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Evolutionary RoboticsEvolutionary Robotics

 Evolutionary Robotics is automatic generation of control systems and

morphologies of autonomous robots. It is based on a process of Artificial

Evolution without human intervention.

Two motivations:

- It is difficult to design autonomous systems using a purely top-down

engineering process because the interaction between the robot and its

environment is very complex and hard to predict.

In ER the engineer defines the control components and the selection criterion and lets

artificial evolution discover the most suitable combinations while the robot interacts with

the environment.

- A synthetic (as opposed to an analytic) approach to the study of the

mechanisms of adaptive behavior in machines and animals.

ER was first suggested by a neurophysiologist (Braitenberg, 1984) as a way to show that

evolution can generate simple artificial neural circuits that display apparently complex

behaviors.



Robot BiologyRobot Biology
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Fitness = V x �v x (1-s)
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ResultsResults

The average and best population fitness are typical measures of performance.

Direction

Speed = 60%

Evolved robots always have a preferential direction of motion and speed.



Fitness FunctionsFitness Functions

Design of fitness functions that can generate desired behaviors is one of

the most difficult parts of Evolutionary Robotics. Very often the evolved

robot will maximize the fitness criterion using very simple behaviors.

Such evolved solutions can be interesting and surprising, but not what the

engineer had in mind.

The concept of fitness function is strange for a biologist. In biology the

fitness of a species is the amount of individuals in the population (growing

populations are fitter than shrinking populations). In genetic algorithms,

the fitness is a measure of performance of an individual and a selection

criterion.

The choice of a fitness function makes all the difference between an

optimization process and autonomous artificial life.
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Fitness SpaceFitness Space

Fitness Space is a method to conceive and compare fitness functions



Fitness = V x (1-s)

motors

sensors

�t=300ms

Environment RoleEnvironment Role

Let us now put the robot in a more complex environment and make the

fitness function even simpler. The robot is equipped with a battery that

lasts only 20 s and there is a battery charger in the arena.



Machine Neuro-ethologyMachine Neuro-ethology

After 240 generations, we find a robot capable

of moving around and going to recharge 2

seconds before the batteries are completely

discharged.

Neural Activity Maps



Fast re-adaptationFast re-adaptation
After an initial drop in average and best fitness, the performance

goes back to the previous maximum levels much faster than it took

to get there with the Khepera.

The evolved behavior of the Koala is different from that on the

Khepera because the body shape and its relation with the

environment is different.



[Harvey et al. 1994]

‘‘Seeing the LightSeeing the Light’’
The Sussex group investigated evolution of vision-based behaviors. They

solved the energy fitness problem using a suspended camera with

bumpers (gantry robot).



ArchitectureArchitecture



Incremental EvolutionIncremental Evolution
In the first stage, one full wall was covered with white paper and the robot

was asked to move toward the wall. In the second stage, the white target

surface was restricted to a 22 cm wide band. Finally, in the third stage

the white paper was substituted by two white shapes, a rectangle and a

triangle, and the robot was asked to move toward the triangle.

Evolved controllers used only two photoreceptors whose activation time,

triggered by the left-wing rotation, was sufficient to discriminate between

the two patterns.



Center-Surround Oriented Edges

Hebb plasticity

Feature SelectionFeature Selection

Process whereby visual neurons become

sensitive to certain sensory patterns (features)

during the developmental process (Hubel &

Wiesel, 1959)



Process of selecting by motor

actions sensory patterns (features)

that make discrimination easier

(Bajcsy, 1988)

Yarbus, 1967

Active VisionActive Vision



Output of vision system is movement

of camera (pan/tilt) and of robot

wheels (mot1/mot2). Filter as before.

Co-evolution F.S. + A.V.Co-evolution F.S. + A.V.
Goal: Robot must move around simple arena using only vision information

from a pan/tilt camera.





Fitness = percentage of covered

distance D in R races on M circuits

(limited time for each race).

Evolving a Car DriverEvolving a Car Driver







Physical sensors deliver uncertain values and commands to
actuators have uncertain effects.

The body of the robot and the environment should be carefully
(not accurately) reproduced in the simulation.
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Different physical sensors and actuators may perform differently
because of slight differences in their electronics or mechanics.
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Simulation: NoiseSimulation: Noise
The simplest and most often used way to ensure that simulation results

transfer to real robots consists of adding noise from a uniform distribution

centered about zero to the precise values produced by analytical models.

Noise can/should be added to:

- computed speeds (kinematic equations)

- cartesian coordinates (trigonometric transformations)

- sensor values (usually linearly monotonic functions)

Typical noise values in the literature are in the range of 5% of the signal

However, this method does

not yet guarantee a perfect

transfer [Miglino et al., 1995]

because the noise in the

environment is not uniform.
simulation real

obstacle avoidance



Simulation: SamplingSimulation: Sampling
Sampling consists in measuring the values returned by the robot sensors

for given objects and by actuators for given speeds.

