GECCO 2003

Grammatical Evolution
Tutorial

Biocomputing and Developmental
Systems
Department of Computer Science
& Information Systems
University of Limerick, Ireland.

Conor.RyanQul.ie
Michael.Oneill@ul.ie

Contents

UNIVERSITY OF LIMERICK

e Motivation
e Overview
e Example

e Analysis
— Degenerate code

— Crossover
—Wrapping

¢ Related systems
— Chorus

— Gauge
e Benchmarks

e Future Work

UNIVERSITY OF LIMERICK

Issues with GP

¢ Function /terminal set must have
“closure”

¢ Single types only
e Trees grow, or “bloat”

Biological Phenomena

UNIVERSITY OF LIMERICK

¢ No simple one to one mapping
— Genes produce proteins

— Proteins combine to create
phenotype

e Linear strings

— Genomes are always held on
strings

e Unconstrained search
— Repair not performed

UNIVERSITY OF LIMERICK

Grammatical Evolution

e Grammatical Evolution (GE)

— GA to evolve programs

— Morphogenetic Effect:

+x Genotype mapped to
phenotype

— Phenotype is a compilable
program

e Genome governs mapping of a
BNF grammar definition to the
program

UNIVERSITY OF LIMERICK

e Here genome (a binary string) is
mapped to compilable C code

e Can potentially evolve programs in
any language, with arbitrary
complexity

e Any structure than be specified
with a grammar, e.g. graphs,
neural networks, etc.

UNIVERSITY OF LIMERICK

Language Definition

e Backus Naur Form (BNF)

— Notation for expressing a
languages grammar as
Production Rules

e BNF Grammar consists of the
tuple < T,N,P,S > where

—T is Terminals set
—N is Non-Terminals set
— P is Production Rules set

—S is Start Symbol (a member of
N)

¢ BNF Example

T = {Sin,Cos,Tan, Log,+,—, /,*, X, (,)}

S =< expr >

UNIVERSITY OF LIMERICK

BNF Definition

N = {expr, op, pre_op}

—And P can be represented as:

(1) <expr> ::= <expr> <op> <expr>)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) ©
| <var> (D)

+ (A)
- (B)
/ ©)
* (D)

(3) <pre-op> ::= Sin (a)
| Cos (B)
| Tan ©)
| Log (D)

(4) <var> ::= X (a)

— A Genetic Algorithm is used to
control choice of production rule

UNIVERSITY OF LIMERICK

Related GP Systems

Repair

Name Genome| Representation

Koza Tree Direct

Banzhaf et al [Linear |[Direct

Gruau Tree Graph Grammar

Whigham Tree Derivation Tree

Wong & Leung Tree Logic Grammars

Paterson Linear |Grammar

Repair mechanisms..

e Koza - none needed

e Banzhaf - required for syntactically
legal individuals

e Gruau - none needed

e Whigham - all crossovers subject
to repair

e Wong & Leung - all crossovers
subject to repair

¢ Paterson - under/overspecification.

UNIVERSITY OF LIMERICK

expr

expr op expr

var + var

X X

UNIVERSITY OF LIMERICK

Grammatical Evolution

e In contrast GE uses

—BNF -
Paterson/Whigham /Wong etc.

—Variable Length Linear
Chromosomes -
Koza/Gruau/Banzhaf

— Genome encodes pseudo-random
numbers

— Degenerate Genetic Code

+x Several genes map to same
phenotype

—Werap individuals

e Use 8 bit codons

UNIVERSITY OF LIMERICK

— Each codon represents at least
one Production Rule

— Gene contains many codons

e Pseudo-random numbers
determine what production rule
will be used

e Expression of a Codon results in an
Amino Acid

(choice in the derivation sequence)

— Amino acids can combine to form
a functional protein (i.e.
Terminals such as +, X or Sin,
can combine)

UNIVERSITY OF LIMERICK

Example Individual

e To complete BNF definition for a
function written in a subset of C
Binary String ‘ >OOOOO<>O<>< DNA we include

¢ TRANSCRIPTION ¢

Grammatical Evolution Biological System

<func> ::= <header>

Integer String /\/\/\/\/
‘ RNA <header> ::= float symb(float X) { <body> }

¢ TRANSLATION ¢ <body> ::= <declarations><code><return>

Amino <declarations> ::= float a;
Acids
<code> ::= a = <expr>;
¢ ¢ <return> ::= return (a);

