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Overview of the Tutocrial I

e Multi-objective optimization
e Classical methods

e Evolutionary computing methods (EMO)
— Differences
— Non-elitist EMO
— Elitist EMO
— Constrained EMO
— Applications of EMO

— Salient research issues

e Conclusions

Multi-Objective Optimization

e We often face them
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More Examples

A cheaper but inconvenient A convenient but expensive
flight flight
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Mathematical Programming Problem

Min/Max  (f1(x), f2(x),..., fm(x))

Which Scluticns are Optimal?

Relates to the concept of domination

o (minimze)
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in at least one objective
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Pareto-Optimal Soluticns
Non-dominated solutions: Among
a set of solutions P, the non- £, (mininize)
dominated set of solutions P’ " 6
are those that are not dominated  ° ° Non-dominated
4
by any member of the set P. 3t L s
O(N log N) algorithms exist. 1] 3
Pareto-Optimal solutions: When 2 6 10 14 18
P =S, the resulting P’ is Pareto- Ty (raxinize)

optimal set
A number of solutions are optimal
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Pareto-Optimal Fronts
2 Min--Min
Ll
1) Max--Min £, Max--Max
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Optimality Conditions

Fritz—John Necessary Condition:
Solution x* satisfy

1. Ei\:{:l A Vm (x*) = ijl u;Vg;(x*) = 0, and
2. ujgij(x*)=0forall j=1,2,...,J.

Like single-objective optimization, local and global P-O fronts exist:

f, Locally
Pareto-optimal set

(
B

Se

S
*A
Globally f1 Xy

Pareto-optimal set

Some Terminologies

e Ideal point, z*: nonexistent,
lower bound on Pareto-
optimal set

e Utopian point, z**: nonex-
istent

e Nadir point, z"®d: upper

bound on Pareto-optimal
set

e Normalization:

*

fporm _ _fi—z]

3 = Znad__*
Z; Z;
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Differences with Single-Ob jective Optimization

e One optimum versus multiple ;
optima

e Requires search and decision-

making

e Two spaces of interest, instead
Deci si on space ~ Xg
of one
%3\ peci si on space
Obj ective space

11
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Preference-Based Approach
[ Multi-objective / ingle-objective
e o e g T e e
Vinimize £ ﬂ . » importance S,
/ Minimize f, — e - W) or .
| cusiont 1o conmsrain -, a conposite function
single-objective|
optimizer
One optimum
solution
/,/7
e (Classical approaches follow it
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Classical Approaches

No Preference methods (heuristic-based)

e Posteriori methods (generating solutions)

e A priori methods (one preferred solution)

‘Weighted Sum Method

e Construct a weighted sum of
objectives and optimize

F() = 3 wimf().

e User supplies weight vector w

L

Feasible objective space

a/

Pareto-optimal front

an
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e-Constraint Methoed

Optimize one objective,
constrain all other

Minimize f,(x),

subject to  fy(X) < €, m # 3

User supplies a € vector

Need to know relevant e vectors

d
& fq

Non-uniformity in Pareto-optimal solutions

e Interactive methods (involving a decision-maker)
e - o 13
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Difficulties with Weighted Sum Method
Feasible objective space

e Need to know w
e Non-uniformity in Pareto-

optimal solutions
e Inability to find some

Pareto-optimal solutions

Pareto-optimal front f

a8 d f ii i 15
@y Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

@ Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 16




Difficulties with Mest Classical Methoeds

e Need to run a single-
objective optimizer many

times 0.9
e Expect a lot of problem o
knowledge o6

e Even then, good distribu-

i “Pareto-optimal's N

tion is not guaranteed 02t
01F
e Multi-objective  optimiza- of
. . . -0.1 L Ly L L L L L L ! L
tion as an apphcatlon of 0 01 02 03 04 05 06 07 08 09 1
. . . . . fl
single-objective  optimiza-
tion
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Ideal Multi-Objective Optimization

Minimize f,
subject to constraints /

4

Step 1

Multi-objective
optimizer

Multiple trade-off Choose _one

solutions found solution

Higher-level
Z{?iafe information /p/"/

K Step 2 )
_—

Step 1 Find a set of Pareto-optimal solutions

Step 2 Choose one from the set

A More Holistic Apprcach for Optimization

e Decision-making becomes easier and less subjective

e Single-objective optimization is a degen-
erate case of multi-objective optimiza-
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tion
— Step 1 finds a single solution -
— No need for Step 2
e Multi-modal optimization is a special
case of multi-objective optimization
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Two Goals in Ideal Multi-Objective Optimization

