A Tutorial on **Evolutionary Multi-Objective Optimization**

Kalyanmoy Deb

Kanpur Genetic Algorithm Laboratory (KanGAL) Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur, Pin 208016 INDIA deb@iitk.ac.in

http://www.iitk.ac.in/kangal/deb.htm

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

Multi-Objective Optimization • We often face them Pareto-optimal 40% 100k 10k Cost

Overview of the Tutorial

- Multi-objective optimization
- Classical methods
- Evolutionary computing methods (EMO)
 - Differences
 - Non-elitist EMO
 - Elitist EMO
 - Constrained EMO
 - Applications of EMO
 - Salient research issues
- Conclusions

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

More Examples

A cheaper but inconvenient flight

A convenient but expensive flight

Mathematical Programming Problem

Min/Max $(f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x}))$

Subject to
$$g_j(\mathbf{x}) \ge 0$$

 $h_k(\mathbf{x}) = 0$

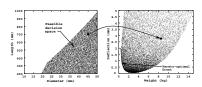
$$\mathbf{x}^{(L)} \leq \mathbf{x} \leq \mathbf{x}^{(U)}$$

Minimize
$$f_1(d, l) = \rho \frac{\pi d^2}{4} l$$

Minimize
$$f_2(d, l) = \delta = \frac{64Pl^3}{3E\pi d^4}$$

subject to
$$\sigma_{\max} \leq S_y$$

 $\delta \leq \delta_{\max}$

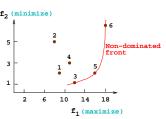


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

Pareto-Optimal Solutions

Non-dominated solutions: Among a set of solutions P, the nondominated set of solutions P'are those that are not dominated by any member of the set P. $O(N \log N)$ algorithms exist.

Pareto-Optimal solutions: When $P = \mathcal{S}$, the resulting P' is Paretooptimal set

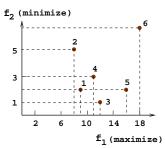


A number of solutions are optimal

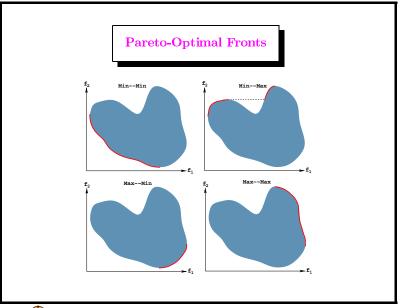
Relates to the concept of domination

 $\mathbf{x}^{(1)}$ dominates $\mathbf{x}^{(2)}$ if

- 1. $\mathbf{x}^{(1)}$ is no worse than $\mathbf{x}^{(2)}$ in all objectives
- 2. $\mathbf{x}^{(1)}$ is strictly better than $\mathbf{x}^{(2)}$ in at least one objective



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)



Optimality Conditions

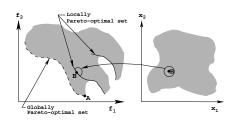
Fritz-John Necessary Condition:

Solution \mathbf{x}^* satisfy

1.
$$\sum_{m=1}^{M} \lambda_m \nabla f_m(\mathbf{x}^*) - \sum_{j=1}^{J} u_j \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$
, and

2.
$$u_j g_j(\mathbf{x}^*) = 0$$
 for all $j = 1, 2, ..., J$.

Like single-objective optimization, local and global P-O fronts exist:

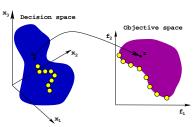


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

- 9

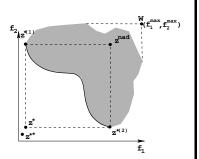
Differences with Single-Objective Optimization

- One optimum versus multiple optima
- Requires search and decisionmaking
- Two spaces of interest, instead of one



Some Terminologies

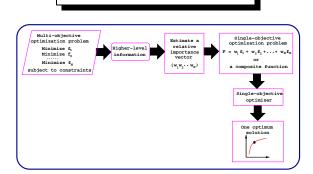
- Ideal point, z*: nonexistent, lower bound on Paretooptimal set
- Utopian point, **z****: nonexistent
- Nadir point, z^{nad}: upper bound on Pareto-optimal set
- Normalization: $f_i^{\text{norm}} = \frac{f_i z_i^*}{z_i^{\text{nad}} z_i^*}$



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

10

Preference-Based Approach



• Classical approaches follow it

Classical Approaches

- No Preference methods (heuristic-based)
- Posteriori methods (generating solutions)
- A priori methods (one preferred solution)
- Interactive methods (involving a decision-maker)

Xan GAL

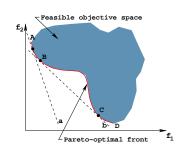
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

13

15

Difficulties with Weighted Sum Method

- \bullet Need to know \mathbf{w}
- Non-uniformity in Paretooptimal solutions
- Inability to find some Pareto-optimal solutions



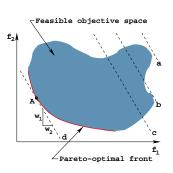
X as GAL

Weighted Sum Method

• Construct a weighted sum of objectives and optimize

$$F(\mathbf{x}) = \sum_{m=1}^{M} w_m f_m(\mathbf{x}).$$

 \bullet User supplies weight vector \mathbf{w}



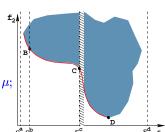
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