¢ ¢ Note implementation details

Phenotypic Effect
— Function is limited to a single
line of code

x If required can get GE to
generate multi-line

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

functions.....modify <code> to
read e.g.:]

what will happen?
<code> ::= <line>;

| <line>; <code> e <expr> has 4 production rules to
choose from

e In this subset of C all individuals of (1) <expr> ::= <expr> <op> <expr>)

the form | (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) «©)

| <var> (D)
float symb(float x)
{

float a;

a = <expr>; — Taking first codon 220 we get
. return(a) ; 220 MOD 4 = 0

e Only <expr> will be evolved — Gives <expr><op><expr>

e Each non-terminal is mapped to a e Next choice for the first <expr>
terminal before any others undergo
a mapping process

— Taking next codon 203 we get
203 MOD 4 =3

e Given the individual

— Gives <var><op><expr>

[220 20351123245 |

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

e <var> involves no choice

—Mapped to X...only one
production

— Now have X<op><expr>

[220 203 [51[123]2]45 |

¢ Read next codon to choose <op>

— Next is third codon , value 51, so
get 51 MOD 4 =3

—Now have X*<expr>

e Next choice for <expr>

— Next codon is 123 so get
123 MOD 4=3

— Now have X*<var>

UNIVERSITY OF LIMERICK

e Again <var> involves no choice

— Finally we get X*X

e The extra codons at end of
genome are simply ignored in
mapping the genotype to
phenotype

UNIVERSITY OF LIMERICK

Mapping Process

e No simple one to one mapping in
GE

e Mapping Process to generate
programs

— Separate Search and Solution
Spaces

— Ensure validity of individuals
— Remove language dependency

— Maintain diversity

Genetic Operators

UNIVERSITY OF LIMERICK

e Perform unconstrained
Evolutionary Search

e GE employs standard operators of
Genetic Algorithms

¢ No reason why GE can’t be used
with other search algorithms

— Any algorithms that can operate
on binary strings will work

x Hill climbing, Simulated
Annealing etc.

UNIVERSITY OF LIMERICK

Genetic Code Degeneracy

GENETIC CODE PARTIAL PHENOTYPE

CODON AMINO ACID
(A group of 3 Nucleotides) (Protein Component)
GGC
GGA = Glycine
GGG

GE GENE GERULE

00000010

00010010 — = e
00100010

For Rule where
<code> :: = <line> (0)
| <code><line> (1)
i.e. (GE Gene Integer Value) MOD 2 = Rule Number
Every second value gives the same phenotype

Figure 1: The Degenerate Genetic Code

UNIVERSITY OF LIMERICK

Genetic Code Degeneracy

e Neutral Mutations

— Mutations having no effect on
Phenotype Fitness

e Help preserve individual validity

e Gradual accumulation of mutations
without harming functionality

— Reuvisit later

UNIVERSITY OF LIMERICK

Initialisation

e Individuals are strings of random
number

—No guarantee that they will
terminate

—Individuals can be very short.

<expr> = <expr> <op> <expr>

| (<expr> <op> <expr>)
| <pre-op> (<expr>)

| <var>

e Production <expr>-><var> always
leads to termination

e <expr> is the start symbol

—On average, a quarter of all
individuals are just one point

UNIVERSITY OF LIMERICK

Sensible Initialisation

e Generate a spread of individual
sizes.

—Based on Ramped Half and Half
initialisation in GP

x For all tree depths from 2 to
maximum size

x Generate an equal number of
trees of that size

* Use full for 50%
x Use grow for 50%

e Similar in GE, but generate
derivation trees of equivalent size

UNIVERSITY OF LIMERICK

Sensible Initialisation - 2 Issues with GE?

e Record which number choice was e Effect of mutation?
made for each step

e Perform an “unmod” on list of o Degenerate Genetic Code

choices

e Crossover
— Produce a number between 0

and 255 that produces the —Ripple
original number when moded by
the number of choices for that

1 — Homologous
productionrule g

e Ensures that al/ individuals are — Headless
valid

e Reduces the number of clones
(easier to detect)