1. Converge on the Pareto-
optimal front

2. Maintain as diverse a distri-
bution as possible
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Why Use Evolutionary Algorithms?

e Population approach suits f_2
well to find multiple solutions

e Niche-preservation methods
can be exploited to find
diverse solutions

e Implicit parallelism helps pro-

vide a parallel search f 1

e Multiple applications of classical methods do not constitute a
parallel search

History of Evolutionary Multi-Objective
Optimization (EMO)

e Early penalty-based ap-
proaches

o VEGA (1984)

e Goldberg’s (1989) sugges-
tion

e MOGA, NSGA, NPGA

(1993-95) wused Goldberg’s
suggestion

Nunber of Studies

0
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
and before

e Elitist EMO (SPEA, NSGA- Year
II, PAES, MOMGA etc.)

(1998 — Present)
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g
What to Change in a Simple GA? I

e Modify the fitness compu-
tation

e Emphasize non-dominated
valuatl

solutions for convergence

e Emphasize less-crowded

solutions for diversity t=t+1

Mutation

i | Assign Fitness 3

Identifying the Non-dominated Set

Step 1 Set 7 = 1 and create an empty set P’.

Step 2 For a solution j € P (but j # i), check if solution j
dominates solution 4. If yes, go to Step 4.

Step 3 If more solutions are left in P, increment j by one and go
to Step 2; otherwise, set P’ = P U {i}.

Step 4 Increment ¢ by one. If i < N, go to Step 2; otherwise stop
and declare P’ as the non-dominated set.

O(MN?) computational complexity
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Finding the Non-dominated Set: An Efficient Approach I

Kung et al.’s algorithm (1975)
Step 1 Sort the population in descending order

of importance of f;

Step 2, Front(P) If |P| = 1, return P as
the output of Front(P). Otherwise,
T = Front(PW—-—PUPI/2) and B = |12 .

T1

Front(P(PI/2+0__pUPD). Tf the i-th so- |- vk i ng

lution of B is not dominated by any solution |B2 B1
of T, create a merged set M = T'U {i}. Re-

turn M as the output of Front(P).
O (N(log N)M=2) for M > 4 and O(Nlog N) for M = 2 and 3

@ Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

25

A Simple Non-Deminated Scrting Procedure I

e Identify the best non-dominated
set

e Discard them from population

e Identify the next-best non-

dominated set

e Continue till all solutions are clas-
sified

e We discuss a O(M N?) algorithm
later

|

F1

F1

F2

Which are Less-Crowded Sclutions? I

e Crowding can be in decision variable space or in objective space

X3

Deci si on space bj ective space
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Non-Elitist EMOs I

e Vector evaluated GA (VEGA) (Schaffer, 1984)
e Vector optimized EA (VOES) (Kursawe, 1990)
e Weight based GA (WBGA) (Hajela and Lin, 1993)

e Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)

e Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)

e Niched Pareto GA (NPGA) (Horn et al., 1994)

e Predator-prey ES (Laumanns et al., 1998)

e Other methods: Distributed sharing GA, neighborhood

constrained GA, Nash GA etc.
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Vector-Evaluated GA (VEGA)

e Divide population into M equal blocks

e Each block is reproduced with one objective function

e Complete population participates in crossover and mutation
e Bias towards to individual best objective solutions

e A non-dominated selection: Non-dominated solutions are
assigned more copies

e Mate selection: Two distant (in parameter space) solutions are
mated

e Both necessary aspects missing in one algorithm

Non-Dominated Sorting GA (NSGA)

f1 fa Fitness
z Front | before | after
—1.50 2.25 | 12.25 2 3.00 3.00
0.70 0.49 1.69 1 6.00 6.00 f2
4.20 | 17.64 4.84 2 3.00 3.00
2.00 4.00 0.00 1 6.00 3.43
1.75 3.06 0.06 1 6.00 3.43
—3.00 9.00 | 25.00 3 2.00 2.00
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e Niching in parameter space
e Non-dominated solutions are emphasized

e Diversity among them is maintained

Multi-Objective GA (MOGA)

e Count the number of domi- F | Asgn. | Fit.
nated solutions (say n)
1 2 3 2.5
e Fitness: F=n+1
211 6| 5.0
A fi ki just-
) tness ranking adjust 5| 9 9| a5
ment
. 411 5] 5.0
e Niching in fitness space
51 1 4| 5.0
e Rest all are similar to
NSGA 6| 3 1] 1.0
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Niched Paretc GA (NPGA)

e Solutions in a tournament are checked for domination with

respect to a small subpopulation (£gom)
e If one dominated and other non-dominated, select second

e If both non-dominated or both dominated, choose the one with
smaller niche count in the subpopulation

e Algorithm depends on t4om

e Nevertheless, it has both necessary components
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NPGA (cont.)