14

ϵ -Constraint Method

• Optimize one objective, constrain all other

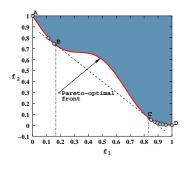
Minimize $f_{\mu}(\mathbf{x})$, subject to $f_{m}(\mathbf{x}) \leq \epsilon_{m}, \ m \neq \mu$;



- \bullet User supplies a ϵ vector
- Need to know relevant ϵ vectors
- Non-uniformity in Pareto-optimal solutions

Difficulties with Most Classical Methods

- Need to run a singleobjective optimizer many times
- Expect a lot of problem knowledge
- Even then, good distribution is not guaranteed
- Multi-objective optimization as an application of single-objective optimization



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

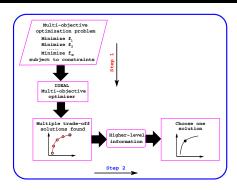
17

A More Holistic Approach for Optimization

- Decision-making becomes easier and less subjective
- Single-objective optimization is a degenerate case of multi-objective optimization
 - Step 1 finds a single solution
 - No need for Step 2
- Multi-modal optimization is a special case of multi-objective optimization

X ass CDAL

Ideal Multi-Objective Optimization



Step 1 Find a set of Pareto-optimal solutions

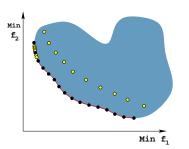
Step 2 Choose one from the set

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

18

Two Goals in Ideal Multi-Objective Optimization

- 1. Converge on the Paretooptimal front
- 2. Maintain as diverse a distribution as possible



Why Use Evolutionary Algorithms?

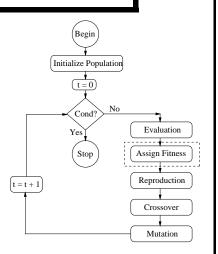
- Population approach suits well to find multiple solutions
- Niche-preservation methods can be exploited to find diverse solutions
- Implicit parallelism helps provide a parallel search
- Multiple applications of classical methods do not constitute a parallel search

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

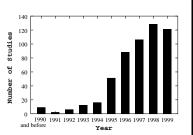
21

What to Change in a Simple GA?

- Modify the fitness computation
- Emphasize non-dominated solutions for convergence
- Emphasize less-crowded solutions for diversity



- Early penalty-based approaches
- VEGA (1984)
- Goldberg's (1989) suggestion
- MOGA, NSGA, NPGA (1993-95) used Goldberg's suggestion
- Elitist EMO (SPEA, NSGA-II, PAES, MOMGA etc.) (1998 – Present)



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

22

Identifying the Non-dominated Set

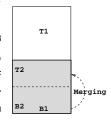
- **Step 1** Set i = 1 and create an empty set P'.
- **Step 2** For a solution $j \in P$ (but $j \neq i$), check if solution j dominates solution i. If yes, go to Step 4.
- **Step 3** If more solutions are left in P, increment j by one and go to Step 2; otherwise, set $P' = P' \cup \{i\}$.
- **Step 4** Increment *i* by one. If $i \leq N$, go to Step 2; otherwise stop and declare P' as the non-dominated set.
- $O(MN^2)$ computational complexity

Finding the Non-dominated Set: An Efficient Approach

Kung et al.'s algorithm (1975)

Step 1 Sort the population in descending order of importance of f_1

Step 2, Front(P) If |P| = 1, return P as the output of Front(P). Otherwise, $T = \mathbf{Front}(P^{(1)} - -P^{(|P|/2)})$ and B =**Front** $(P^{(|P|/2+1)} - P^{(|P|)})$. If the *i*-th solution of B is not dominated by any solution of T, create a merged set $M = T \cup \{i\}$. Return M as the output of **Front**(P).



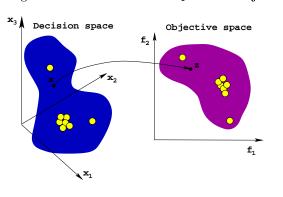
 $O(N(\log N)^{M-2})$ for M > 4 and $O(N \log N)$ for M = 2 and 3

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

25

Which are Less-Crowded Solutions?

• Crowding can be in decision variable space or in objective space



- Identify the best non-dominated
- Discard them from population
- Identify the next-best nondominated set
- Continue till all solutions are classified
- We discuss a $O(MN^2)$ algorithm later

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

26

Non-Elitist EMOs

- Vector evaluated GA (VEGA) (Schaffer, 1984)
- Vector optimized EA (VOES) (Kursawe, 1990)
- Weight based GA (WBGA) (Hajela and Lin, 1993)
- Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)
- Non-dominated sorting GA (NSGA) (Srinivas and Deb. 1994)
- Niched Pareto GA (NPGA) (Horn et al., 1994)
- Predator-prey ES (Laumanns et al., 1998)
- Other methods: Distributed sharing GA, neighborhood constrained GA, Nash GA etc.