The values are stored in a look-up table and accessed by the simulator.

Furthermore, some noise (5%) is added to the values.

0.962 deg.1 mm

.........

0.950 deg.2 mm

0.980 deg.1 mm

sample valangledistance

9.9, 9.810 mm/sec10 mm/sec

.........

0.1, 0.0-5 mm/sec5 mm/sec

5.0, 5.05 mm/sec5 mm/sec

sample x,yspeed rightspeed left

simulation real

obstacle avoidanceThis method guarantees an

excellent transfer from simulated

to real robot [Miglino et al., 1995],

but it is feasible only for simple

sensors and for simple

environments (squared and

circular objects).



Simulation: MinimalSimulation: Minimal
Minimal simulations [Jakobi, 1997] model only those characteristics of the

interaction between robot and environment that are relevant for the

expected behavior (base set features). The remaining features are

considered implementation-specific and therefore are simpified and varied

randomly from one trial to the next so that evolution does not rely on them.

Minimal simulations speed up significantly computing time and transfer

well to the real world, but require the programmer to know in advance what

will be the relevant features that must be accurately modeled.



Brains & ModelsBrains & Models
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Artificial NeuronsArtificial Neurons
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AliceAlice Micro-RobotMicro-Robot

• microcontroller PIC16F84

• 2mA @ 5V

• 10 hours autonomy

• 2 swatch motors

• 4 proximity sensors

• modular (vision, radio, etc.)



Bit-size EvolutionBit-size Evolution
[Floreano et al, 2002][Floreano et al, 2002]

Steady-state evolution

Fitness = V x �v x (1-s)

Forward navigation with obstacle avoidance

• bias: �

• IR Right:�

• IR Left: �



DemoDemo



brain space

from sensors

to motors

Evolution of Neural GasEvolution of Neural Gas

Computational view of the brain is based on wire metaphor and local

communication. However, biological neurons can communicate across

larger areas emitting gas.

An effect of gas is to change the

response of other neurons that are

sensitive to it.

Smith & Husbands [1998, 2000] have 

explored evolution of gas emitting controllers 

for vision-based navigation (gantry robot task)
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Floreano and Mondada [1994] suggested to genetically encode and evolve

different types of learning rules found in biological brains. The rules are

applied to the synaptic weights starting always from random initial conditions.

Important aspects:
- A neural network can use different learning rules in different parts

- There is no need of teacher or reinforcement learning, no gradient descent and local minima

- The Baldwin effect cannot take place, individuals are selected for their ability to learn



Test in new environment

On-line self-adaptationOn-line self-adaptation
For sake of comparison, a Khepera robot has been evolved in the looping maze

used earlier. Evolved robots display the ability to develop the obstacle

avoidance navigation in few seconds after being created and improve it over

time.

0.5

1

-0.5

-1

Continuously changing

synapses

0
1

21st

-0.5

0
0.52nd

-1

-0.5

0

3rd

0
1

21st

-0.5

0
0.52nd

-1

-0.5

0

3rd

Dynamic stability

In addition, they perform well in different environments by developing suitable

strategies. Contrary to conventional models, several synapses continue to change,

but the overal pattern of change is dynamically stable.



Fitness= time_gray_light / total_time

A Sequential TaskA Sequential Task

IR

Vision

Motors

Light

synapse

neurons (t-1)

A Khepera robot is evolved to switch on a light and go under the light, but this

sequence of actions is not directly rewarded by the fitness function. Two conditions

are measured, evolving weights or learning rules.

evolution

of weights

evolution

of rules



Genetically-determined Adaptive

Sensory appearanceSensory appearance
Let now take best evolved individuals and put them in conditions that are

different from those experienced during evolution.

Evolved adaptive individuals can cope with new colours of the walls

whereas genetically-determined individuals fail.

Similarly, evolved adaptive

individuals transfer smoothly

from simulated to real world.



Genetically-determined Adaptive

Environmental layoutEnvironmental layout

Another important feature of this environment is the position of the the

light switch and of the light bulb.

Evolved adaptive individuals can cope with new positions of the two

landmarks whereas genetically-determined inviduals cannot.



AdaptiveGenetically-determined

MorphologyMorphology



Co-evolutionCo-evolution

Competitive Co-Evolution is a situation where two different species co-

evolve against each other. Typical examples are:

- Prey-Predator

- Host-Parasite

Fitness of each species depends on fitness of opponent species.

Potential advantages of Competitive Co-evolution:

– It may increase adaptivity by producing an evolutionary arms race [Dawkins

& Krebs, 1979]

– More complex solutions may incrementally emerge as each population tries

to win over the opponent

– It may be a solution to the boostrap problem

– Human-designed fitness function plays a less important role (= autonomous

systems)

– Continuously changing fitness landscape may help to prevent stagnation in

local minima [Hillis, 1990]



Formal ModelsFormal Models
Formal models of competitive co-evolution are based on the Lotka-

Volterra set of differential equations describing variation in population

size.