¢ Eliminates single point individuals
(if desired)

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Ripple Crossover - 1 Ripple Crossover - 2

e Analyse 1-point crossover in terms
of derivation & syntax trees

Tail (Exchanged with mate)

4594520522
@ E:==(+EE)| (CEE) | ("EE) | (HEE) | X | Y

[B6/45945/20522 ; Tail (Material obtained from mate

used to complete ripples sitesin (a))

One-Point Crossover Site

44354
Ripple Sites

Figure 3: Tllustrated are the spine and the resulting ripple sites (a) and tails (b)(c) produced as a
consequence of the one-point crossover in Figure 2

Figure 4: Intrinsic polymorphism: the same string of numbers can decode to different choices,
depending on the symbol that they are being grafted onto.

Figure 2: The ripple effect of one-point crossover illustrated using an example GE individual
represented as a string of codon integer values (b) and its equivalent derivation (c) and parse trees
(d). The codon integer values in (b) represent the rule number to be selected from the grammar
outlined in (a), with the part shaded gray corresponding to the values used to produce the trees
in (c) and (d), the remaining integers are an intron. Figure 3 shows the resulting spine with ripple
sites and tails.

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Ripple Crossover - 3

e Symbolic Regression Grammars

E ::=x
| (+ EE) | (x EE)
| (< EE) | (/EE)

And the context free grammar:

Exp ::= Var | Exp Op Exp
Var ::
Op =+ 1| x| -1/

e Santa Fe ant trail grammars
E ::= move() | left() | right()

| iffoodahead(E E) | prog2(E,

And the context free grammar:

Code

Line
Action
Condition

Line | prog2(Line,
Condition | Action
move() | right() |

UNIVERSITY OF LIMERICK [29]

E)

Code)

left()

iffoodahead(Code, Code)

Ripple Crossover - 4

Figure 5: Success rates on the symbolic regression and Santa Fe ant trail problems, averaged over
100 runs.

Figure 6: Success rates on the Santa Fe trail problem, averaged over 100 runs, each running for
200 generations.

UNIVERSITY OF LIMERICK

Other types of Crossover?

e Homologous Crossover
—Try not to cross in identical areas
e Two point
e Uniform
¢ Same size homologous

e Same size two point

UNIVERSITY OF LIMERICK

Homologous Crossover - 1

Codon Integers 2 13 40 1 3 240 100 23
Rues 01 0 11 3 0 3

PARENT 1

Codon Integers 2 13 40 7 4 5 1 100
Rules 010 402 10
0]

PARENT 2

0l 113 0 3 PARENT 1

0 40 2 1 O PARENT 2

First Crossover Point at Boundary of Similarity
(i)

0l11$30 3

0 40 2 1 O

PARENT 1

PARENT 2

(i)

Figure 7: Depicted is standard GE homologous crossover. (i) Shows two parents represented as
their codon integer values on top, and the corresponding rules selected during the mapping process
below each integer value. (i) The rule strings (mapping histories) are aligned, and the region of
similarity noted (underlined). The first crossover points are selected at this boundary. (iii) The
second crossover points are then selected after the boundary of similarity for each individual.

UNIVERSITY OF LIMERICK

/e Frequency of Success

Homologous Crossover - 2

Grammatical Evolution on Santa Fe Trail Grammatical Evolution on Symbolic Regression

Homologous —+— Homologous
1 point --x--- 1 point
2 point -
Uniform &
Same Size Homologous - Same Size Homologous
Same Size 2 Point ---o-- | ‘Same Size 2 point -

/e Frequency of Success

g

10

Generation Generation

Figure 8: Comparison of the cumulative frequencies of success for each crossover operator on the
Santa Fe ant trail and Symbolic Regression problems.

e 1pt/2pt best
e Uniform worst

UNIVERSITY OF LIMERICK

Ratio of individuals transfered to next generation and the total number of crossover events

Homologous Crossover - 2

Grammatical Evolution on Santa Fe Trail Grammatical Evolution on Symbolic Regression

Same size 2 point ---%---
mologous &

Hor mologous
Same size Homologous --&--

Hor
Same size Homologous -

Ratio of individuals transfered to next generation and the total number of crossover events

poin
Same size 2 point ---x---

=

Generation Generation

Figure 9: Ratio of the number of individuals undergoing crossover that have been propagated to
the next generation and the total number of crossover events occurring in that generation averaged
over 20 runs.