Vector-Evaluated GA (VEGA)

- \bullet Divide population into M equal blocks
- Each block is reproduced with one objective function
- Complete population participates in crossover and mutation
- Bias towards to individual best objective solutions
- A non-dominated selection: Non-dominated solutions are assigned more copies
- Mate selection: Two distant (in parameter space) solutions are mated
- Both necessary aspects missing in one algorithm

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

29

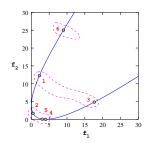
Multi-Objective GA (MOGA)

- Count the number of dominated solutions (say n)
- Fitness: F = n + 1
- A fitness ranking adjustment
- $\bullet\,$ Niching in fitness space
- Rest all are similar to NSGA

	F	Asgn.	Fit.
1	2	3	2.5
2	1	6	5.0
3	2	2	2.5
4	1	5	5.0
5	1	4	5.0
6	3	1	1.0

Non-Dominated Sorting GA (NSGA)

	f_1	f_2		Fitness	
\boldsymbol{x}			Front	before	after
-1.50	2.25	12.25	2	3.00	3.00
0.70	0.49	1.69	1	6.00	6.00
4.20	17.64	4.84	2	3.00	3.00
2.00	4.00	0.00	1	6.00	3.43
1.75	3.06	0.06	1	6.00	3.43
-3.00	9.00	25.00	3	2.00	2.00



- Niching in *parameter* space
- Non-dominated solutions are emphasized
- Diversity among them is maintained

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

30

Niched Pareto GA (NPGA)

- Solutions in a tournament are checked for domination with respect to a small subpopulation (t_{dom})
- If one dominated and other non-dominated, select second
- If both non-dominated or both dominated, choose the one with smaller niche count in the subpopulation
- Algorithm depends on t_{dom}
- Nevertheless, it has both necessary components

NPGA (cont.) Check for domination Parameter Space Population 33 Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

Elitist EMOs (cont.)

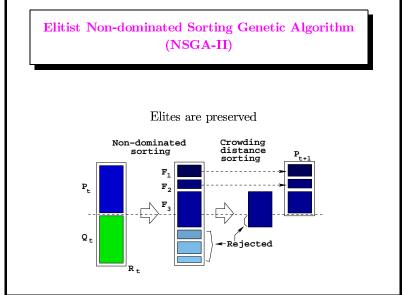
- Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 1995)
- Thermodynamical GA (TDGA) (Kita et al., 1996)
- Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)
- Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)
- Pareto-archived ES (PAES) (Knowles and Corne, 1999)
- Multi-objective Messy GA (MOMGA) (Veldhuizen and Lamont, 1999)
- Other methods: Pareto-converging GA, multi-objective micro-GA, elitist MOGA with coevolutionary sharing

Shortcomings of Non-Elitist EMOs

- Elite-preservation is missing
- Elite-preservation is important for proper convergence in SOEAs
- Same is true in EMOs
- Three tasks
 - Elite preservation
 - Progress towards the Pareto-optimal front
 - Maintain diversity among solutions

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

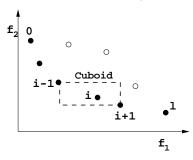
34



35

NSGA-II (cont.)

Diversity is maintained: $O(MN \log N)$



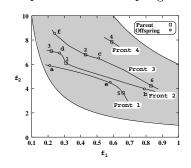
Overall Complexity: $O(MN^2)$

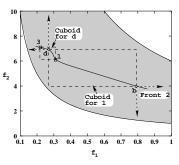
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

37

NSGA-II on Test Problems $(Min) \quad f_1(\mathbf{x}) = x_1$ (Min) $f_2(\mathbf{x}) = g \left[1 - (f_1/g)^2 \right]$ (Min) $f_2(\mathbf{x}) = g \left| 1 - \sqrt{\frac{f_1}{g}} - \frac{f_1}{g} \sin(10\pi f_1) \right|$ where $g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i$ where $g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i$ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -17

Six parents and six offspring





Parents after one iteration: (a,3,1,e,5,b)

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

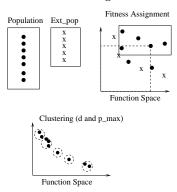
38

Strength Pareto EA (SPEA)

- Stores non-dominated solutions externally
- Pareto-dominance to assign fitness
 - External members: Assign number of dominated solutions in population (smaller, better)
 - Population members: Assign sum of fitness of external dominating members (smaller, better)
- Tournament selection and recombination applied to combined current and elite populations
- A clustering technique to maintain diversity in updated external population, when size increases a limit

SPEA (cont.)

• Fitness assignment and clustering methods



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

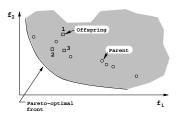
41

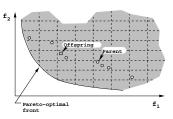
Comparative Results: Convergence

Algorithm	SCH	FON	POL	KUR	
NSGA-II	0.003391	0.001931	0.015553	0.028964	
N3GA-II	0	0	0.000001	0.000018	
SPEA	0.003403	0.125692	0.037812	0.045617	
JF EA	0	0.000038	0.000088	0.00005	
PAES	0.001313	0.151263	0.030864	0.057323	
FALS	0.000003	0.000905	0.000431	0.011989	
Algorithm	ZDT1	ZDT2	ZDT3	ZDT4	ZDT6
NSGA-II	0.033482	0.072391	0.114500	0.513053	0.296564
NSGA-II	0.004750	0.031689	0.007940	0.118460	0.013135
SPFA	0.001799	0.001339	0.047517	7.340299	0.221138
JF EA	0.000001	0	0.000047	6.572516	0.000449
PAES	0.082085	0.126276	0.023872	0.854816	0.085469
FAES	0.008679	0.036877	0.00001	0.527238	0.006664

