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NFL: No Free Lunch

All search algorithms are equivalent when compared

over all possible discrete functions.

Wolpert, Macready (1995)

No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)

Fundamental Limitations on Search Algorithms: Springer Verlag LNCS 1000.

No Free Lunch for Gray and Binary

All search algorithms are equivalent when compared

over all possible representations.
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Variations on No Free Lunch

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is equivalent when

compared all possible discrete functions.

The aggregate behavior of ALL possible search algorithms is equivalent when

compared over any two discrete functions.

At each distinct “iteration” of search

the aggregate behavior of all possible search algorithms is IDENTICAL at

each and every iteration.
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Variations on No Free Lunch

Consider any algorithm
���

applied to function ��� .
On(

����� �	� ) outputs the order in which
���

visits the elements in the codomain

of �
� . For every pair of algorithms
���

and
���

and for any function ��� , there

exist a function �� such that

����� ����� �
�
��� ����� ����� ����
Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.

For every � there exists an � such that

���������! 	"$#�%'&� 
" � �
�	�(� �����')+*,&� 
"$#�%-&. 	" � �,/�
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ENUMERATION is a search algorithm.

Thus, No Free Lunch implies that on average,

no search algorithm is better than enumeration.

Furthermore, because bias in search algorithms causes them to focus the

search, most are prone to resampling.

If resampling is considered,

“focused” search algorithms are WORSE than enumeration

NFL IGNORES RESAMPLING
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An algorithm is modeled as a permutation

representing the order in which new points are tested.

Behavior is defined in terms of the evaluation function output

which defines the co-domain of the function.
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Assume that one is given a fixed set of co-domain values.

Set of Functions = Set of Permutations.

BEHAVIORS FUNCTIONS

A1: 1 2 3 F1: A B C

A2: 1 3 2 F2: A C B

A3: 2 1 3 F3: B A C

A4: 2 3 1 F4: B C A

A5: 3 1 2 F5: C A B

A6: 3 2 1 F6: C B A
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Assume
� ��� � ��� �-� ��� � .

Take 2 steps, return the maximum found.

| F1 F2 F3 F4 F5 F6

___|_______________________

A1 | A A A B A B

|

A2 | A A B A B A

|

A3 | A A A B A B

|

A4 | B B A A A A

|

A5 | A A B A B A

|

A6 | B B A A A A
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Theorem:
NFL holds for a set of functions IFF

the set of functions form a permutation set.

The “Permutation Set” is the closure of a set

of functions with respect to a permutation operator.

(Schmacher, Vose and Whitley–GECCO 2001).

F1: 0 0 1 2 F7: 0 2 0 1

F2: 0 1 0 2 F8: 0 2 1 0

F3: 1 0 0 2 F9: 1 2 0 0

F4: 0 0 2 1 F10: 2 0 0 1

F5: 0 1 2 0 F11: 2 0 1 0

F6: 1 0 2 0 F12: 2 1 0 0
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OBSERVATION: The Union of Permutation Sets is also a Permutation Set.

The sampling probability can be different across Permutation Sets.

Sampling Need not be Uniform

F1: A B C 12/100 F1: 0 0 0 1 7/100

F2: A C B 12/100 F2: 0 0 1 0 7/100

F3: B A C 12/100 F3: 0 1 0 0 7/100

F4: B C A 12/100 F4: 1 0 0 0 7/100

F5: C A B 12/100

F6: C B A 12/100
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Machine Learning and NFL
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Theorem:
Given a finite set of N unique co-domain values, NFL hold over a set of N!

functions where the average description length is O(N log N).

Sketch of Proof:
Construction a Binary Tree with N! leaves. Each leaf represents one of the N!

functions. To just label each function requires log(N!) bits. Each label has

average length log(N!) = O(N log N).

Note enumeration also has cost O(N log N).

Corollary:
If a fixed fraction of the co-domain values are unique, the set of N! functions

where NFL holds has average description length O(N log N).
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NFL holds over sets with 1 member.

F = 0 0 0 0

NFL holds over needle-in-a-haystack functions.

F1 = 0 0 0 1

F2 = 0 0 1 0

F3 = 0 1 0 0

F4 = 1 0 0 0
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The set of Binary strings is a permutation set

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 1 1 1 1 0

0 0 1 0 0 1 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 0 1 1

1 0 0 0 0 1 1 0 0 1 1 1

1 0 1 0

1 1 0 0
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Let � ��# � compute the permutation closure of
#

, where
#

is a set of

functions.