UNIVERSITY OF LIMERICK

Ratio of average crossover fragment size to the average chromosome length

Homologous Crossover - 3

Grammatical Evolution on Santa Fe Trail Grammatical Evolution on Symbolic Regression

Homologous
Same size Homologous - -=-

Ratio of average crossover fragment size to the average chromosome length

Generation Generation

Figure 10: Ratio of the average fragment. size being swapped and the average chromosome length
at each generation averaged over 20 runs.

e Appears Crossover works

¢ 50% material exchange with
1-point over entire runs

UNIVERSITY OF LIMERICK

Cumulative Frequency of Success

Headless Chicken

o If useful material exchanged then
swapping random fragments should
degrade performance?

Crossover in Grammatical Evolution (Santa Fe Trail) Crossover in Grammatical Evolution (Symbolic Regression)

Headless —

1 point(No Mutation)
Headless (No Mutation) —-m-—
L Headless ——x-—-
*
1 point (No Mutation)
Headless (No Mutation) -

Cumulative Frequency of Success

15 20 25 30 25
Generation Generation

Figure 11: A comparison of GE’s performance on the Santa Fe ant trail can be seen on the left.
The graph clearly demonstrates the damaging effects of the headless chicken crossover, and in the
case when crossover is switched off. A comparison of GE’s performance on the symbolic regression
problem can be seen on the right. When the headless chicken crossover is used the system fails to
find solutions, as is also the case when crossover is switched off.

e It does!

UNIVERSITY OF LIMERICK

Wrapping - 1

e Wrap Count & Invalid Individuals

Figure 12: Number of indi; wrapped on the symbolic regression an a Fe trail proble:

Figure 13: The number of invalid individuals for each generation in the presence and absence of
wrappinge.

Wrapping - 2

UNIVERSITY OF LIMERICK

e Freq. of Success

Cumulaiv Frequency of Success

Figure 14: Figure shows the cumulative frequency of success measures on both problems with and
without the presence of wrapping.

UNIVERSITY OF LIMERICK

e Actual length
— Entire length of individual
¢ Effective length

— Number of codons used
— (Note! Can be less than or
greater than actual length)

(Genome Lengih (No. OfCodors)

Figure 15: The figure shows the actual versus effective genome length for symbolic regression and
the Santa Fe trail in the presence and absence of wrapping.

e For SR (left) wrapping off has the
longest actual length
o Effective length virtually the same

e For SF (right) wrapping on longer
in both cases.

UNIVERSITY OF LIMERICK [39]

Wrapping - 3

e Conclusions:

—Worapping improves frequency of
success on Santa Fe ant trail

— No effect on Symbolic
Regression cumulative frequency

— Provides some constraint on
genome lengths

UNIVERSITY OF LIMERICK

Avoiding fruitless wraps Production[PCN number

Single Non-Terminal Grammars

— Only one non-terminal symbol;

— Always same number of choices
for each codon.

e Example individual:

= (+ <E> (0)
| <E> <E> (1) Codon |0
| *x <E> <E> (2 PCN# |1
I
I
I

/ <E> <E> (3)
(4)
(5)

— Productions are either SO0 14245423
Producers, Consumers or Shepe graph
Neutrals, and affect the number
of remaining non-terminal ¢ PCN number for string s is:
symbols differently:

Y pent)

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

e Terminating condition: Dual Non-Terminal Grammars

Jk € [1.N]: épcn(si) =-1

e Two non-terminal symbols in

e Stop sequences: grammar:

—Sequence of codons that, on
average, tends to consume <A> ::

= a<A><A>
non-terminals; I
I

a

— Steeper slope in shape graph :: a

indicates better stop sequences.

e If Individual does not map after

sk first pass:

size) —if top of stack is <A> stop
mapping process;

—if top of stack is wrap

individual.

If Individual does not map after
second pass:

$ 1505445245 —if top of stack is <A> stop
mapping process;

—if top of stack is and stack
size diminuished, wrap individual.