° X—
. | — Check for
. Yoo domination
. /
,,,,,, o
°
t_dom
°
. Parameter Space
Population
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Shortcomings of Non-Elitist EMOs I

Elite-preservation is missing

Elite-preservation is important for proper convergence in

SOEAs

Same is true in EMOs

Three tasks

— Elite preservation
— Progress towards the Pareto-optimal front

— Maintain diversity among solutions

Elitist EMOs (cont.)

e Distance-based Pareto GA (DPGA) (Osyczka and Kundu,
1995)

e Thermodynamical GA (TDGA) (Kita et al., 1996)

e Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)

e Non-dominated sorting GA-IT (NSGA-II) (Deb et al., 1999)
e Pareto-archived ES (PAES) (Knowles and Corne, 1999)

e Multi-objective Messy GA (MOMGA) (Veldhuizen and
Lamont, 1999)

e Other methods: Pareto-converging GA, multi-objective
micro-GA, elitist MOGA with coevolutionary sharing
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Elitist Non-dominated Sorting Genetic Algorithm

(NSGA-II)

Elites are preserved

Non-dominated Crowding
sorting distance P
sorting t+l

[

[
- =
}ng}ected

3
o T

Re
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NSGA-II (cont.)

Diversity is maintained: O(M N log N)

f,0
L]

Overall Complexity: O(MN?)
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An Illustration of NSGA-II I

Six parents and six offspring

—— 10

Parent o
Offspring @

10

e bFront 2
Front 1

|

o L . . . .
01 02 03 04 05 06 07 08 09 1 %1 02 03 04 05 06 07 08 09

fy fq

Parents after one iteration: (a,3,1,e,5,b)

1

NSGA-II on Test Problems I

(Min)  f1(x) = z1 (Min)  f1(x) = a1
(Min)  fa(x) =g [1 — (f1/9)?] (Min) fa2(x) =g [1 - \/§ — % sin(107f1)
where g(x) =14 2- 37" =, where g(x) =1+ -2 7 g

11
09
0.8
07
06
f2 o5
0.4
03
02
01

fa
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Strength Pareto EA (SPEA)

e Stores non-dominated solutions externally

e Pareto-dominance to assign fitness

— External members: Assign number of dominated solutions
in population (smaller, better)

— Population members: Assign sum of fitness of external
dominating members (smaller, better)

e Tournament selection and recombination applied to combined
current and elite populations

e A clustering technique to maintain diversity in updated

external population, when size increases a limit
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SPEA (cont.)

Pareto Archived ES (PAES)

