
Filter

* Better solutions pass into Final Clustering Set -
defines HP regions

[Parmee, 1.C., 1996, Parmee 1. C., Bonham C. R., 2000, Bonham
C. R., Parmee I. C,, 1999a, Bonham C. R., Parmee I. C., 1999Db]



Projection of COGA single and multi-objective output on
2D variable hyperplanes ( data from nine variable

problem)
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Parallel Co-ordinate plots [Inselberg, A., 1985] show
each variable dimension vertically parallel to each
other. Points corresponding to solution’s variable
values can be plotted on each vertical variable axis.
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Distribution of solutions in all variable dimensions
and correlation between dimensions can be shown

Combination of Box Plot representation and
Parallel Co-ordinates relating to all objectives
contains several layers of design information

Developed Parallel Co-ordinate Box Plot -PCBP
[Parmee and Johnson, 2004] provides all
information in single graphic
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PCBP of solution distribution of each objective across each variable




Vertical axis of each variable plane scaled between
min and max value of variable found in HP region
of each objective

i.e. length of axis represents normalized ranges of
variable values present in a HP region.

If HP solution set does not cover whole variable
range axis is terminated b whisker.

Colour-coded box plots relate to each objective (i.e.
SEP1, ATR1 and FR).



Median marked within box which extends between
lower and upper quartile values within variable set.

Parallel Co-ordinate Box Plot (PCBP) visualizes
skewness of solution distribution relating to each
objective in each variable dimension.

Differing degrees of skewness provide an indication
of the degree of conflict between objectives.



All three objective boxes largely overlap in the case
of variables 1, 2, 3, 6 and 9.

Significant differences in distribution of the boxes
for variables 4, 5, 7, and 8 are concerned.

Conflict between SEP1 and FR / ATR1 strongly
reflected in HP solution distribution indicated by
whiskers on variable 4 and in box plot positions



HP regions relating to Ferry Range, Attained Turn
Rate (ATR) and Specific Excess Power objectives
projected onto V4 (Gross wing Plan Area) and V5
(Wing Aspect Ratio) hyperplane
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In terms of variable 5 whiskers relating to ATR1 and
FR in Parallel Box Plot reflect extent of solution
distribution across their HP regions

Box plots also reflect relative distribution of HP
solutions of all objectives along that variable plane



All three objective boxes largely overlap in the case of
variables 1, 2, 3, 6 and
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Distribution of HP solutions across variables reflected
in 2D variable plots relating to them e.g. Cruise
Hieght (V1) vs Climb Mach No (V2) above.



Variable attribute relevance plus standard skewness
analysis of [Han, J., Kamber, M., 2001] COGA-generated
HP solutions verifies visual information available in the
Parallel Co-ordinate Box Plot.

Information gain ranking identifies variables 4, 5, 7 and 8
as those variables to which the objective set is most
sensitive

Skewness analysis also confirms visual information
available in the plot. Further details of this work can be

found in [Johnson and Parmee, 2004].



Utilising PCBP Information
Using information available within the PCBP
designer can:

i)Identify variables least affecting solution
performance across full set of objectives (i.e. variables

where full axes relating to each objective overlap e.g.
1,2,3,6,&9).

ii) Further identify minimum objective conflict i.e.
where box plots relating to each objective largely
overlap

iii) Identify conflicting objectives - evident from
diverse distribution of box plots along some axes



iv) View related variable hyperplane projections
for a different perspective of spatial distribution of
objectives” high-performance regions

Access to such hyperplanes driven by simple
clicking operations on selected variable axes

v) View projections of high-performance regions
on objective space - direct mapping between
variable and objective space
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vi) View approximate Pareto frontiers generated from the non-
dominated sorting of HP region solutions
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Approximate Pareto frontiers generated through
non-dominated solution sorting within the
objectives” HP regions

Comparisons to SPEA generated Pareto fronts
|Zitzler E., et al 2002] are good

Pareto approximations are all that are required
during conceptual design

COGA approach potentially offers far more
information than standard Pareto based MOGA
methods.



Relaxing the COGA adaptive filter allows lower

performance solutions into the HP regions and ‘closes
the gap’ in the approximate Ferry Range / Specific

Excess Power Pareto front - also results in mutually
inclusive region between all three objectives
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Current Research - Agent-based
Activities

Established data mining and statistical analysis
tools drive agent-based activity

Support degree of autonomous action which
supplements designer interaction with system.

e.g. data processing, designer interrogation and /
or the provision of textual advice

Agency should reduce amount of information and
cognitive load, allowing greater concentration upon
primary design characteristics.



Agency mustn’'t reduce designer interaction with
the system to the extent that ‘hands on” and
implicit learning aspects are diminished.

Agency should enhance rather than replace
understanding by improving clarity through
provision of differing perspectives relating to
complex dependencies  whilst minimising
mundane tasks



Cognitive Aspects

Can we position these approaches in terms of
cognitive science?

Regular achievement of HP solutions to complex
problems through manipulation of multiple input

variables becomes easier as familiarity with problem
increases [Berry D. C., Broadbent D. E., 1984].

Learning process is implicit as subjects have great
difficulty in describing how they achieved such
results.



Other research shows that repeated patterns in data

sets that support success in certain tasks can be
recognized [Lewicki P., Hill T., Czyzewska M., 1992].

Subsequent investigation revealed that patterns
could not be consciously detected by the subjects
even when given opportunity to extensively study
the data.



Can we develop user-centred intelligent systems that
during conceptual design:

Support exploration of multi-variate problem space?

Provide succinct graphical representation of complex
relationships from various perspectives?

Support a better (intuitional?) understanding of such
relationships?

Generally support implicit learning?



Can an implicit learning capability be transferable
to other problem domains?

Would designers using this interactive search and
exploration approach become inherently better at
handling all high-dimensional problem domains?

Can the unconscious recognition of variable,
constraint and objective relationships play a major
role in design problem-solving processes?



Computer-aided conceptual design systems that
support implicit learning could represent a new
approach.

Possibly best way forward?

May allow development of overall capability to
unconsciously handle far more dimensions of
information whilst consciously manipulating and
attempting to understand those of prime
importance at any particular moment.
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