Pareto Archived ES (PAES)

- An (1+1)-ES
- Parent p_t and child c_t are compared with an external archive A_t
- Child can enter the archive and can become a parent





Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

42

Comparative Results: Diversity

Algorithm	SCH	FON	POL	KUR	
NSGA-II	0.477899	0.378065	0.452150	0.411477	
NSGA-II	0.003471	0.000639	0.002868	0.000992	
SPFA	1.021110	0.792352	0.972783	0.852990	
SPEA	0.004372	0.005546	0.008475	0.002619	
PAES	1.063288	1.162528	1.020007	1.079838	
FAES	0.002868	0.008945	0	0.013772	
Algorithm	ZDT1	ZDT2	ZDT3	ZDT4	ZDT6
NSGA-II	0.390307	0.430776	0.738540	0.702612	0.668025
NSGA-II	0.001876	0.004721	0.019706	0.064648	0.009923
SPEA	0.784525	0.755148	0.672938	0.798463	0.849389
3F EA	0.004440	0.004521	0.003587	0.014616	0.002713
PAES	1.229794	1.165942	0.789920	0.870458	1.153052
FALS	0.004839	0.007682	0.001653	0.101399	0.003916

Constrained Handling

• Penalty function approach

$$F_m = f_m + R_m \Omega(\vec{g}).$$

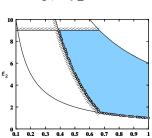
- Explicit procedures to handle infeasible solutions
 - Jimenez's approach
 - Ray-Tang-Seow's approach
- Modified definition of domination
 - Fonseca and Fleming's approach
 - Deb et al.'s approach

Tamba San

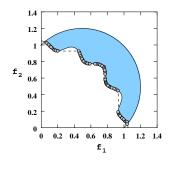
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

45

Constrained NSGA-II Simulation Results



(Min) $f_1(\mathbf{x}) = x_1$ (Min) $f_2(\mathbf{x}) = x_2$ $x_1^2 + x_2^2 - 1 - \frac{1}{10} \cos\left(16 \tan^{-1} \frac{x_1}{x_2}\right) \ge 0$ $(x_1 - 0.5)^2 + (x_2 - 0.5)^2 < 0.5$

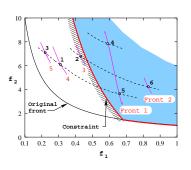


Xas SAL

Constrain-Domination Principle

A solution i constrained-dominates a solution j, if any is true:

- 1. Solution i is feasible and solution j is not.
- 2. Solutions *i* and *j* are both infeasible, but solution *i* has a smaller overall constraint violation.
- 3. Solutions i and j are feasible and solution i dominates solution j.



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

46

EMO Applications

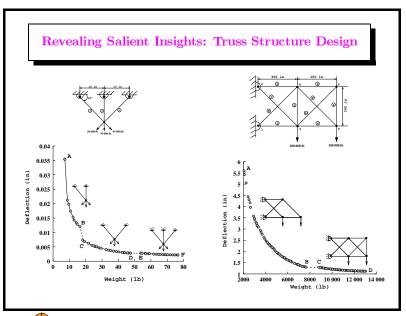
- 1. Identify different trade-off solutions for choosing one
- 2. Understanding insights about the problem
 - Reveal common properties among P-O solutions
 - Identify what causes trade-offs
 - Such information are valuable to users
 - May not exist other means of finding above
- 3. To aid in other optimization tasks

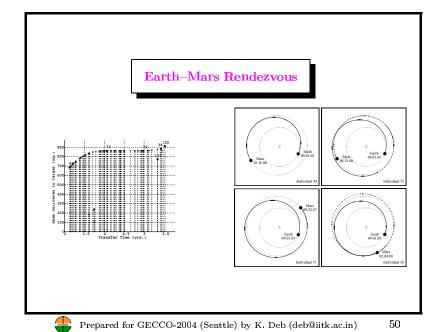
For a Better Decision-Making

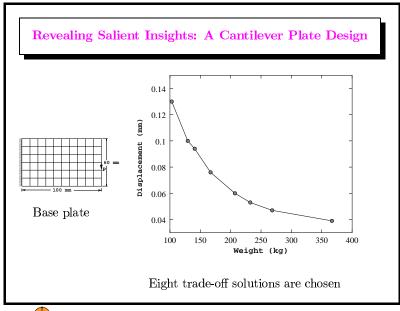
- Spacecraft trajectory optimization (Coverstone-Carroll et al. (2000) with JPL Pasadena)
- Three objectives for inter-planetary trajectory design
 - Minimize time of flight
 - Maximize payload delivered at destination
 - Maximize heliocentric revolutions around the Sun
- NSGA invoked with SEPTOP software for evaluation

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

49

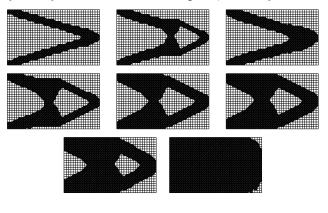






Trade-Off Solutions

• Symmetry in solutions about mid-plane, discovery of stiffener



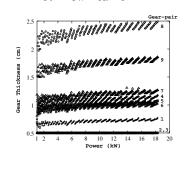
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