e Fitness assignment and clustering methods
e An (1+1)-ES

. Fitness Assignment
Population Ext_pop

< . e Parent p; and child ¢; are compared with an external archive A,

XX XXX

e Child can enter the archive and can become a parent

L) LFS

- 1 _ offspring
Function Space o o

Parent

Clustering (d and p_max) 2

.
\’?\,
N
OIS
el

Se Pareto-optimal f Pareto-optimal f
- front front

Function Space
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Comparative Results: Convergence Comparative Results: Diversity
Algorithm SCH FON POL KUR Algorithm SCH FON POL KUR
NSGA-II 0.003391 | 0.001931 | 0.015553 | 0.0285964 NSGA-II 0.477899 | 0.378065 | 0.452150 | 0.411477
0 0 | 0.000001 | 0.000018 0.003471 | 0.000639 | 0.002868 | 0.000992
SPEA 0.003403 | 0.125692 | 0.037812 | 0.045617 SPEA 1.021110 | 0.792352 | 0.972783 | 0.852990
0 | 0.000038 | 0.000088 0.00005 0.004372 | 0.005546 | 0.008475 | 0.002619
PAES 0.001313 | 0.151263 | 0.030864 | 0.057323 PAES 1.063288 | 1.162528 | 1.020007 | 1.079838
0.000003 | 0.000905 | 0.000431 | 0.011989 0.002868 | 0.008945 0 | 0.013772
Algorithm Z/DT1 ZDT2 ZDT3 /DT4 ZDT6 Algorithm ZDT1 ZDT2 ZDT3 /DT4 ZDTé6
NSGA-II 0.033482 | 0.072391 | 0.114500 | 0.513053 | 0.296564 NSGA-II 0.390307 | 0.430776 | 0.738540 | 0.702612 | 0.668025
0.004750 | 0.031689 | 0.007940 | 0.118460 | 0.013135 0.001876 | 0.004721 | 0.019706 | 0.064648 | 0.009923
SPEA 0.001799 | 0.001339 | 0.047517 | 7.340299 | 0.221138 SPEA 0.784525 | 0.755148 | 0.672938 | 0.798463 | 0.849389
0.000001 0 | 0.000047 | 6.572516 | 0.000449 0.004440 | 0.004521 | 0.003587 | 0.014616 | 0.002713
PAES 0.082085 | 0.126276 | 0.023872 | 0.854816 | 0.085469 PAES 1.229794 | 1.165942 | 0.789920 | 0.870458 | 1.153052
0.008679 | 0.036877 0.00001 | 0.527238 | 0.006664 0.004839 | 0.007682 | 0.001653 | 0.101399 | 0.003916
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Constrained Handling

e Penalty function approach
Fr = fm + RmQ(g)

e Explicit procedures to handle infeasible solutions
— Jimenez’s approach
— Ray-Tang-Seow’s approach

e Modified definition of domination
— Fonseca and Fleming’s approach

— Deb et al.’s approach

Constrain-Domination Principle

A solution 4 constrained-
dominates a solution j, if any is

true: 10

1. Solution 7 is feasible and so- 8

lution j is not.

2. Solutions i and j are both in- 1 - \6
\5 -

"= Front

feasible, but solution 7 has a

2

aigi y
smaller overall constraint vi- 2 front
3 Constrai nt
olation. S I
01 02 03 04 05 06 07 08 09 1
3. Solutions 7 and j are feasible fa

and solution ¢ dominates so-

lution j.
o N ) 46
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Constrained NSGA-IT Simulation Results
. (Min) f1 (x) =
(Min)  fi(x) =z (Min)  fa(x) = 22
. _ i4s
(Min)  fa(x) = z12 z?+z§—1—11—ocos (16tan_1 z—;) >0
T2+ 921 2 6 (z1 — 0.5)2 + (22 — 0.5)% < 0.5
—z2 49z > 1
14
12 7

1
0.8
0.6
0.4

0.2

0 L L L L L L L L 0
01 02 03 04 05 06 07 08 09 1

fy

fq

0 02 04 06 08 1 12 14

EMO Applications

1. Identify different trade-off solutions for choosing one

2. Understanding insights about the problem
e Reveal common properties among P-O solutions
e Identify what causes trade-offs
e Such information are valuable to users

e May not exist other means of finding above

3. To aid in other optimization tasks
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For a Better Decision-Making

e Spacecraft trajectory optimization (Coverstone-Carroll et al.

(2000) with JPL Pasadena)

e Three objectives for inter-planetary trajectory design

— Minimize time of flight

— Maximize payload delivered at destination

— Maximize heliocentric revolutions around the Sun

e NSGA invoked with SEPTOP software for evaluation

Earth—Mars Rendezvous

NBSS Lellverea o larger (Kg.)

5
Transfer Time (yrs.)

\ Earth
o, ol
e

Individual 44

Individual 72

Mars
Xzz il

Farth /
00105 [/
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Revealing Salient Insights: Truss Structure Design

y 30 in
2 ) @ 6
Q@ -
[€) ® |5
© B
/]
@
j/w g s
0.04 - 000015 100001
A
0.035 [~ 6
A
T 003 555
z L 500
c 0025
° 45re
pol L o 2
3 002 4fo
& o015 B 351 %%E

0oLk < % 3t

Defl ection (in)

0O 10 20 30 40 5 60 70 80

! y Y .
i 4 251 E
005 M—'W F 2 K K
o L., D E TR sl _—
L [ e

D

Vi ght (Ib)

1 L
2000 4000 6000 8000 10000 12000 14000

Vi ght (I b)

Revealing Salient Insights: A Cantilever Plate Design

60 mm

le——— 100 M ——=4

Di spl acenent (nmm)