S 01 4 2 45 4 2 3 Paentl

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK [44]

General Case

e Difficult to generalize previous
method for Multiple Non-Terminal
Grammars:

<A> = <A>
| <C>
 ::= D
| b
=
|

<C>

e Example with individual 01:

Pass # |Stack status
1 <C>
2 b
3 bbb
4 bbbb

e Same symbol on top of stack at
pass 2, but mapping can be
completed through wrapping.

UNIVERSITY OF LIMERICK

¢ Following heuristic is proposed:
If the entire stack from the last
pass is at the top of the stack
from this pass, then stop mapping
process.

e Not guaranteed to stop all fruitless
wraps, but guaranteed not to stop
mapping process too early.

Wrapping - Experiments

e Purpose:

— Measure the effectiveness of the
heuristic proposed, by comparing
the total number of
non-mapping individuals with
those indentified by the heuristic.

Wrapping problem

e Fitness = number of wraps
required to map (higher is better);

UNIVERSITY OF LIMERICK [46]

e Grammar:

<A> ::= | a
 ::= | <A><A>| ¢

— Designed to make it difficult to
identify non-mapping individuals.

60

Average fitness (left), and comparison of individuals flagged by heuristic versus total non-mapping

Wrapping problem

Wrapping problem

individuals (right).

UNIVERSITY OF LIMERICK

Standard problems

e Symbolic Regression & Santa Fe
Ant Trail

Average best fitness for Symbolic Regression and Santa Fe Ant Trail problems.

UNIVERSITY OF LIMERICK

Heuristic performance:

Symbolic Regression

llegalindivi
Hel

0 5 10 15 20 25 30 335 40 45 50
Generation

Comparison of individuals flagged by heuristic versus total non-mapping individuals for Symbolic

Regression and Santa Fe Ant Trail problems.

e Heuristic doesn’t eliminate
unnecessary wraps completely.

e Reduces them even in difficult
circumstances

UNIVERSITY OF LIMERICK

Degenerate Genetic Code - 1

Cumuaive Frequency of S
Cumuatie Frequency of Success

Generation

Figure 16: Cumulative frequencies of success for both problem domains in the presence and absence
of genetic code degeneracy over 50 generations.

e No huge difference...

—Normal, 4- and 6-bit top three in
both

— No degeneracy fourth in SR, last
in SF

UNIVERSITY OF LIMERICK

e Mean variety

Figure 17: The figure shows the genetic code degeneracy and mean variety on symbolic regression
and Santa Fe trail problems.

UNIVERSITY OF LIMERICK

Degenerate Genetic Code - 2

¢ Unique individuals

Figure 18: The figure shows genetic code degeneracy and unique individuals (for actual genome)
on both problem domains.

e Conclusions:

— Improves genetic diversity

— Improves frequency of success on
Santa Fe ant trail

— Tuneable/Evolvable Degeneracy
a good idea?

UNIVERSITY OF LIMERICK [52]

Wrapping & Degeneracy Modular Nature

e Removing both.... e Original View :

Problem
— Cumulative frequency of success

degrades

Grammatical
Evolution

—Geglome lengths increase over seerch Algorithm
60% on Symbolic Regression

— Genetic diversity no worse than
without degeneracy alone e Current View :

Problem

Evolution

Search Algorithm

Mapping Strategy

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Chorus Four non-terminals:

e <expr> 0..3
e Mapping Independent Codons - no e <op> 4..7

ripple effect e <pre-op> 8..B
e Codon % Total number of rules in e <var> C..D
the grammar h

e Competition between the Genes

. 209 102 190 55 65 15 255 87
e Concentration Table D 4 8 D 9 1 3 3
e Variable length binary strings 01234567

¢ 8 bit codons oS 00000000
<e><o><e> 00001000
<v><o><e> 00001000
X<o><e> 00001000
X+<e> 00000000
X+<v> 00000000
X+X 00000000O0

[S S S T T T N - -}
et e et et ol e SO
o o 0o o o o oW
© ©o o o o o onNn

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Advantages:

¢ No ripple effect (advantage?)