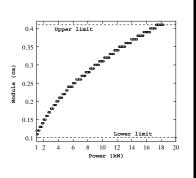
53

55

Outcome of an Analysis of Solutions

- Module varies proportional to square-root of power $(m \propto \sqrt{p})$
- Not known earlier

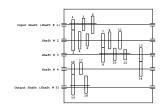




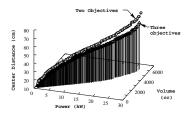
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

Revealing Salient Insights: Gear-box Design

- A multi-spindle gear-box design
- 29 variables (integer, discrete, real-valued)
- 101 non-linear constraints



• Important insights obtained (larger module for more power)

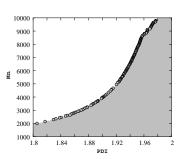


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

54

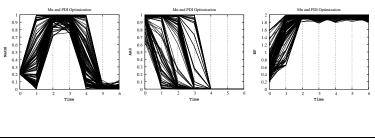
Revealing Salient Insights: Epoxy Polymerization

- Three ingredients (NaOH, EP and AA0) added hourly
- 54 ODEs solved for a 7-hour simulation
- Maximize high chain length (Mn) and minimize polydispersity index (PDI)
- NaOH and AA0 varies in [0,1] and EP in [0,2]
- Total 3×7 or 21 variables



Epoxy Polymerization (cont.)

- A problem having a non-convex Pareto-optimal front
- Some patterns emerge among obtained solutions
- Need to check their chemical significance

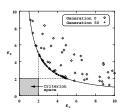


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

57

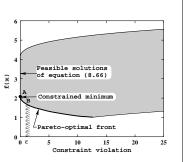
Goal Programming and Others

- Goal programming to find multiple solutions
 - Avoids fixing a weight vector (Deb, 2001)



- Genetic programming to reduce bloating: Program size as a second objective (Bleuler et al., 2001)
- Reducing the chance of getting trapped in local optima (Knowles et al., 2001)
- Use secondary objectives for maintaining diversity (Abbass and Deb, 2003, Jensen, 2003)

- Constrained handling
 - Constraint violations as additional objectives (Surry, Radcliffe and 1995,Boyd, Coello (2000)
- Find partial front near zero-CV
- May provide a flexible search



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

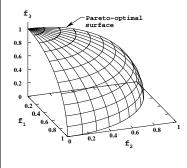
58

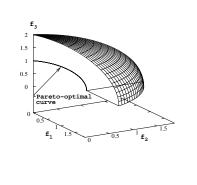
Salient Research Tasks

- Scalability of EMOs to handle more than two objectives
- Mathematically convergent algorithms with guaranteed spread of solutions
- Test problem design
- Performance metrics and comparative studies
- Other EMOs Multi-modal EMOs, Dynamic EMOs
- Controlled elitism
- Developing practical EMOs Hybridization, parallelization
- More application case studies

Scalability Issues

- Pareto-optimal region is a higher-dimensional surface
- Pareto-optimal front may be of smaller dimension





Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

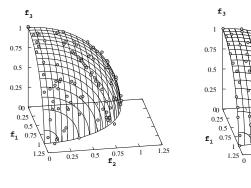
61

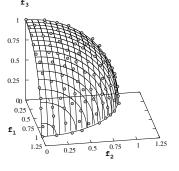
Some Results on Scalability of EMOs

- PESA, SPEA2, and NSGA-II compared up to 8 objectives (Khare, Yao, Deb, 2003)
- PESA best for convergence, but poor in diversity and running time (exponential)
- $\bullet\,$ SPEA2 good for diversity, but poor in convergence and running time
- NSGA-II best for running time and good for diversity, but poor in convergence in higher objectives
- Very different outcome for large number of objectives

Scalability Issues (cont.)

- Complexity of niching procedures Who is one's neighbor?
- Algorithms differ in maintaining diversity (NSGA-II vs. SPEA)



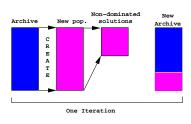


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

62

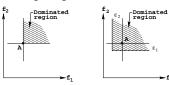
Convergence Issues

- Lukewarm interest till to date
- NSGA-II, SPEA etc. have problem of convergence
 - Pareto-optimal solutions can be lost to maintain a well-diverse set
- Rudolph and Agapie's algorithm for guaranteed convergence



Convergence Issues (cont.)

- Shortcomings of Rudolph and Agapie's algorithm
 - No guarantee on spread of solutions
 - No time complexity measure
- Laumanns et al. (2001) suggest a remedy
 - $-\epsilon$ -dominance and diversity through hyper-box dominance
 - A new solution is compared with an archive in each iteration
 - $-\epsilon$ -dominance concept is practical

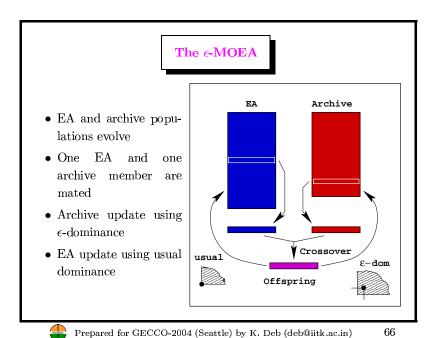


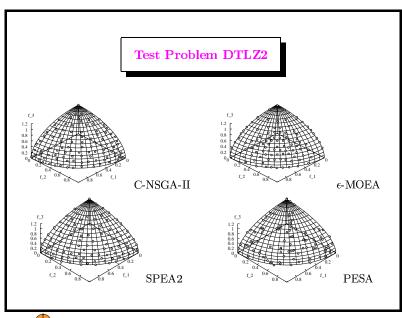
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