0.14

0.12

0.1

0.08

0.06
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Base plate
0.04 1
L L L L L
100 150 200 250 300 350 400
Wi ght (kg)
Eight trade-off solutions are chosen
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Trade-Off Sclutions

e Symmetry in solutions about mid-plane, discovery of stiffener

Revealing Salient Insights: Gear-box Design

e A multi-spindle gear-box de-
sign e Important insights obtained
1 dule f

e 29 variables (integer, dis- (arge; modtie fotmote

crete, real-valued) power

Two Obj ectives

e 101 non-linear constraints

Three
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. 13 80 obj ecti ves
lhal 1 T .
Input shaft (Shaft # 1) == i H . = % ;
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N

Outcome of an Analysis of Sclutions

e Module varies proportional to square-root of power (m o /p)

e Not known earlier

Gear-pair 0aF T e T r T
o LIS P 7777 =
Josis? 035 - o B
(e &esdiod sy : w
2 2@ , =
< 03t = B
0 f?f}/ffflf[l/[/f o 5 =
8 - i
£ 15 B © 025F - ]
< . 3 K
= i g ol & |
S 015 = q
st ot | <
b Lower linit
05 2.3 [ N ettt bl bbb bt st i bbbt
12 4 6 8 10 12 14 16 18 20 12 4 6 8 10 12 14 16 18 20
Power (kw) Power (kW

Revealing Salient Insights: Epoxy Polymerization

e Three ingredients (NaOH, EP

and AAQ) added hourly 10000
e 54 ODEs solved for a 7-hour :x
simulation 000 - i
e Maximize high chain length = :x
(Mn) and minimize polydis- st |
persity index (PDI) w0 1
2000 ko-© ® i
e NaOH and AAO varies in [0,1] 1000 s
. 18 184 1.88 192 1.96 2
and EP in [0,2] PDI

e Total 3 x 7 or 21 variables
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Epoxy Polymerization (cont.)

e A problem having a non-convex Pareto-optimal front
e Some patterns emerge among obtained solutions

e Need to check their chemical significance

Mn and PDI Optimization

EMO for Other Optimization Tasks

e Constrained handling

— Constraint violations 6 w w w w
as additional objectives 5///—
(Surry, Radcliffe and of |
F ibl luti
Boyd, 1995, Coello & ,[—of equation (5.66)
%
pe
(2000)) 2 AB Constrained minimum
e Find partial front near zero- s
E Pareto-optimal front
Ccv NN il ‘ ‘ ‘
0¢€ 5 10 15 20

Constraint violation

e May provide a flexible
search

25
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Goal Programming and Others

e Goal programming to find multi- Tk
ple solutions

— Avoids fixing a weight vector

(Deb, 2001) T oppn 25

e Genetic programming to reduce bloating: Program size as a

second objective (Bleuler et al., 2001)

e Reducing the chance of getting trapped in local optima
(Knowles et al., 2001)

e Use secondary objectives for maintaining diversity (Abbass and

Deb, 2003, Jensen, 2003)

Salient Research Tasks I

e Scalability of EMOs to handle more than two objectives

e Mathematically convergent algorithms with guaranteed spread

of solutions
e Test problem design
e Performance metrics and comparative studies
e Other EMOs — Multi-modal EMQOs, Dynamic EMOs
e Controlled elitism
e Developing practical EMOs — Hybridization, parallelization

e More application case studies
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Scalability Issues

e Pareto-optimal region is a e Pareto-optimal front may

higher-dimensional surface be of smaller dimension

3 Pareto-optimal
surface

Scalability Issues (cont.)

e Complexity of niching procedures — Who is one’s neighbor?

e Algorithms differ in maintaining diversity (NSGA-II vs. SPEA)
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Some Results on Scalability of EMOs

e PESA, SPEA2, and NSGA-IT compared up to 8 objectives
(Khare, Yao, Deb, 2003)

e PESA best for convergence, but poor in diversity and running
time (exponential)

e SPEA2 good for diversity, but poor in convergence and running

time

e NSGA-II best for running time and good for diversity, but poor
in convergence in higher objectives

e Very different outcome for large number of objectives

Convergence Issues

e Lukewarm interest till to date

e NSGA-II, SPEA etc. have problem of convergence

— Pareto-optimal solutions can be lost to maintain a
well-diverse set

e Rudolph and Agapie’s algorithm for guaranteed convergence

Non-dominated New
Archive New pop. solutions Archive

o
k

One Iteration
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Convergence Issues (cont.)