Notice that in biology what matters is variation in population size, not

behavioral performance, which is difficult to define and measure!

host

parasite
dN1/dt=N1 (r1-b1N2)

dN2/dt=N2 (-r2+b2N1)

where:

- N1, N2 are the two populations

- r1 is increment rate of prey without predators

- r2 is death rate of predators without prey

- b1 is death rate of prey caused by predators

- b2 is ability of predators to catch prey



Complications: LandscapeComplications: Landscape
Whereas in single-species evolution the fitness landscape is static and

fitness is a monotonic function of progress, in competitive co-evolution

the fitness landscape can be modified by the competitor and fitness

function is no longer an indicator of progress.
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Predator-Prey RobotsPredator-Prey Robots
Let us consider the case of two co-evolutionary robots, a predator and a prey,

that evolve in competition with each other. Questions:

a) can we evolve functional controllers with simple fitness functions?

b) what are the emerging dynamics?

c) do we observe incremental progress?

d) are co-evolved solutions better than evolved solutions?

Goal = Predator must catch the prey, prey must avoid predator

Prey = proximity sensors only, twice as fast as predator

Predator = proximity + vision, but half max speed of prey



The two robots are positioned in a white arena. Predator and prey

are tested in tournaments lasting 2 minutes. Robots are equipped

with contact sensors.

Fitness prey = TimeToContact   Fitness predator = 1-TimeToContact

Experimental SetupExperimental Setup



Measuring ProgressMeasuring Progress
Progress can be measured by testing evolved individuals against all best

opponents of previous generations. There are two ways of doing so.

g. prey
g.

p
r
e
d
a
t
o
r

prey wins

predator wins

CIAO graphs [Cliff & Miller, 1997]

These graphs represent the outcome of

tournaments of the Current Individual vs.

Ancestral Opponent across generations.

Ideal continuous progress would be

indicated by lower diagonal portion in black

and upper diagonal portion in white.

fitness

generations

prey

predator

MASTER tournaments [Floreano & Nolfi, 1997a]

These graphs plot the average outcome of

tournaments of the current individual

against all previous best opponents. Ideal

continuous progree would be indicated by

continuous growth.



Limited ProgressLimited Progress
with real robots

with simulated robots

Progress analysis of co-evolved robots

using Master Tournament technique

shows that there is some progress only

during the initial 20 generations. After that,

the graphs are flat or even decreasing.

In other words, individuals born after 50

generations may be defeated by individuals

that were born 30 generations earlier.

These data indicate that co-evolution may

have developed into re-cycling dynamics

after 20 generations.

CIAO data are

even less capable

of revealing

progress.



Emerging strategiesEmerging strategies

predator

prey

Despite lack of progress measured against previous opponents, co-

evolved individuals display highly-adapted strategies against their

opponents and a large variations of behaviors.

Each tournament shows individuals belonging to the same generation.



Virtual CreaturesVirtual Creatures
[Sims, 1994] Body representation is directed

graph. Nodes have properties:
• dimension

• joint type (rigid, twist, revolute, ...)

• recursive-limit

• connection (position, orientation, scale,

reflection)

• terminal

• neural circuit

genotype phenotype

Neural circuit representation is directed

graph. Nodes have properties:
• sensor

• joint sensor

• contact sensor

• photosensor

• neuron (math type)

• sum

• memory

• oscillator

• max, etc.

• effector (force on muscle)

• positive/negative (push/pull)



ExampleExample

[Sims, 1994]

body

brain

genome



1) Co-evolution of
body/leg ratio and of
control system in
simulation.

2) Physical realisation of
evolved body-plan and
transfer of evolved
controller.

Legged RobotsLegged Robots

Co-evolving neural control and body parameters (Floreano et al., 2000)



FramstickFramstick [ [Komosinski & Ulatowski, 1999]

Primitives are joined sticks. Sticks can host sensors and neurons. Joints

are actuated by muscles. Fast simulation using finite element method

(only force effects on few parts of the system are computed).
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The Golem projectThe Golem project
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Lipson & Pollack (2000) added the physical

construction of the creatures by using a 3D

thermoplastic printer and extensible bars.

• Evolution takes place in simulation

• Fitness = distance covered by the robot

• Selected individuals are built by:
• printing the bars

• fitting joints and motors

• downloading neural network in PIC controller

video

clip



For more infoFor more info……

MIT Press

Hardcover, 2000, 2001

Paperback, 2004

Free Software

http://gral.ip.rm.cnr.it/evorobot/simulator.html

http://asl.epfl.ch/resources/evo/index.php