65

Comparative Study on DTLZ Functions

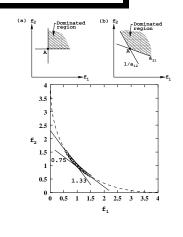
	Convergence measure		Sparsity		Time (sec)			
EMO	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.		
DTLZ2								
NSGA-II	0.0137186	0.0020145	0.931111	0.0124474	17.16	0.196		
C-NSGA-II	0.0107455	0.0008424	0.999778	0.0004968	7837.42	81.254		
PESA	0.0106292	0.0025483	0.945778	0.0309657	88.01	12.901		
SPEA2	0.0126622	0.0009540	0.998889	0.0007855	2164.42	19.858		
ε-MOEA	0.0108443	0.0002823	0.999104	0.0009316	2.01	0.032		
	DTLZ3							
NSGA-II	0.0149156	0.01028	0.839228	0.02961	136.45	31.080		
C-NSGA-II	0.0202315	0.00898	0.995521	0.00613	24046.03	4690.032		
PESA	0.0130633	0.00449	0.722296	0.02785	89.49	12.527		
SPEA2	0.0122429	0.00194	0.999771	0.00031	9080.81	963.723		
ε-MOEA	0.0122190	0.00223	0.993207	0.00974	9.42	2.180		
DTLZ5								
NSGA-II	0.00208342	11.976e-05	0.953778	0.00992	11.49	0.036		
C-NSGA-II	0.00256138	30.905e-05	0.996667	0.00314	1689.16	81.365		
PESA	0.00094626	11.427e-05	0.772110	0.02269	53.27	11.836		
SPEA2	0.00197846	16.437e-05	1.000000	0.00000	633.60	14.082		
ε-MOEA	0.000953623	4.892e-05	0.980867	0.01279	1.45	0.051		





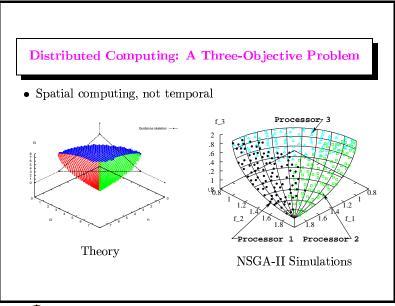
Finding a Partial Pareto-Optimal Set

- Using a DM's preference (not for a solution but for a region)
- Guided domination principle (Branke et al., 2000)
- Biased niching approach (Deb, 2002)
- Weighted domination approach (Parmee et al., 2000)



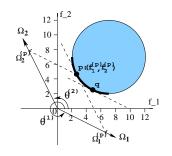
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

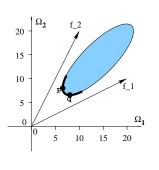
69



Distributed Computing of Pareto-Optimal Set

- Guided domination concept to search different parts of P-O region
- Usual island model with migration





Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

70

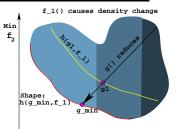
Two-Objective Test Problems

- Pareto-optimal front is controllable and known
- ZDT problems:

Min.
$$f_1(\mathbf{x}) = f_1(\mathbf{x}_I),$$

Min. $f_2(\mathbf{x}) = g(\mathbf{x}_{II})h(f_1, g).$

• Choose $f_1()$, g() and h() to introduce various difficulties



Min f,

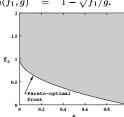
71

Zitzler–Deb–Thiele's Test Problems

ZDT1

$$f_1(\mathbf{x}) = x_1,$$

 $g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i,$
 $h(f_1, g) = 1 - \sqrt{f_1/g}.$

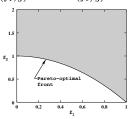


ZDT2

$$f_1(\mathbf{x}) = x_1,$$

$$g(\mathbf{x}) = 1 + \frac{9}{n-1} \sum_{i=2}^n x_i,$$

$$h(f_1,g) = 1 - (f_1/g)^2$$
.



Kasi GAL

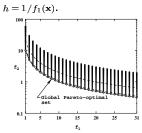
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

73

Zitzler-Deb-Thiele's Test Problems

ZDT5

$$\begin{split} f_1 &= 1 + u(x_1) \\ g &= \sum_{i=2}^{11} v(u(x_i)) \\ v &= \begin{cases} 2 + u(x_i) & \text{if } u(x_i) < 5, \\ 1 & \text{if } u(x_i) = 5, \end{cases} \end{split}$$

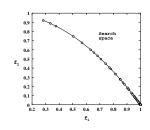


ZDT6

$$f_1 = 1 - \exp(-4x_1)\sin^6(6\pi x_1),$$

$$g = 1 + 9 \left[\left(\sum_{i=2}^{10} x_i \right) / 9 \right]^{0.25},$$

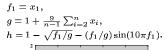
$$h = 1 - (f_1/g)^2.$$

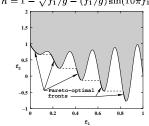


Kasi UAL

Zitzler-Deb-Thiele's Test Problems

ZDT3

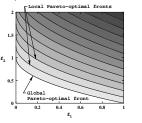




ZDT4

$$f_1 = x_1,$$

 $g = 10n - 9 + \sum_{i=2}^{n} (x_i^2 - 10\cos(4\pi x_i)),$
 $h = 1 - \sqrt{f_1/g}.$