e Shortcomings of Rudolph and Agapie’s algorithm
— No guarantee on spread of solutions
— No time complexity measure
e Laumanns et al. (2001) suggest a remedy
— e-dominance and diversity through hyper-box dominance
— A new solution is compared with an archive in each iteration

— e-dominance concept is practical

f2 Doni nat ed fa e Doni nat ed
region 2 [region
2
€y
f
h fy

EA and archive popu-

lations evolve

One EA and one

archive member are

The e-MOEA I
EA

Ar chi ve

mated
Archive update using
e-dominance I I
EA update using usual | ysyal msover
. [ e—dom
dominance _
O fspring %
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Comparative Study on DTLZ Functions
| Convergence measure | Sparsity [ Time (sec)
EMO | Average Std. Dev. |  Average Std. Dev. | Average | Std. Dev.
DTLZ2
NSGA-II 0.0137186 0.0020145 0.931111 0.0124474 17.16 0.196
C-NSGA-II 0.0107455 0.0008424 0.999778 0.0004968 7837.42 81.254
PESA 0.0106292 0.0025483 0.945778 0.0309657 88.01 12.901
SPEA2 0.0126622 0.0009540 0.998889 0.0007855 2164.42 19.858
e-MOEA 0.0108443 0.0002823 0.999104 0.0009316 2.01 0.032
DTLZ3
NSGA-IT 0.0149156 0.01028 0.839228 0.02961 136.45 31.080
C-NSGA-II 0.0202315 0.00898 0.995521 0.00613 24046.03 4690.032
PESA 0.0130633 0.00449 0.722296 0.02785 89.49 12.527
SPEA2 0.0122429 0.00194 0.999771 0.00031 9080.81 963.723
e-MOEA 0.01221920 0.00223 0.993207 0.00974 9.42 2.180
DTLZ5
NSGA-II 0.00208342 11.976e-05 0.953778 0.00992 11.49 0.036
C-NSGA-II 0.00256138 30.905e-05 0.996667 0.00314 1689.16 81.365
PESA 0.00094626 11.427e-05 0.772110 0.02269 53.27 11.836
SPEA2 0.00197846 16.437e-05 1.000000 0.00000 633.60 14.082
e-MOEA 0.000953623 4.892e-05 0.980867 0.01279 1.45 0.051
AN
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Finding a Partial Pareto-Optimal Set

Using a DM'’s preference

(not for a solution but for
a region)

Guided domination princi- ash
ple (Branke et al., 2000) 3

Biased niching approach
(Deb, 2002)

Weighted domination ap-
proach (Parmee et al., 2000)

0 RS
0 05 1 15 2 25 3 35 ¢
fl

Distributed Computing of Pareto-Optimal Set
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e Guided domination concept to search different parts of P-O
region
e Usual island model with migration
12 - Q f2
20
Q, 10
8 - 15 1
d2p e
6
10
4 (1
| 5
T Q
él) N 0 0 T T T T !
> 5 10 15 20
4P~ 0
aN o - . 70
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Distributed Computing: A Three-Objective Problem

e Spatial computing, not temporal

3 Processor, 3

Processor 1 Processor 2

NSGA-II Simulations

Two-Objective Test Problems

Pareto-optimal front is con-

trollable and known

ZDT problems:

Min. f1(x) = fi1(x1),

Min. fa(x) = g(x11)h(f1,9).

Choose f1(), g() and h() to
introduce various difficulties

f_10)

Shape:

causes density change
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Zitzler—Deb—Thiele’s Test Problems

ZDT1 ZDT2
fi(x) = a1, fi(x) = 1,
g(x) = 14+ 2537 e, g(x) = 14+ 25370, a,
h(fi9) = 1=VHh/g. h(f,9) = 1-(fi/9)"
2 T T T T 2
15 1 15k ]
f, 1 4 51 J
05 / 1 05 4—etmoptimal 4
N front
Pareto-optimal
front
o . . n n L L
0 02 04 06 08 1 % 02 04 06 08 1
, n
a ; iitk.ac.i 73
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Zitzler—Deb—Thiele’s Test Problems

ZDT3
fi =z,
g=1+4 237", =,

h=1-+/fi/g— (fi/9)sin(10xf1).