¢ Significantly better than standard
GE on symbolic regression type
problems

e Sections of the grammar can be
removed from the population
— “Dependant genes”

—e.g. all <pre-op> rules depend on
rule #2

GAuGE -1

UNIVERSITY OF LIMERICK

Biological System GE GAUGE

DNAW ‘ Binary String ‘ ‘ Binary String ‘
1 1 1

RNA N\]\ ‘ Integer String ‘ ‘ Integer String ‘
' 1

(Amo) [Res |

‘ ¢ Positions

and Values
[Protein] [Terminals}

' '

Phenotypic Effect Program Binary String

TRANSCRIPTION

TRANSLATION

Figure 19:

e Start with binary string
e Perform GE-style mapping.
e Produce binary string

¢ Position independant GA

¢ Evolution chooses where each gene
goes

e Genes at the start are less likely
get disrupted

UNIVERSITY OF LIMERICK

GAuGE - 2

v p v p v p v

p
Neppi ng 11 ng 7‘1‘1‘4‘1‘9‘2‘3‘

P 7 %4 =|3

vi1%2=|1

P v P v P v P v

Mappi ng String 7‘1‘1‘4‘1‘9‘2‘3‘

GAuGE - 3

UNIVERSITY OF LIMERICK

P v p v P v P v

Mapping String 7‘ ‘1‘4‘1‘9‘2‘3‘

pl%z_

P v p v P v P v

Mappi ng String 7‘1‘1‘4‘1‘9‘2‘3‘

s 2w1=[ol
1

UNIVERSITY OF LIMERICK

Search Techniques Benchmarks

e Other techniques e Santa Fe ant trail
— Simulated Annealing

_ Hill Climbing e Symbolic Regression

—Random Search e Symbolic Integration

e Three standard GP problems
—Santa Fe trail
— Symbolic Integration (integrate
Cos(x) + 2x + 1)
— Symbolic regression
a4+t

e Caching algorithms

Metaheuristic
Problem RS [HCJ[SA
Santa Fe 54% 7% 14%
Symbolic Integration 66% 4% 3%
Symbolic Regression 0% 0% |0%

UNIVERSITY OF LIMERICK [61] UNIVERSITY OF LIMERICK

Santa Fe ant trail - 1

N = {code, line, expr,if — statement, op}
T = {left(), right(), move(), food_ahead(), else,if, {,},(,),; }
S =< code >

And P can be represented as:

(1) <code> :: = <line> ©) Objective : Find a computer program to control an artificial
|<code><line> (1) ant so that it can find all 89 pieces of food
located on the Santa Fe Trail.
(2) <line> :: = <if-statement> (V) Terminal Operators: | left(), right(), move(), food_ahead()
|<op>) Terminal Operands: | None
Fitness cases One fitness case
(3) <if-statement> :: = if(food_ahead()) Raw Fitness Number of pieces of food before the ant times out
{<1line>} with 615 operations.
else Standardised Fitness | Total number of pieces of food less the raw fitness.
{<line>} Wrapper None
Parameters Population Size = 500,
(4) <op> :: = left(); Termination when Generations = 51
| rightQ); Prob. Mutation = 0.01, Prob. Crossover = 0.9
| move(); Prob. Duplication = 0.01, Steady State

Table 1: Grammatical Evolution Tableau for the Santa Fe Trail

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Santa Fe ant trail - 2

Santa Fe Trail

Cumulative Frequency
2
3

5
)

Generation

Figure 20: The cumulative frequency of success measure for GE versus GP on the Santa Fe trail
problem. The results shown illustrate the case where the solution length constraint is removed
from GP.

UNIVERSITY OF LIMERICK

Symbolic Regression - 1

N = {expr, op, pre_op}
T = {Sin,Cos, Exp, Log, +,—, /, %, X,1.0,(,)}
S =< expr >

And P can be represented as:

(1) <expr> ::= <expr> <op> <expr>)
| (<expr> <op> <expr>) (1)
| <pre-op> (<expr>) 2)
| <var> 3)
(2) <op> ::= + 0)
|)
| (2)
| (3)

(3) <pre-op> ::

UNIVERSITY OF LIMERICK

Objective : Find a function of one independent variable and
one dependent variable, in symbolic form

that fits a given sample of 20 (z;, ;)

data points, where the target function is the
quartic polynomial X* + X%+ X2 + X

Terminal Operands: | X (the independent variable), 1.0

Terminal Operators | The binary operators +, *, /, and —

‘The unary operators Sin, Cos, Exp and Log
Fitness cases A sample of 20 data points in the interval [-1,+1]
Raw Fitness ‘The sum, taken over the 20 fitness cases of the error
Standardised Fitness | Same as raw fitness