Let ����� � ��# ��� .
Then the average description length needed to distinguish the members of that

set is ��� � � � .

If ��� � � � is exponential, then the permutation set is 	 ��
 *��� &��! , 
%�� � � .

If ��� � � � is polynomial, then the permutation set is

 *��� &��! ! �%�� � � .
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QUESTION:

How should we evaluate search algorithms?

Let � represent a set of benchmarks. � � � � is the permutation closure over � .

If algorithm S is better than algorithm T on �
THEN T is better than S on � � � ����� .
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NO FREE LUNCH is not proven to hold over the class of problems in NP

unless we prove that ������ � . If � ��� � then there are more efficient

algorithms than RANDOM SEARCH.

NO FREE LUNCH does not hold over the class of problems in NP that have

ratio bounds which can be exploited by branch and bound algorithms.

Does NFL hold for “rich” problems/languages problems that have polynomial

descriptions that we want to solve in practice?

GECCO-04 –17

���������������������������������������������������
���������������������������������������������

���������������������������������
���������������������������������	�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�	


�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���������������������
���������������������

���������
���������������������

������������������������������

������������������������������

Machine Correlated Jobs

Job Correlated Jobs

Job 1 Job2 Job3

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-world problems may have

correlated structure. Job could be machine correlated or job correlated.
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JOB CORRELATED PROBLEMS. Performance of optimization algorithms.

The degree of randomness is indicated along the x-axis, while the deviation
from the best-known solution is indicated along the y-axis.
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MACHINE CORRELATED PROBLEMS. Performance of optimization

algorithms. The degree of randomness is indicated along the x-axis, while the
deviation from the best-known solution is indicated along the y-axis.
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S. Christensen and F. Oppacher

What can we learn from No Free Lunch? GECCO 2001

A SUBMEDIAN-SEEKER Type Algorithm

1. Evaluate a sample of points and estimate median(f).

2. If � ��� � ���
� ��� %������ � � then sample a neighbor of

� �
.

Else sample a new random point.

3. Repeat step 2 until half of space is explored.

Assume � is 1-dimensional, a bijection, and we know
� ��� %�� ��� � � .
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Let � � � � measures the number of submedian values of �
that have supermedian successors.

There exists ����� ��� such that when � � � ��������� ���
SubMedian-Seeker is better than random search.

SUBMEDIAN-SEEKER beats random enumeration when:

1. � is a uniformly sample polynomial of degree at most 	 and �
��� ��� � 	���
2. � is a truncated Fourier series of at most 	 harmonics uniformly sampled

over [0,1) at
�

locations and ����� ��� � 	���
3. Each extremum of � is represented by at least 6 points on average
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Structure is Important

Random Number Generators produce functions that are in some restricted

sense compressible. But they are designed to have minimal structure.

Consider “WorstFirst” local search again.

For every � there exists an � such that

���������! 	"$#�%'&� 
" � �
�	�(� �����')+*,&� 
"$#�%-&. 	" � �,/�
There are “structured functions” that do not fit our usual notion of being

“searchable.”
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NO FREE LUNCH and REPRESENTATION

Radcliffe, Surry (1995) Fundamental Limitations on Search Algorithms:

Springer Verlag LNCS 1000.

The behavior of any two algorithms are identical over all possible

representations of a single function.

”NO-FREE-LUNCH-like” results

The behavior of any two algorithms are identical over over the set of Gray and

the set of Binary representations over all possible functions.
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Counting Local Optima

The probability that string
%

is a local minimun under an arbitrary

transformation of a k-neighborhood search space is:

� ��% � �
����� ����
�����	��
� ���� % � � � ��	 ��� (1)
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R1

Ri

Rn

(N-i)  choose k
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The average number of local optima over all possible representations using a

k-neighbor search:

� � � � 	 � �
��� ��
��� � �

��% � (2)

� � � � 	 � ��� � � 	�� � � (3)

GECCO-04 –29

GECCO-04 –30



0
0

01 1
1
0

1
1

Gray Matrix Degray Matrix

0
0
1 1

1
0

1
1

1

1 1
0
0 0
0 0 0

00 0 0

1 1
1 1

1 1
1

1
11

11 11 1 0 0 0
0 00

00 0
0 0 0

00 0 0

1 1
1 1

1 1
1

5-bits

3-bits

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

000
001
011
010
110
111
101
100

BINARY GRAY

GECCO-04 –31

0001

0011001001100111

1001

10111010

1000

0100

1100

11101111

1101

0101

345

6 7

89

12

15 14

1

2

10 11 13

0000

0

4−bit Gray Encoding

0001

0011001001100111

1001

10111010

1000

0100

1100

11101111

1101

0101

1

2 367

9

1014

12

15

4

11

5

13 8

0000

0

4−bit Binary Encoding

GECCO-04 –32



”NO-FREE-LUNCH-like” results hold over

very small sets of functions for Gray and Binary representations.