15 1

areto-optimal

sy fronts

ZDT4

fi =z,

g=10n -9+ 37" ,(2? — 10 cos(4rz;)),

h=1-+/fi/g.

Local Pareto-optimal fronts

fZ

Aobal

Pareto-optinal front

0 02 04 06 08
f

Zitzler—Deb—Thiele’s Test Problems

ZDT5
fr =1+u(z)
9= 1L, v(u(e:))
v — { 24 u(z;) if u(z;) <5,
1 if u(z;) =5,
h=1/f1(x).
5 [N

20 25 31

ZDT6

fi =1 — exp(—4da1) sin® (6721 ),
9=1+9[(C}% /9",
h=1-(fi/9).

08 Sear ch 1
space

o L L L L L L L
02 03 04 05 06 07 08 09 1
fy
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Parameter Interactions

variables (z;):

Fitness computed using &

More difficult problems using parameter interactions

True variables (y;) are linearly related to other auxiliary

=My

e All parameters must change to remain Pareto-optimal
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Constraint Surface Approach
Scalable Test Problems (Deb et al. 2001)

i Search space

Step 1 Define Pareto-optimal e Define a rectangular hyper-

front mathematically box
Step 2 Build the objective e Chop off regions using con-

search space using it straints
e Adv: Easy to construct

e Disadv: Difficult to define
Pareto-optimal front

Step 3 Map variable space to
objective space

e Scalable DTLZ problems
suggested

Pareto-optimal front
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Various Parameter Settings

Constrained Test Problem Generator

e Some test problems in Veldhuizen (1999)

2 T T T T 2
e More controllable test problems are called for
151 1 15k
Minimize fi(x) = 1 fal
Minimize f2(x) = g(x) (1 — %)
05
Subject to c(x) = cos(8)(f2(x) — ¢) — sin(6) 1 (x) > e 3 ALK
re |qns . X “‘~‘ o TEQ‘IDHS ) |
a |sin (br (sin(0) (f2(x) — €) + cos(8) f1(x))°)|* e e e e e
CTP2: d =6 and a = 0.2 CTP 7: § = —0.05m,a = 40,b =
5,¢c=1,d=6,e=0
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Performance Metrics

e A recent study by Zitzler et
al. suggests at least M met-
rics

e Two essential metrics (func-
tionally)

- Convergence measure

Pareto-optimal front

— Diversity measure

Metrics for Convergence

e Error ratio:

Ql f
Y 2
ER =

|Q| Am(1.2,7.8)

e Set Coverage:

|{b € B|da € A:a =< b}

| B| ;-_ﬂD(7022)

C(A,B) =

o Generational distance:

(Z\Q\ dp)l/p f,
el

GD =
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fl
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Metrics for Diversity
e Spacing:
f Ex}rs_me
2 solution
S =
e Spread:
Rl 7. _ 3 g
A:Zm 1 m Z ldi_d| d;
e
Yo A5, + 1Qd B B reme
e Chi-square like deviation mea- fa

sure

Metrics for Diversity (cont.)

e Distance from P* e Entropy measure

fs f,

fq

f1 sur
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Metrics for Convergence and Diversity

Running Metrics

Search boundal w

e T

Like SGA, define metric that shows generation-wise variation

Identify non-dominated set F® of each population P

e Comparison Set (H):
— If exact P-O front is known, H = P*
— Else H = Non-dominated (Ui—o,1,... F®)

e Hypervolume
e Attainment surface method %
e Convergence metric C*): Average distance of each member of

F® from H

Diversity metric D®): Similar to entropy measure

cross-line

fl
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Running Metrics (cont.)

Running Metrics on ZDT1

e Using Pareto-optimal solutions

1 T T T T T
s DTLZ2 (Three Objectives)
— 1 —
s zDT1 | : ZDT1 08 i
41 1 08 P Diversity | Diversity (SPEA2) |
351 Gen=0 1 ‘ » 06
3r 1 » 06 -
f °© | ]
225 1 - 2 o4
L z : ’ Diversity
2 F
2 o4t (NSGA-11)
1 Conver gence LY |
02l " 02 Convergence (NSGA-11)
4 Convergence (SPEA2) -
o . | . . .
o PR o L e 0 50 100 150 200 250 300
0 01 02 03 04 05 06 07 08 09 1 0 10 20 30 40 50 60 70 8 90 100 Generation Number
fq CGenerati on Nunber

/\v Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 87 Q Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 88



