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There are several different kinds of research
that all get labelled as *“theory”.

e Mathematics — describing what is true

e Science — describing what is observed

e Engineering — designing new things



The mathematical theory of GAs can be used
to provide a firm foundation for the models
of the scientific approach and the intuitions of
the engineers. T he approach we will take is:

e take a vague intuitive statement or idea

e try to formalize it mathematically

e try to prove something about the formal
concept

e relate the result back to the practical case



There are many intuitive concepts used in de-
signing GAs and describing their behaviour.

We are going to look at just one:

The idea of “convergence” in Genetic
Algorithms.



“Genetic algorithms suffer from premature
convergence.”

Such statements refer to the idea that when a
GA reaches some stopping criterion (e.g. av-
erage fitness is not increasing, the population
starts to look uniform, a certain number of
generations has passed), the end population
does not contain the optimum.

But the notion of “convergence” in a GA is
tricky. . ..



GASs are random processes, mapping popula-
tions to populations.

The probability of getting a particular popula-
tion depends only on the previous generation.

This kind of random process is called a Markov
Chain.



A Markov Chain is described by its transition
matrix.

Q; j is the probability of going from population
7 to population ¢ in one generation.

@ is a large matrix!



A Markov Chain might have absorbing states.
Once you arrive at such a state, you can't es-
cape.

Example: a GA with selection and crossover
(but no mutation). Absorbing states are the
uniform populations.

“Convergence” might mean that the GA has
arrived at an absorbing state.



Write the transition matrix in the form:

-t

The expected time to absorption is given by
the vector

a=(-S8H11

where a; is the time to absorption starting
from state k.



Some Markov Chains are ergodic and do not
have absorbing states. They visit every possi-
ble state infinitely often!

Example: a GA with mutation. There is always
a non-zero probability that anything could hap-
pen at the next generation.
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Some states may be more likely to be visited
than others. In fact there is a limiting distribu-
tion over all possible states, which the process
will tend towards.

We can write down a formula for the limiting
distribution, in terms of the transition matrix
— but it is impractical to calculate it.

“Convergence’” might mean that the behaviour
of the GA is conforming to the limiting distri-
pbution.
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Suppose we add elitism to our GA and watch
what happens to the best item in the popula-
tion. It's fitness surely increases to the opti-
mum.

Be careful! In a random process, it could hap-
pen that the optimum is never seen! Fortu-
nately the probability that this happens is zero.

We say that the maximum population fitness
converges almost surely to the optimum fit-
ness.
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To make progress with the theory, we have to
be able to write down equations describing the
Markov process.

We can describe a population by a vector

p = (po,P1;--->Pn—1)

where p;. is the proportion of the population
occupied by item k.
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Let

q — (q07q17 c s 7qn_1)

contain the probabilities that each item is gen-
erated in the next population.

The next population can be thought of as be-
ing N independent samples of the search space,
using q as a probability distribution.
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We can think of the action of a GA in terms
of a map from vectors to vectors:

q = G(p)
That is, G : A — A, where

AN={zeR": z>0,) =1}
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The transition matrix for the finite population
case can be constructed from this map.

The probability that population g follows pop-
ulation p is

(G() HN
Al | Sy

This is called a multinomial distribution.
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To define G it is helpful to split it into a se-
lection phase and a mixing phase.

g=MoF

These operators can then be defined for partic-
ular selection and mixing (crossover and mu-
tation) schemes.
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The fitness-proportional selection scheme is de-
fined by:

diag(f)
Fo) == P

where

e f is the vector containing the fitness values

e diag(f) is the diagonal matrix with f on
the diagonal.
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Crossover may be defined by the application of
a mask. A mask b has a probability x; of being
used.

The mixing operator for this kind of crossover
IS:

M@ = X ) pipjl(i®b) ® (j ®b) = K]
b i
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Iterating G will produce a sequence of points.
This sequence might converge to a fixed-point.

What has this sequence got to do with finite
populations?

e G(p) is the expected next population.

e It describes the limiting behaviour as the
population size grow large.

e It qualitatively characterises the transient
behaviour of finite populations.
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Theorem Suppose we are given:

e an initial population p

e a2 number of generations ¢

e a small error e >0

e a large probability 1 — ¢



Let ¢ be the actual population observed after
t generations. Then there exists a number N
such that if the population size is bigger than
N, then the probability that

1G*(p) — ql| < €

IS greater than 1 — 4.
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Populations which are close to fixed-points cor-
respond to metastable states. The GA seems
to spend most of its time in such states.

Often, when we say a GA has ‘‘converged”, we
really mean that it has arrived at a metastable
state and has stayed there for a long time.

23



This happens because the map ¢ is continu-
ous.

A population that is close to a fixed-point has
a high probability of staying in that region at
the next generation. ..

...as long as the population is not too small!
Small populations create more variance.
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Finding the fixed-points of G helps us charac-
terise the behaviour of the GA.

N.B. There may be fixed-points outside the set
A\, but which still influence the GAs behaviour.
Some of these fixed-points may be complex!!

We therefore need to consider the extension of
g to complex space.
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There can also be large regions in which the
GA seems to wander randomly. These regions
are called “neutral’” regions.

There is as yet no complete theory describing
the relationship between the dynamics of G,
the population size, and the charactisation of
metastable states and neutral regions.

This is an important open research problem.
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“This GA is stuck at a local optimum.”

This statement is often based on the confusion
that a GA is a kind of local search algorithm.
It is not! It is a population algorithm, in which
items interact in a non-linear, stochastic way.
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The idea of a local optimum in a GA might
make sense if we are talking about a selection-
crossover algorithm (i.e. no mutation).

We expect this GA to end up with a uniform
population. The item it contains might be a lo-
cal optimum (in Hamming space). Or it might
not. ...

Actually we have the following theorem.
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Theorem Suppose G corresponds to a selection-
crossover GA. A population vector correspond-
ing to a uniform population is an asymptot-
ically stable fixed-point of G only if the item
it contains is a local optimum with respect to
its Hamming neighbours.
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It is also conjectured that uniform populations

are the only asymptotically stable fixed-points
of G in this case.

If this conjecture is true, it means that, gener-
ically, iterates of G will converge to uniform
populations containing a local optimum.
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Conclusion

e The term ‘‘convergence” is often used in a
loose sense when describing GAS.

e \We can make this concept more formal us-
ing GA theory.

e Formalizing things enables us to find out
what is true.

e T his helps us to sharpen up our intuitions.
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Finally. ..

There has been a lot of progress made in re-
cent years, but much remains to be done. Some
highlights include:

e T he algebraic characterisation of mixing.

e Generalisation to arbitrary finite search spaces.

e Differential fixed-point theory.

e Equivalence and coarse-graining.

e Generalisation to Genetic Programming.

e Statistical Mechanics models.

e Computational complexity results
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