BN B1        B2       B3                  B(N-1)        BN

G1       G2       G3       G4       G(N-1)       GN

F1        F2        F3                  F(N-1)         FN

The length of this “chain” is at most 2L.
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R1: 000 001 010 011 100 101 110 111

R2: 000 001 011 010 110 111 101 100

R3: 000 001 010 011 101 100 111 110

R4: 000 001 011 010 111 110 100 101

R5: 000 001 010 011 100 101 110 111
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Consider the integer-adjacency neighborhood.

1, 2, 3, 4, 5, 6, 7, 8, ... N-3, N-2, N-1, N

We consider a WRAPPING Neighborhood

where 1 and N are neighbors.

(We can also consider a NON-WRAPPED Neighborhood,

where 1 and N are not neighbors).
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FOR WRAPPING FUNCTIONS

#F # of Min # of Min

K K Min Gray Binary

1 512 512 1,024

2 14,592 23,040 27,776

3 23,040 49,152 48,896

4 2,176 7,936 2,944

Sum 40,320 80,640 80,640
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MINI-MAX: WRAPPING

K Gray Wins Binary Wins Ties

1 448 0 64

2 6752 2288 5552

3 6720 6592 9728

4 0 2160 16

Sum 13,920 11,040 15,360
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A SubThreshold-Seeker

1. Evaluate a sample of points and estimate a
"�� &��! �� * � � � � � .

2. Pick point
�
�
"�� &��, �� * � � � � � .

3. If � ��� ���
"�� &��, �� * � � � � � then set

� � � � � and � � � � � ;
Else sample a new random point.

4. While � ��� ���
"�� &��! �� * � � � � � set

� � � � � ;
5. While � � � � � "�� &��! �� * � � � � � set � ��� � � ;
6. If stopping-conditions not met, goto 2.
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Define a quasi-basin as a contiguous set of points below threshold. Let �
define a threshold presenting some fraction of the search space. Suppose there

are
�

quasi-basins each containing at least � points.

Theorem: Suppose that Subthreshold-Seeker is used to find
�

quasi-basins

each containing at least � points. Forall � � � ��� subtheshold-seeker beats

random search if � ��� ������� �	�
	� .

� ������� �	�
	� does not reference � because � is derived from � .

GECCO-04 –41

What about a simple bit climber using Gray Code?

Theorem: Given a quasi-basin that spans � ��� of a search space of size �
and a reference point  inside the quasi-basin, the expected number of

neighbors of  that fall inside the quasi-basin under a reflected Gray code is

greater than � � � * � � � ��� � ��� � �

Corollary: Given a quasi-basin below theshold � that spans � ��� of the

search space and a reference point  that fall in the quasi-basin, the majority

of the neighbors of  under a reflected Gray code representation of a search

space of size � will also be subthreshold in expectation when� � � * � � � ��� � ��� � � ������� � � � � �
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This means that a simple “local search” bit climber can beat random

enumeration when restarted from a subthreshold points as long as on average� � � * � � � ��� � ��� � � ������� � � � � �
Let � � � ����� and assume we want to largely sample a quasi-basin that spans

� � � % ��� *,�
���

of the space.� � � * � � � ����� ��� � � ���
� � � � ����� � � � � � � �
��� �
	 �

NOTE: An increase in precision increases

� � � * � � � ��� � ��� � �
but does not increase

� ��� � � � � � .
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10 bit Precision 20 bit Precision

Func ALG Mean Sub Evals Mean Sub Evals

ackley R-LS 0.18 62.4 19371 0.0001 75.1 77835

SubT 0.18 79.7 16214 � 0.0001 89.9 73212 �
grie- R-LS 0.010 59.5 13412 0.0045 80.3 66609

wangk SubT 0.005 80.1 9692 � 0.0049 90.0 59935 �
rana R-LS -49.6 49.5 22575 -49.76 74.2 3 � �����

SubT -49.4 57.6 19453 � -49.83 85.0 3 � ��� �
Table 1: Local Search Results averaged over 30 runs. Threshold = 10 percent.

The � denotes statistical significance.
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