Scheduling EMOs

e Objective space niching allows a straightforward application
e Most techniques use a local search

e Job-shop scheduling (Ishibuchi and Murata, 1998)
4507 4507

@ : Non-dominated solutions @ : Non-dominated solutions
g 400 obtained by the VEGA g 400r obtained by the CWGA
£ 3501 £ 350[
2 a0 0, T os0r  *,
& 2s0r - & 250 *
§ 2001 LY § 200f o
o
g 1501 ° g 1501 o
§ 100[ s é 100[ s
Ol O
s0f ® g 50T ¥s
0 - - - 0 - ' '
650 700 750 800 650 700 750 800
Makespan Makespan
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Multi-Modal EMOs

e Different solutions having identical objective values

e Multi-modal Pareto-optimal solutions: Design, Bioinformatics

oj ective space

4

fq

Multiple Gene Subsets for Leukemia Samples

e Deb and Reddy

3 genes, non-zero 2 genes 1 gene

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 90

(BioSystems, -

2003) |
e Multiple  (26) i

four-gene com- =

binations for =

100% classifica- e

tion
e Discovery of i

nsTrio [

some  common e

genes
S - 01
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Hybrid EMOs

e Combine EAs with a local search method
— Better convergence

— Faster overall optimization

e Two hybrid approaches

— Local search to update each solution in an EA population
(Ishubuchi and Murata, 1998; Jaskiewicz, 1998)

— First EA and then apply a local search (Deb and Goel,
2000)
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Posteriori Appreach in an EMO

An Idea for Local Search

Multiple
local searches

MOEA e Extreme solutions are as-

Problem | gl . .
signed extreme weights

e Linear relation between

weight and fitness

_ Non-domination
Clustering check H
e Many solution can converge
to same solution after local ]
1
- J search
set after
local search
e Which objective to use in local search?
AN . . o ii i
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Which Pareto-Optimal Sclution tc Choose?
Posteriori Versus Online Approaches
e Needs to involve a decision-maker (DM)
* e Interactive EMO is called for — Not much study yet
e Cantilever plate design ; Postariori Method —o— e A few difficulties:

— The act of a DM makes it a single-obj. problem

e Compared for identical

evaluations — But, obj. is not known precisely and changes with iteration

Scaled Deflection

e Posteriori finds a better — EMO finds many solutions, but only one is desired

front — Is DM interested in evaluating more than one solution?

20 25 30 35 40 45 50 55 60

e EMO as a starter, then a classical approach

/\v Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 95 Q Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in) 96



A Possible Interactive EMO I

EMO: Find potentially good solutions — robust, knee-like, etc.
Classical: Concentrate in an area based DM’s preference

fa f,

Chosen
sol uti on

Chosen sol uti on
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Conclusions I

e Ideal multi-objective optimization is generic and pragmatic
e Evolutionary algorithms are ideal candidates
e Many efficient algorithms exist, more efficient ones are needed

e With some salient research studies, EMOs will revolutionize
the act of optimization

e EAs have a definite edge in multi-objective optimization and
should become more useful in practice in coming years

EMO Resources

Books

e C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont.
Evolutionary Algorithms for Solving Multi-Objective Problems.
Boston, MA: Kluwer Academic Publishers, 2002.

K. Deb. Multi-objective optimization using evolutionary algorithms.
Chichester, UK: Wiley, 2001. (Second edition, with exercise
problems)

Paper Repository: http://www.lania.mx/~ccoello/EMO0/
Conference Proceedings

e Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C. and Corne, D. (Eds)
(2001). Ewolutionary Multi-Criterion Optimization (Lecture Notes
in Computer Science 1993). Heidelberg: Springer.
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EMO Rescurces (cont.)

Conference Proceedings (cont.)

e Fonseca, C., Zitzler, E., Deb, K., Fleming, P. and Thiele, L. (Eds)
(2003). Ewolutionary Multi-Criterion Optimization (Lecture Notes in
Computer Science 2632). Heidelberg: Springer.

e EMO-2005 in Mexico (http://www.cimat.mx/emo2005/)
Mailing List

e emo-list@Qualg.pt
e MCRIT-LQLISTSERV.UGA.EDU

Public-Domain Scurce Codes
e NSGA-II in C: http://www.iitk.ac.in/kangal/soft.htm

e SPEA2 and others: http://www.tik.ee.ethz.ch/pisa
Java codes: University of Dortmund
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