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

74

Parameter Interactions

- More difficult problems using parameter interactions
- True variables (y_i) are linearly related to other auxiliary variables (x_i) :

$$\vec{x} = M\vec{y}$$

- Fitness computed using \vec{x}
- All parameters must change to remain Pareto-optimal

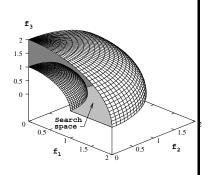
Scalable Test Problems (Deb et al. 2001)

Step 1 Define Pareto-optimal front mathematically

Step 2 Build the objective search space using it

Step 3 Map variable space to objective space

• Scalable DTLZ problems suggested



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

77

Constrained Test Problem Generator

- Some test problems in Veldhuizen (1999)
- More controllable test problems are called for

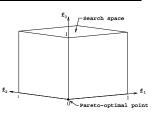
Minimize $f_1(\mathbf{x}) = x_1$

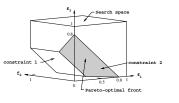
Minimize $f_2(\mathbf{x}) = g(\mathbf{x}) \left(1 - \frac{f_1(\mathbf{X})}{g(\mathbf{X})} \right)$

Subject to $c(\mathbf{x}) \equiv \cos(\theta)(f_2(\mathbf{x}) - e) - \sin(\theta)f_1(\mathbf{x}) \ge$

 $a \left| \sin \left(b\pi \left(\sin(\theta) \left(f_2(\mathbf{x}) - e \right) + \cos(\theta) f_1(\mathbf{x}) \right)^c \right) \right|^d$

- Define a rectangular hyperbox
- Chop off regions using constraints
- Adv: Easy to construct
- Disady: Difficult to define Pareto-optimal front



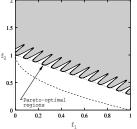


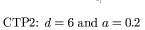
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

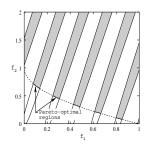
78

Various Parameter Settings

$$\theta = -0.2\pi$$
, $b = 10$, $c = 1$, $e = 1$.



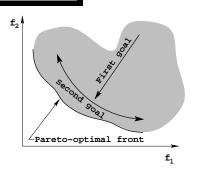




CTP 7: $\theta = -0.05\pi, a = 40, b =$ 5, c = 1, d = 6, e = 0

Performance Metrics

- A recent study by Zitzler et al. suggests at least M metrics
- Two essential metrics (functionally)
 - Convergence measure
 - Diversity measure



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

81

Metrics for Diversity

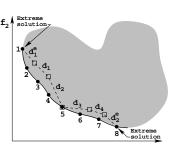
• Spacing:

$$S = \sqrt{\frac{1}{|Q|} \sum_{i=1}^{|Q|} (d_i - \overline{d})^2}$$

• Spread:

$$\Delta = \frac{\sum_{m=1}^{M} d_{m}^{e} + \sum_{i=1}^{|Q|} |d_{i} - \overline{d}|}{\sum_{m=1}^{M} d_{m}^{e} + |Q|\overline{d}}$$

• Chi-square like deviation measure



Metrics for Convergence

• Error ratio:

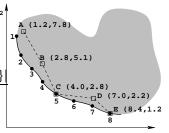
$$ER = \frac{\sum_{i=1}^{|Q|} e_i}{|Q|}$$

• Set Coverage:

$$\mathcal{C}(A,B) = \frac{|\{b \in B | \exists a \in A : a \leq b\}|}{|B|}$$

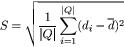
• Generational distance:

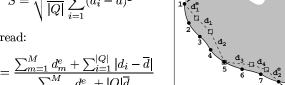
$$GD = \frac{(\sum_{i=1}^{|Q|} d_i^p)^{1/p}}{|Q|}$$

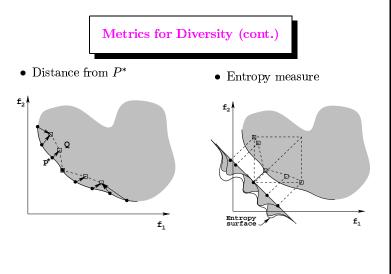


Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

82



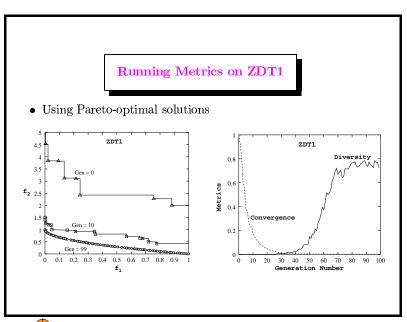




Metrics for Convergence and Diversity • Hypervolume • Attainment surface method

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

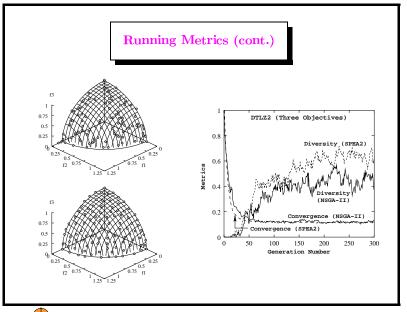
85



Running Metrics

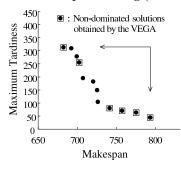
- Like SGA, define metric that shows generation-wise variation
- Identify non-dominated set $F^{(t)}$ of each population $P^{(t)}$
- Comparison Set (H):
 - If exact P-O front is known, $H = P^*$
 - Else $H = \text{Non-dominated}(\cup_{t=0,1,...}F^{(t)})$
- Convergence metric $C^{(t)}$: Average distance of each member of
- Diversity metric $D^{(t)}$: Similar to entropy measure