‘Wrapper Standard productions to generate C functions
Parameters Population Size = 500,

Termination when Generations = 51

Prob. Mutation = 0.01, Prob. Crossover = 0.9
Prob. Duplication = 0.01, Steady State

Table 2: Symbolic Regression Tableau for GE

UNIVERSITY OF LIMERICK

Symbolic Regression - 2

Symbolic Regression

@
3

Cumulative Frequency

N
)

L L
20 25 30 35 40 45 50
Generation

Figure 21: Cumulative frequency of success measure of GE versus GP on the symbolic regression
problem.

UNIVERSITY OF LIMERICK

Symbolic Integration - 1

N = {expr, op, pre.op}
T = {Sin, Cos, Exp, Log, +, —, /,* X, 1.0, (;)}
S =< expr >

And P can be represented as:

Objective : Find a function (f(X) = Sin(X) + X + X?), in symbolic form, that is
(1) <expr> ::= <expr> <op> <expr> 0) the integral of a curve (f(X) = Cos(X) + 2X + 1) presented either as a
(<expr> <op> <expr>) (1) mathematical expression or as a given finite sample of points (z;, ¥;)
<pre-op> (<expr>) (2) Terminal Operands: | X (the independent variable)
<var> 3) Terminal Operators | The binary operators +, %, /,— and
the unary operators Sin, Cos, Exp and Log
= (0) Fitness cases A sample of 20 data points in the interval [0, 27]
| (1) Raw Fitness The sum, taken over the 20 fitness cases, of the absolute
|
|

(2) <op> ::

(2) value of the difference between the individual genetically
3) produced function f;(x;) at the domain point z;

and the value of the numerical integral I(z;)

(3) <pre-op> :: i Standardised Fitness | Same as raw fitness

‘Wrapper Standard productions to generate C functions

Parameters Population Size = 500, Termination when Generations = 51
Prob. Mutation = 0.01, Prob. Crossover = 0.9

Prob. Duplication = 0.01, Steady State

Table 3: Symbolic Integration Tableau for GE

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Symbolic Integration - 2 Caching Algorithms - 1

Symbolc ntegration
T T Terminal Operator Function

write_z(i,v) : sets infoli] to v

read_z(i) : returns infoli]

small_z(i,v) : index of smallest element of info[]
large_z(i,v) : index of largest element of infol]
random_z(i,v) : index of random element of infol]
counter() : successive values 0, 1, 2 etc
div(z,y) : if y==0 then lelsex / y
rem(z,y) : if y==0 then lelsex % y

Table 4: Available terminal operators.

<stmts> :: <stmt>

| <stmt>;<stmts>

<stmt> :: if (<expr>){<stmts>;}else{<stmts>;}
write_x(<expr>,<expr>);
victim=<expr>;

Cumulative Frequency

<term>
<term>+<term>
<term>-<term>
<term>*<term>
div(<term>,<term>)
rem(<term>,<term>)

0 K <term> :: = CACHESIZE
Generation <num>

Figure 22: Cumulative frequency of success measure of GE versus GP on the symbolic integration <fun>

problem. (<expr>)

11 = <mant>
| <mant><zeros>

<mant> :: =0] 11215

<zeros> :: = 0
| 0<zeros>

UNIVERSITY OF LIMERICK UNIVERSITY OF LIMERICK

Caching Algorithms - 2

counter()
read_x (<expr>)
small_x()
large_x()
random_x ()

victim = counter() - CACHESIZE;

(1) <stmts> ::

GE 2 : write_:

Force Use of infol]:

= write_x(<expr>,<expr>); victim=<expr>;

x(CACHESIZE + counter(), CACHESIZE + counter())

victim = CACHESIZE + counter();

Algorithm
(Cachesize)

ken2.00100 | ken2.00200 Average of %
(Misses) (Misses) | Improvement over LRU

LRU (20)

374,596 380,041

367,104 373,935

300,569 318,444 17.97

106,067 82,856 74.51

300,569 318,445 17.97

106,068 82,855 74.51

Table 5: Algorithm performance comparison.

UNIVERSITY OF LIMERICK