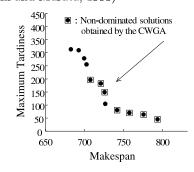
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)



Scheduling EMOs

- Objective space niching allows a straightforward application
- Most techniques use a local search
- Job-shop scheduling (Ishibuchi and Murata, 1998)





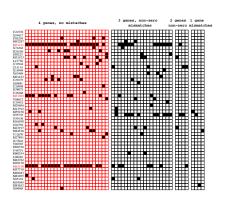
Zan SAL

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

89

Multiple Gene Subsets for Leukemia Samples

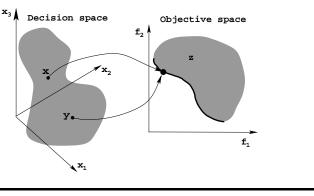
- Deb and Reddy (BioSystems, 2003)
- Multiple (26) four-gene combinations for 100% classification
- Discovery of some common genes



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

Multi-Modal EMOs

- Different solutions having identical objective values
- Multi-modal Pareto-optimal solutions: Design, Bioinformatics



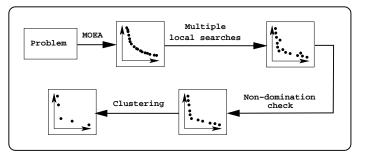
Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

90

Hybrid EMOs

- Combine EAs with a local search method
 - Better convergence
 - Faster overall optimization
- Two hybrid approaches
 - Local search to update each solution in an EA population (Ishubuchi and Murata, 1998; Jaskiewicz, 1998)
 - $-\,$ First EA and then apply a local search (Deb and Goel, 2000)

Posteriori Approach in an EMO



• Which objective to use in local search?

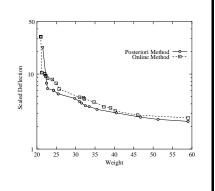
Xan OA

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

93

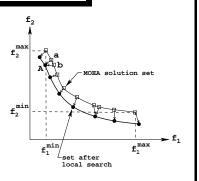
Posteriori Versus Online Approaches

- Cantilever plate design
- Compared for identical evaluations
- Posteriori finds a better front



An Idea for Local Search

- Extreme solutions are assigned extreme weights
- Linear relation between weight and fitness
- Many solution can converge to same solution after local search



Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

94

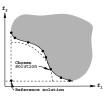
Which Pareto-Optimal Solution to Choose?

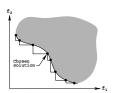
- Needs to involve a decision-maker (DM)
- Interactive EMO is called for Not much study yet
- A few difficulties:
 - The act of a DM makes it a single-obj. problem
 - But, obj. is not known precisely and changes with iteration
 - EMO finds many solutions, but only one is desired
 - Is DM interested in evaluating more than one solution?
- \bullet EMO as a starter, then a classical approach

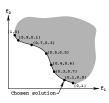
A Possible Interactive EMO

EMO: Find potentially good solutions – robust, knee-like, etc.

Classical: Concentrate in an area based DM's preference







Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

97

EMO Resources

Books

- C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Boston, MA: Kluwer Academic Publishers, 2002.
- K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley, 2001. (Second edition, with exercise problems)
- Paper Repository: http://www.lania.mx/~ccoello/EM00/ Conference Proceedings
- Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C. and Corne, D. (Eds) (2001). Evolutionary Multi-Criterion Optimization (Lecture Notes in Computer Science 1993). Heidelberg: Springer.

- Ideal multi-objective optimization is generic and pragmatic
- Evolutionary algorithms are ideal candidates
- Many efficient algorithms exist, more efficient ones are needed
- With some salient research studies, EMOs will revolutionize the act of optimization
- EAs have a definite edge in multi-objective optimization and should become more useful in practice in coming years

Prepared for GECCO-2004 (Seattle) by K. Deb (deb@iitk.ac.in)

98

EMO Resources (cont.)

Conference Proceedings (cont.)

- Fonseca, C., Zitzler, E., Deb, K., Fleming, P. and Thiele, L. (Eds) (2003). Evolutionary Multi-Criterion Optimization (Lecture Notes in Computer Science 2632). Heidelberg: Springer.
- EMO-2005 in Mexico (http://www.cimat.mx/emo2005/)

Mailing List

- \bullet emo-list@ualg.pt
- MCRIT-L@LISTSERV.UGA.EDU

Public-Domain Source Codes

- NSGA-II in C: http://www.iitk.ac.in/kangal/soft.htm
- SPEA2 and others: http://www.tik.ee.ethz.ch/pisa Java codes: University of Dortmund